
Proceeding of the 10
th

 Multi-Disciplinary Seminar

31

Integration of Intrusion Detection System with Mobile Cloud Offloading

to Securely Offload Mobile Applications to the Cloudlet
*
Abeselom Befekadu

Abstract

Nowadays mobile device has become a useful tool to compute the day to day

activities of human being. However, this tool lacks the resources to handle

the increasing need for computing intensive tasks. To overcome those

limitations, the computation offloading mechanism has been widely

considered. Security measures using encryption, user authentication,

password, firewall and digital certificates are not enough to secure the data

during transmission and the code itself. To reduce the risks behind mobile

application offloading, this research proposes an integrated intrusion

detection system with mobile application offloading to securely offload

mobile computation to the cloudlet. The system denies the service request of

the mobile device during intrusion. This means the system stops the

offloading process immediately at the time of attack. This process secures the

client‟s data from being accessed by unauthorized intruder. Moreover, the

system will generate report to the cloudlet administrator about why the

service request of the client is denied. After removing the intruder from the

network the services will start immediately.

General Terms:
Mobile Cloud Computing, Network Security, Machine Learning, Data

mining

Keywords

Mobile Cloud Computing, Computation Offloading, Intrusion Detection in

cloud, Stop offloading, Notify the cloudlet administrator.

Introduction

Mobile cloud computing is a new paradigm that uses cloud computing

resources to overcome the limitations of mobile computing[1]. Computation

off-loading sends bulky computations and difficult processing from mobile

device to the resourceful cloud servers. This contributes to efficient usage of

battery, memory, storage and CPU of the mobile device. There are two core

sources of vulnerability in computation offloading [2]. The first one is the

propagated vulnerability, which happens when the possibility of an

*Lecturer, Assosa University, Assosa, Ethiopia abeselom2010@gmail.com

Proceeding of the 10
th

 Multi-Disciplinary Seminar

32

attack initiates from other objects and propagates to the object over call

interactions. The other one is cloud originated vulnerability, which is

triggered by relationship between an object of the mobile application and the

cloud server which accommodates it. In order to minimize the risk of being

caught by the attackers during transmission, there is a need to secure these

objects by using some security mechanisms. Among the security

mechanisms, intrusion detection system is the more popular and effective

means of security.

1.1 Scope and Limitations of the Study

The integrated system has the following aspects:

 Identification of possible intrusions

 Report generation about the intrusions

 Reading the generated report before accepting service requests from

mobile device

 Denying service request if there is an attack on the cloudlet network

 Alarm the cloudlet administrator why the service is denied.

The integrated system has the following limitations:

 The research only focused on the intrusions that were caused by

network based vulnerabilities.

 To identify the computation intensive methods, the system used the

previous execution time and call relationship of the methods.

 The designed solution was not 100% accurate. There was false

positive and false negative in the result.

 The experiment was conducted only on android based mobile device.

 The research only considered attacks which were found on NSL-

KDD datasets.

1.2 Methodology

This research was expected to improve the limitations of the existing

intrusion detection system in cloud computing environment. To achieve the

main objective of this research, design-oriented research methodology was

used. Design-oriented research method is basically a problem-solving model

[3]. The five steps of design oriented method followed in this research work

were problem identification, solution suggestion, development of the system,

evaluation and conclusion.

Proceeding of the 10
th

 Multi-Disciplinary Seminar

33

I. Problem Identification

The first thing to do was to conduct a comprehensive review of literatures to

acquire a deeper understanding of the research area and its problem domains.

Through this literature the researcher identified the importance and

limitations of the previous works done in the area of intrusion detection in

mobile cloud computing. Existing works related to this research work were

assessed to identify and point out direction in providing solution to identified

problems. The problems that were identified in this research were:

 The performance problem which was caused by deploying

computation intensive intrusion detection system on the mobile

device.

 The communication vulnerability problem which happened when an

attacker compromised the communication channel between the

mobile device and cloudlet server and made the system to look like

normal operation time.

 The problem around the time gap between detection of intrusion and

taking care of the intrusion by cloudlet administrator.

 The problem around the need for high network bandwidth to create

the replica of mobile device on virtual machines of the cloud server

in which intrusion detection was executed.

II. Solution Suggestion

The second phase of this research was to determine different solutions for

each research problems. The suggested solutions were:

 Deploying the heavy computing components of the system in the

cloud environment.

 Deny service request by the mobile device during attacks and make

the system to compute tasks locally.

 Alert the cloudlet administrator about the attacks.

 Using the round trip time (RTT) value in offloading decisions.

III. Development of the System

The integrated network based intrusion detection system with computation

offloading engine was developed to improve the performance,

communication vulnerability and time gap between detection and taking

action problems of the existing systems. The system used combined

algorithm which was Naïve Bayes and Decision Tree for classifying and

Proceeding of the 10
th

 Multi-Disciplinary Seminar

34

learning process of the intrusion detection. Lighter offloading decision

engine was developed for the client side to reduce the computation overhead.

The offloading process of the system offloaded application at method level

granularity. For communication between mobile device and cloudlet server,

the system used remote procedure call (RPC) technology. To partition the

application, the system used critical path method. For integration, the

network based intrusion detection module generated report and the report

was used by the cloudlet server to take action.

IV. Evaluation and Improvement

Finally, the integrated system was implemented and evaluated by using the

integrated intrusion detection system with computation offloading

architecture. A mobile application that used image processing algorithms to

apply some effects was used to evaluate the offloading engine, and the NSL-

KDD testing data set was used to evaluate the network based intrusion

detection system. To test the integration, the response of the system during

attack was observed.

V. Discussion and Conclusion

The results which were found during evaluation phase and the achievements

of the integrated system were discussed. The success that made the system to

achieve the objectives of the research was deliberated. Finally, the findings

of the research were summarized.

1.3 Tools and Techniques

Eclipse Neon was used to develop the prototype. This version of Eclipse

supports Java Platform Standard Edition (Java SE) specification Version 8.2

with Java Development Kit (JDK) 8.2 and Java SE Runtime Environment

(JRE) 8.2. In order to build, test and debug applications for Android, the

Android SDK was installed. The researcher also installed the ADT plugin on

Eclipse Neon to use the packages which allowed the creation of android

projects, used the emulator to test the application and for designing the user

interface. The java programming was also used as a programming language

during development. Waikato Environment for Knowledge Analysis

(WEKA) was a toolkit which was composed of machine learning and data

mining. This toolkit can be used as it is or it can be called from Java code.

This API was called from java code for the purpose of data mining and

machine learning during developing the network based intrusion detection

Proceeding of the 10
th

 Multi-Disciplinary Seminar

35

system. Because of cost, the researcher decided to use Connectify Hotspot to

connect the mobile device and the cloudlet during the development of the

system, which turned a computer with wireless adapter into a wireless router.

Maven was utilized to manage the different parts of the system and their

dependency.

2. Related Works

Substantial numbers of researches have been done and several solutions have

been proposed to improve the performance of network intrusion detection

system in mobile cloud computing environment. However, none of them

have considered the computation offloading. This research has considered

the security of mobile cloud computing from the computation offloading

perspective.

Portokalidis et al [4] portray a scheme that executes an intrusion detection

for Android based system called Paranoid Android. Paranoid Android

depends on a cloud organization model where intrusion detection is offered

as a package. By imitating the entire device in virtual machines in the cloud,

it is conceivable to apply asset concentrated anomaly detection mechanisms.

This would not be possible to do on smart phones due to the exceptionally

limited accessible resources. The clone is kept in a state of harmony with the

smart phone. Activities performed on the device are replayed by the emulator

and also where the security checks are implemented using the emulator‘s

data. They additionally demonstrate that it is basic to improve the

synchronization and tracing processes because collecting and transmitting

information can prompt unbalanced exhaustion of the battery. Despite this,

the system uses extremely loose synchronization model where the device

synchronizes with its replica only when it is recharging. After an attack

occurs the phone has to plugged-in to personal computer to get back to the

normal state.

Manish Kumar and Dr. Hanumanthappa [5] propose a cloud based Intrusion

Detection System for smart phones to reverse the issues of smartphone

resource requirements and to identify any trouble making or abnormal

movement adequately. It comprises of a cloud-based administration which

would enable clients to install a lightweight agent on their smartphone and

enlist to an online cloud-service by indicating their working platform,

applications introduced on their telephone and other important data about

Proceeding of the 10
th

 Multi-Disciplinary Seminar

36

their smartphone. A while later, this particular smartphone is copied in a

virtual machine on the cloud utilizing an intermediary proxy which copies

the incoming traffic to the device and forwards the traffic to the emulation

platform, where intrusion detection is executed. In this paper, the authors

failed to specify how the intrusion detection engine communicates with the

client host agent and how to handle the much needed mobile resources

during creating the replica of the device.

Fang Yuan, Lidong Zhai, Yanan Cao and Li Guo [6] proposed an intrusion

detection system for identifying anomaly activity on Android smartphones.

The intrusion detection system constantly screens and gathers the data of

smartphone under ordinary conditions and attack state. It extracts different

features acquired from the Android framework, for example, the network

traffic of smartphones, battery utilization, CPU use and the measure of

running processes. At that point, it applies Bayes classifying algorithm to

decide if there is an attack. Analysis of the network traffic, CPU usage, the

amount of running processes, and so on is carried out on the device. But, this

kind of deployment hurts the performance of the smart phone.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer and Yael

Weiss[7] proposed a framework which recognizes a Host-based Malware

Detection System that continuously screens different components and events

which is acquired from the phone and afterward applies machine learning

anomaly identifiers to group the gathered information as normal (benign) or

abnormal (malicious). The researchers did not demonstrate their proposed

solution on the data which was obtained from the real world. Since no

malicious applications were yet accessible for Android, they created four

malicious applications, and assessed Andromaly's capacity to distinguish

new malware in view of samples of known malware. They evaluated a few

blends of anomaly detection algorithms; included feature selection

technique, and the number of top features to discover the mix that yielded the

best execution in distinguishing new malware on Android.

3. Design of the System

This system viewed the security of mobile cloud computing from the

perspective of computation offloading since the main aim and purpose of

mobile cloud computing was to relieve the mobile device resource

limitations by offloading computation-intensive mobile applications to the

Proceeding of the 10
th

 Multi-Disciplinary Seminar

37

cloudlet server. The following figure shows the high level architecture of the

system.

 Fig 1: High Level Architecture of the Integrated System

3.1 Detailed Architecture of the System

The system architecture consisted three modules which were the mobile

module, the network based intrusion detection system module, and the

cloudlet server module. The mobile module and cloudlet server module

consisted of four layers, several components and subcomponents in each

layer. Each of those components and subcomponents performed specific

tasks and had different functionalities. The network based intrusion detection

system module also had several components and functions. The architecture

of the system is depicted in the Figure 2.

Fig 2: Architecture of the Integrated System

Proceeding of the 10
th

 Multi-Disciplinary Seminar

38

3.1.1 Mobile Module Components of the System

I. Discovery Service

The discovery service is responsible for finding a running cloudlet server

within the same network such as WLAN, WIFI, and base station. This

component was also responsible for creating a communication session with

the server. At the time of launching mobile application, the mobile

broadcasted its presence to wireless network by multicasting message. By

using the server‘s platform listening service in the wireless network, the

server listen the multicast message and replayed a message back to the

mobile device with the services that are available for the mobile application.

The component was taken from a Multi-Platform Offloading System

(MpOS) framework[8] with some minor adaptation for the purpose of

integration with the system.

II. Network Profiler

This component of the system uses the round trip time (RTT) to monitor and

measure the quality of the network which is available between the mobile

device and the server. A ping request is sent to the cloudlet server and the

round trip time (RTT) was measured. The result is used by the offloading

engine as parameter for the purpose of making a decision about whether to

offload a method or not to offload to a remote server.

III. Offloading Engine

The offloading engine performs decisions whether to offload the execution to

the cloudlet or execute. It is locally based on parameters from the network

profiler and partition priority of the methods given by partitioning engine.

The offloading engine is the heart of the engine which decides which code to

offload. It makes an estimate of round trip time (RTT) and decides to offload

only when a certain criterion is met. The estimation is carried out only if a

connection exists and a server is available. If no server exists, estimation is

redundant since it will be executed in the android runtime whatever the cost.

The round-trip time is defined as the elapsed time between the instant packet

is sent by the source node to the instant corresponding ACK packet is

received by the source node [9]. The system uses the round trip time (RTT)

for offloading decisions since it requires simple computation and easy to

analyze. Moreover, using the round trip time (RTT) for offloading decisions

reduce the computation overhead encountered because of analysis on the

resource constraint mobile device. For offloading decisions different RTT

Proceeding of the 10
th

 Multi-Disciplinary Seminar

39

boundaries are used by various scholars. In [8] offloading is executed when

RTT is lower than 40 ms (40 millisecond). However, Tseghai et al [10]

observed offloading decisions for different RTT values ranging from 10 m/s

to 100 m/s. Based on the result, computation offloading was worthwhile

when RTT is lower than ≈32ms. Since this RTT value is better than the

other‘s result, the system uses it for offloading decisions. Specifically the

system performs offloading when RTT is lower than 32ms. The Pseudo code

of the computation offloading algorithm is described as follows.

Pseudo code 1: Pseudo code for offloading engine

3.1.2 Cloudlet Server Module Components of the System

I. Application Profiler

The main responsibility of this component is to estimate the execution time

of the methods. In offloading, decision making on whether to offload or not

is based on the estimated android runtime, estimated offloading time and

estimated server runtime. To offload a method to the remote server the

estimated server runtime must be less than the addition result of android

runtime and estimated offloading time. The system deploys application

profiler and partitioning engine components on the server despite most of the

other systems which deploy them on the mobile side. This means of

Proceeding of the 10
th

 Multi-Disciplinary Seminar

40

component deployment allows the mobile device side to reduce the overhead

encountered during application profiling and partitioning. The java

instrumentation API is used to develop both application profiler and

partitioning engine components. Accessing a class that is loaded by the Java

Class Loader from the JVM and modifying its byte code at runtime become

easy by using java instrumentation API. The application profiler uses the call

graph to determine the cost of execution of each method and the number of

calls that is happened between each method. The application partitioning

engine uses this cost to partition the application later.

II. Partitioning Engine

Partitioning engine partitions the mobile application based on the application

profiler output result. This component uses critical path method to identify

the longest path in the call graph which is generated by the application

profiler. The application partitioning engine algorithms identify the first

critical path which is the longest path from the start node to the exit node in

the call graph. The length of a path is computed as the sum of the execution

time of the methods and the number of calls along that path. After this

process the engine partitions, the methods in the first critical path, assign

partition priority for each method and offload it to the remote server on next

execution. The engine doesn‘t stop on the first critical path instead it will

continue by identifying the next critical path by pruning the first critical path

from the call graph. The next figure demonstrate example of the first critical

path of the call graph.

Fig 3: The First Critical Path in the Call Graph

Proceeding of the 10
th

 Multi-Disciplinary Seminar

41

3.1.3 Network Based Intrusion Detection System Module Components

1. Raw Data

The input data for training phase was the offline dataset which was found on

the web for educational research purpose. It was labeled dataset that could be

easily learnt by the system. For this case, the research used simulated dataset

called NSL-KDD for this phase. This dataset was selected because it was the

latest version of all simulated dataset in the area of network security;

redundant records were eliminated from training set and it was affordable to

use for experiment purpose as it consisted of reasonable number of instances

both in the training and testing set[11].

I. Preprocessing

Data preprocessing was required to remove unwanted attributes from the

dataset and build a dataset for Naïve Bayes and Decision Tree algorithms.

Dataset feature extraction was analyzed based on the attacks nature and extra

domain information. The preprocessing phase was responsible for preparing

the NSL-KDD dataset for the next phase which was Naïve Bayes and

Decision Tree learning process. In this research, WEKA attributed filtering

was used with other pre-processing techniques. The operations such as

attribute selection, attribute filtering and instances filtering were applied in

this phase. Those techniques improved the efficiency of the algorithm to

classify the data correctly.

II. Naïve Bayes and Decision Tree Learning

Today‘s network environment is very crowded and uncertain. Detecting

intrusions in this uncertain network environment is very difficult. Finding the

best algorithm is a very challenging task in developing network based

intrusion detection system. This research compared and contrasted every

algorithm that was used to develop intrusion detection system and finds the

combination of Naïve Bayes and Decision Tree algorithms are the best way

to develop the system.

Pseudo code 2: Pseudo Code for Training Phase

III. Inference Engine

After the Naïve Bayes and Decision tree model were built or trained by the

network traffic dataset and ready to predict attacks in the incoming network

traffic, the Inference Engine provided the predicting algorithms with test data

which was used to compare with the learnt knowledge. The Inference Engine

Proceeding of the 10
th

 Multi-Disciplinary Seminar

42

also classified each record of the input data (Test Dataset) to normal

connection or to a relevant attack based on the Naïve Bayes and Decision

tree model. The integration of the algorithms happened after both algorithms

made prediction. Then when both made same prediction, the integrator code

took the result but when they predicted different, the integrator code took the

worst possibility which was the anomaly.

Pseudo code 3: Pseudo code for detection stage

Fig 4: Execution flow of the system of the system

3.2 Communication Model of the System

To allow communication between the mobile device and the cloudlet server

this research used the conventional client-server communication model.

Because of its support to Dalvik virtual machine, language independence and

best performance, this research chose RPC over RMI.

Input: Test Dataset

Process:

BEGIN

Read test dataset

Call Naïve Bayes and Decision Tree to classify as

anomaly or normal

If status is anomaly then

Sent report

End If

Proceeding of the 10
th

 Multi-Disciplinary Seminar

43

3.3 Execution Flow of the System

There are different ways of partitioning an application during offloading.

The partitioning can be done on different levels such as thread level, method

level, task level, object level, class level, module level and the whole

application level. Anyone can choose from this level as per their system

specification and compatibility issues. This research considered the

compatibility issue with the RPC communication technique and decided the

offloading process at method level was the best since RPC supports only

method level remote calls. Specifically, the system offloaded computations

at method level granularity.

The system started its implementation by examining the network quality. If

the network quality meets the standard (The ping result < = 32ms), the

system intercepts a method which is in execution locally and starts the

process of offloading. But at the server side, the server receives the offloaded

methods based on the report produced by the network based intrusion

detection system (NIDS). If the report by the NIDS contains attacks, the

server immediately denies service for the mobile device and makes the

methods to be executed locally. After appropriate measures are taken by the

cloud administrator, the services of the cloudlet server will start immediately.

4. Implementation and Evaluation

4.1 Implementation of the System

The system was developed and implemented for android mobile device and

the intrusion detection was implemented for network based attacks. The

Android API 16 (Android 4.1.2 Jelly Bean) was used as the target system for

the development of the application. The WEKA API was also used for data

mining and machine learning purpose in developing the intrusion detection

system.

3.1.1 Configuration of the System

In order to use the offloading system, the mobile application had to be

configured inside the code and the cloudlet file must be configured. The

configuration is depicted below:

 The methods with computation intensive operation can be annotated

with @ Remotable annotation. The annotation must be implemented

Proceeding of the 10
th

 Multi-Disciplinary Seminar

44

by using interfaces. The interfaces allows the system to create proxy

of objects in which enables the system to access the methods [8].

 The IP addresses of the cloudlet must be configured manually and the

configured file, the server platform jar and the application profiler

and partitioning jar file must be in the same folder.

 The client library must be referenced as a library by the mobile

application.

4.2 Evaluation of the System

The evaluation of the system was viewed from the perspectives of

identification of network based cyber-attacks and deterrence of data theft by

stopping the computation offloading process immediately at the time of

network based intrusions. The system used NSL-KDD datasets for

simulating the detection of intrusion and a computation-intensive mobile

application called Bench Image was used for testing the offloading engine.

3.2 Results and Discussion

The experiments were broadly divided into two parts. The first part consisted

of the experiment which was done on network based intrusion detection. The

second part consisted of experiments performed on integration of the

network based intrusion detection system with mobile application offloading

to securely offload mobile computation to the cloudlet server.

Fig: Handling of Service Request by the Cloud Let Server

Proceeding of the 10
th

 Multi-Disciplinary Seminar

45

4.3.1 Experiment on Network Based Intrusion Detection System

The performance of the network based intrusion detection system was

evaluated based on the accuracy, precision, recall, True Positive Rate (TPR)

and False Positive Rate (FPR). To measure the performance of the NIDS a

standard metrics which were confusion matrix values were used. The

effectiveness of network based intrusion detection system was measured in

terms of accuracy in which it identified how much did the IDS classified the

incoming packet as normal and attack. The accuracy of the system was

calculated using the following equation.

This researcher first calculated the accuracy of each algorithm which was

Naïve Bayes and Decision Tree. After that the researcher compared the result

with the combined algorithm. For both algorithms the researcher used 22544

instances. The experiment got 17160 correctly predicted and 5384

incorrectly predicted instances for Naïve Bayes algorithm and 17913

correctly predicted and 4631 incorrectly predicted instances for Decision

Tree algorithm after calculating the accuracy of each algorithm. The result

for Naïve Bayes was 76% and for Decision Tree 79%. But in contrast to the

results from the Naïve Bayes and Decision Tree algorithms the combined

algorithm produced 18543 correctly prediction and 4001 incorrectly

prediction. From this result the accuracy of combined algorithm was 82%.

Therefore, the accuracy of the combined algorithm was better than that of the

single algorithm.

4.3.2 Experiment on Integration of NIDS with Mobile Application

Offloading

The main purpose of integrating network based intrusion detection system

with mobile application offloading was to reduce the security risks

encountered during offloading computation intensive part of mobile

application to the cloudlet. Figure 5 demonstrate how the system handles the

offloaded methods during the normal time of operations.

After receiving service request by the cloudlet server from mobile device, the

cloudlet server processed the image and returned the result to the mobile

Proceeding of the 10
th

 Multi-Disciplinary Seminar

46

application. The result of applying Red Tone filter on the image is shown in

figure 6.

Fig 6: The Result of Applying Red Ton Filter on the Image

When cyber-attack happened the integrated system responded by denying

service request by the mobile device and closed the stream immediately.

When the system denied service, the mobile application immediately

processed the task locally. The system also showed information about why

the request was denied for the purpose of alarming the cloudlet

administrator. Moreover, after the removal of intruder from the network by

the administrator, the services of the cloudlet started immediately. This

mechanism secures the mobile application user from attackers (Figure 7)

demonstrate how the integrated system responds during cyber-attack.

Fig 7: The Integrated System Responses during Attack

Proceeding of the 10
th

 Multi-Disciplinary Seminar

47

5. Conclusion

Intrusion detection in mobile cloud computing has been improving from time

to time. However, these improvements have not been enough to secure the

mobile users from attacks. When thinking about mobile cloud security, we

have to consider two things. The first one is about losing the customers

forever because of data theft by the intruders which happens by letting them

to use the services of cloud during cyber-attacks and the second is gaining

the confidence of the customers by denying services till taking care of the

attacks by the administrator. This research argues that losing mobile cloud

customers forever is the worst choice for the cloud providers.

Since cloudlets are deployed ones wireless hop away for the purpose of fast

response time, they support only minimum number of clients as per the

wireless capacity. So protecting the mobile cloud customers by denying

service request until the cloud administrator removes the intruder is the best

means of security for both customers and cloud provider because the

integrated system affects only customers who use the attacked cloudlet. This

security operation does not disrupt the activities of other clients who are

using another cloudlet of the provider. The current intrusion detection system

in the mobile cloud environment lacks these capabilities.

Finally, the integrated intrusion detection with mobile computation

offloading system was evaluated and the obtained result shows the system

can deter data theft by the intruders during attack. This shows that the system

can be effective means of security for mobile cloud computing.

References

1. R. Matos, J. Araujo, D. Oliveira, P. Maciel, and K. Trivedi, ―Sensitivity

Analysis of a Hierarchical Model of Mobile Cloud Computing,‖ Elsevier

B.V., 2014.

2. H. Zhu, C. Huang, and J. Yan, ―Vulnerability Evaluation for Securely

Offloading Mobile Apps in the Cloud,‖ IEEE, pp. 108–116, 2013.

3. A. Hevner, ―Design Science in Information Systems Research,‖ MIS Q.,

Vol. 28, No. 1, pp. 75–105, 2004

4. G. Portokalidis and H. Bos, ―Paranoid Android : Versatile Protection for

Smartphones,‖ 2010.

Proceeding of the 10
th

 Multi-Disciplinary Seminar

48

5. M. Kumar and M. Hanumanthappa, ―Cloud Based Intrusion Detection

Architecture for Smartphones,‖ IEEE, 2015.

6. F. Yuan, L. Zhai, Y. Cao, and L. Guo, ―Research of Intrusion Detection

System on Android,‖ IEEE Ninth World Congr. Serv. Res., pp. 312–316,

2013.

7. [A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ―‗

Andromaly ‘: A Behavioral Malware Detection Framework for Android

Devices,‖ J Intell Inf Syst, pp. 161–190, 2012.

8. P. B. Costa, P. A. L. Rego, L. S. Rocha, and J. N. De Souza, ―MpOS : A

Multiplatform Offloading System,‖ ACM, pp. 577–584, 2015.

9. Q. Wang, ―Restart in Mobile Offloading,‖ 2015.

10. A. Tseghai, ―A Lightweight Computation Offloading System for Mobile

Cloud Computing,‖ 2017.

11. D. Tigabu, ―Constructing Predictive Model for Network Intrusion

Detection,‖ 2012.

