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Abstract

The emergence of Web technology generated a massive amount of raw data by enabling Internet
users to post their opinions, reviews, comments on the web. Processing this raw data to extract
useful information can be a very challenging task. Sentiment Analysis involves extracting,
understanding, classifying and presenting the emotions and opinions expressed by users. We
explored opinion mining as a text classification task and employed unigram as a feature set. We

have performed different experiments that can be grouped into three.

In the first group (lexical classifier), we developed an algorithm to classify reviews based on the
number of count of opinion words. The performance of this algorithm has been evaluated by
comparing the result of lexical classifier algorithm with the actual labels of the reviews. In the
second group of experiments, three popular feature selection methods Chi-Square, Mutual-
Information-Gain and Galavvotti-Sebastiani-Simi (GSS) coefficient have been compared for
performance in selecting a better subset of feature set. For these comparisons, three supervised
classifiers Nave Bayes, Logistic-Regression and SVM have been used. Experiments on these
three classifiers have been done using all three of the above feature selection methods with 750,
1000, 1250, and 1500 numbers of features. Here, It enabled us to know which combinations of
feature selection methods, classifier, and a number of features work best in our domain. In the

third group of experiments, we combine the lexical classifier with machine learning sequentially.

In this research work, hybrid sentiment classification has been done for classifying Amharic
book reviews into positive and negative. The experiments are conducted using 600 Ambharic
book reviews collected from different sources like facebook, personal blogs, and manually
collected from individual book readers. For machine learning, the experiment indicates that the
Naive Bayes algorithm, using Mutual Information Gain feature selection method, with 1500
number of features perform best with an accuracy of 93.33%. The experiment also indicates a
hybrid approach with accuracy (87%) outperform lexical approach with 74% accuracy but
not machine learning approach which performs with an accuracy of 93.33%.

Keywords: Opinion, Sentiment Analysis, Features, Lexicon-Based Classifier, Machine

Learning, Hybrid Classifier.



CHAPTER ONE

INTRODUCTION

1.1  Overview

Opinions are central to almost all human activities and are key influencers of our behaviors. Our
beliefs and perceptions of reality, and the choices we make, are, to a considerable degree,
conditioned upon how others see and evaluate the world (Liu, 2012). For this reason, when we
need to make a decision we often seek out the opinions of others. This is not only true for
individuals but also true for organizations. Individuals, organizations, and government
understand the influence of opinion on decision making and they were trying to use this for their

advantage.

Before the emergence of the Internet, there was a very little written text opinion available in the
market (Pawar, Jawale, & Kyatanavar, 2016) and opinions were collected and analyzed manually
(Khan, Baharudin, Khan, & Ullah, 2014), which is expensive and time-consuming (Younis,
2015). In that time, if an individual needed to make a decision, he/she typically asked for
opinions from friends and families. When an organization needed to find opinions of the general
public about its products and services, it conducted surveys and focus groups. With the rapid
expansion of e-Commence, more users are becoming comfortable with the Web and an
increasing number of people are writing reviews (W. Wang & Zhou, 2009). The number of
reviews can be in hundreds or even thousands for a popular product. This makes it difficult for a
potential customer to read them, or to make an informed decision on whether to purchase the
product. It also makes it difficult for the manufacturer of the product to keep track of customer
opinions. However, doing this manually is only possible to a certain extent and time-consuming
job. As an example, manufacturing organizations prefer information in a format that is easier to
use, so automating this process is very useful (Hu & Liu, 2004). This is where opinion mining

comes in to picture.

Sentiment analysis, also called opinion mining, is the field of study that analyzes people’s

opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as
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products, services, organizations, individuals, issues, events, topics, and their attributes (Liu,
2012). Even though Sentiment analysis has been there since the 1990s, the outbreak of computer-
based sentiment analysis only occurred with the availability of subjective texts on the Web
(Méntyld, Graziotin, & Kuutila, 2018). Nowadays it has become one of the prominent research

areas over the past years in computer science, especially in Natural language processing.

1.2  Statements of the Problem

The presence of social media, blogs, forums, and e-commerce web sites encourages citizens to
share their opinion, emotions, and feelings publicly (Haseena, 2014). The increased popularity of
these sites resulted in the huge collection of people opinion on the web in an unstructured
manner (Haseena, 2014; Khan et al., 2014; Pawar et al., 2016). These very large volumes of
information are very difficult to process by individuals, leading to information overload and
affecting decision-making processes in organizations (S. Wang & Wang, 2008). This situation

creates a new area of research called opinion mining and sentiment analysis.

The sentiment analysis results are influenced by the differences in grammar and usage of
language which makes opinion mining language and domain dependent task (Bal et al., 2011).
Among these languages, English is the most studied language in the field of opinion mining
because of the availability of linguistic resources for analyzing opinions in English language
(Mhaske & Patil, 2016). As the internet is reaching to more and more people within the world,
there is a tremendous increase in the web content of other languages because people feel
comfortable with their native language (R. Sharma, Nigam, & Jain, 2014). According to Internet
World User by Language (2017), 26.5% of the internet users are English speaker from the top
language used in the web. The availability of data in a language other than English (R. Sharma et
al., 2014), and the increasing need of automatic opinion mining systems (Mhaske & Patil, 2016),
has motivated many researchers to study different languages. In addition to these, Ethiopia took
3.6 % of Internet users out of Africa’s share and 0.4% out of a total population of internet users
in the world in 2017. The statistics also show that there was an average increase of 966,323 users
of the Internet in Ethiopia during the years 2000-2017. Due to this increase in Internet population
within the country and a large number of population that speaks the language in diasporas, the
number of web documents that are written in Amharic language and the Ethiopic script is

increasing. Opinionated Ambharic documents are among these web documents that show
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increment on the web, though sentiment analysis research on the Amharic language is at its
infant stage (Abreham, 2014; Philemon & Mulugeta, 2014). Collecting and analyzing opinions
manually is expensive and time-consuming (Khan et al., 2014; Younis, 2015) and since opinion
mining is language dependent task (Bal et al., 2011), we cannot use sentiment analysis works
done for other languages directly for the Amharic language. This is due to the difference in
grammar and other behavior of the language. For example, word order in Amharic is generally
subject-object-verb (SOV), with subordinate clauses preceding the main clause. Therefore, we need
sentiment analysis research works on Amharic. This study investigates the use of opinion mining

on Amharic book review.

The reason why we used book reviews domain is that it is relatively easy to collect book
reviews; this is because nowadays, there are different groups in social media like Facebook and

personal blogs that freely discuss on Amharic books and give comments.
The reason why we choose to work on book reviews domain is that;

e First, books are one of the most common products to be sold, reviewed, and their sell is
highly affected by reviews (Chevalier & Mayzlin, 2006). Senecal and Nantel (Senecal &
Nantel, 2004) conducted a study across multiple product categories and found that
consumers relied on recommendations for experiential products like movies, books, or
music significantly more than other types of products. According to another study by
Sunitha and Edwin (Sunitha & Edwin, 2014), based on the customer preference
towards online shopping, ‘books’ has been ranked first. This is because most of the
customers are interested in buying books online because they can access a variety of
books by sitting before the computer.

e Secondly, as far as our knowledge, sentiment analysis on the book review domain has not

been done in the Amharic language.



1.3

Objective of the Study

1.3.1 General Objective

The general objective of this research work is to design and develop a hybrid sentiment

classification model for Amharic book reviews.

1.3.2 Specific Objectives

To realize the above mentioned general objective, the study aims to carry out the following

specific objectives:

1.4

To analyze the general structure of Amharic statements related to opinions and
sentiments so as to identify negative and positive statements.

To select appropriate algorithms, feature selection methods, and classification approaches
on Amharic book review.

Design a model for sentiment mining from Amharic book review.

To evaluate the model for sentence level opinion mining on Amharic book review.

Scope and Limitations

The scope of the research is to develop a sentence level opinion mining model for Amharic book

review. The system is designed to analyze 600 Amharic book reviews collected from social

media, personal blogs and manually collected from individual book readers and identify the

polarity into positive and negative. This includes preparation of book review data, selection of

appropriate algorithms, feature selection methods, and classification approaches on Ambharic

book review.

The following are some of the limitations of our work:

Human beings are a complex creature and they express their filling in different ways. In
this research work, the researcher does not cover complex expressions like humor,
sarcasm, irony and idiomatic expression.

The research work focuses on the classification of sentiment in to positive or negative, it
doesn’t cover sentiment analysis tasks like subjective or objective classification.

And fake review identification (Opinion spam detection) not parts of this research work.



1.5 Significance of the Study

Weather in the field of politics, business, or other fields, knowing what other people think, about
some political ideas, services, product or other, is a major factor in making a reasonable and
correct decision. Therefore, the following are the significance of hybrid sentiment classification

for Amharic book review research work:

e Publishers spend a lot of money to know the reader’s opinion about Books they
published. But if they use hybrid sentiment classification for an Amharic book review,
they can reduce their cost of finding what customers think about the books, and increase
their sell-by the indirect promotion of books through review from customers.

e Help publishers and writers in identifying faults on the book and what improvement can
be made on next print.

e It is difficult for readers to find information about books manually. But, by using hybrid
sentiment classification for an Amharic book review, readers can make a decision on
buying the book and save themselves from unnecessary cost and west of time.

e The review data and the results of the research can be used as an input to the
development of a full-fledged opinion mining system for Amharic book review.

e The system can be used to classify book reviews as positive or negative.

e The research will give insight about which approach lexical, machine learning or hybrid
approach gives good result in classifying Amharic book reviews in to positive or

negative.

1.6 Organization of the Thesis
This thesis report is organized into six chapters consisting of Introduction, Literature review,

related works, design, experiments and evaluation, and Conclusion and Recommendations.

The first chapter gives the general introduction of the thesis that contains an overview of the
study, statement of the problem, objectives of the study, scope, limitations, and significance of
the study. The second chapter is a literature review and in this chapter, opinion related
principles/theories have been discussed. In addition to this, related works have been reviewed. In
the third chapter, methodology and techniques have been discussed. The fourth chapter is about
the Amharic language. In the fifth chapter, data collection and preparation discussed. In the sixth

9



chapter, the design of a hybrid sentiment classification has been done. In the seventh chapter,
experiment and evaluation of results are presented. In the last chapter (chapter eight), conclusion

and recommendation of future work have been discussed.
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CHAPTER TWO

LITERATURE REVIEW
2.1  Overview

The first section mainly discusses opinion followed by basic concepts related to sentiment
analysis, and then in third section features in sentiment analysis are discussed. In the fourth
section approaches of sentiment classification with their advantages and challenges are
discussed. In the last section, sentiment mining related researches done for a different language
such as English, Hindi, Arabic, and Amharic using different techniques and approaches are

reviewed.

2.2  Opinion

Nowadays people all over the world interconnected to each other through the internet and textual
information is one of the ways that people in social media prefer to pass information. This
information can be broadly categorized into facts and opinion (Ojokoh & Kayode, 2012). Facts
are an objective statement that can be proven true or false but opinions are subjective statements
or expressions of a person’s feelings that cannot be proven. Humans are subjective creatures and
opinions are important. In every aspect of life people’s decisions are affected by the opinion of
others, therefore there must be a way to handle and use these opinions to our advantage. Because
of the availability of the huge amount of opinion document and the range of application that
makes use of opinion to adjust marketing strategy, develop product quality, crisis management or

other, automatic sentiment analysis or opinion mining attract people these days.

An opinion is a person’s belief, view, feeling, or judgment the specific object (kasthuri,
Jayasimman, & Jabaseeli, 2016; Liu, 2012). It is a subjective or value judgment, and it cannot be
proven. In the sentence, “This camera sucks.” The word suck indicates negative sentiment on the
object camera (Liu, 2012). In our day to day life, we can see the effect of opinion in our decision,
the way we feel about ourselves and others. According to (Liu, 2012), others’ opinions greatly
influence our decision and provide guidance for individuals, governments, and others. Therefore,
because of the importance of opinion, researchers and organizations focus on automatic

sentiment mining or opinion mining. In addition to this, opinion has three components, the
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opinion holder, the object about which the opinion expressed and the opinion itself. Whenever

we want to identify opinion all the three components are important (Khan et al., 2014).

Opinion Holder or Opinion Source

Mainly opinions on certain objects are expressed by users (Pawar et al., 2016). Users may be an
individual person, group, and organization. It means that these users are authors of the opinions.
In the field of sentiment analysis, such users are known as the holder of an opinion. These
holders of opinion are also known as opinion sources. In the case of product reviews, forum
posting and blogs, opinion holders are usually the author of the post (Liu, 2012). To understand
it, consider the sentence, “John expressed his disagreement on the treaty.” The opinion holder in
this sentence is ‘John” since he is the opinion source in this sentence as ‘John’ is mentioned

explicitly in this sentence (Liu, 2012).

Object

It is mainly any entity which can be anything in the real world i.e. person, organization, event,
product topic, etc (Liu, 2012). Consider the phone as a general class. So a particular brand of the
phone can be considered as an object. While expressing the opinion, one can comment on the
object i.e. the phone. These opinions may be like “I don’t like this phone” (pawara, jawal, and
kyatanavar, 2016).

2.3  Sentiment Analysis

Sentiment analysis, also called opinion mining, is the field of study that analyzes people’s
opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as
products, services, organizations, individuals, issues, events, topics, and their attributes (Liu,
2012). Even though there was research on sentiment earlier (Pang, Lee, & Vaithyanathan, 2002;
Satoshi, Kenji, Kenji, & Toshikazu, 2002; Turney, 2001; Wiebe, 2000), according to (D’Andrea,
Ferri, Grifoni, & Guzzo, 2015) the term sentiment analysis first appeared in (Nasukawa & Yi,
2003).

Even though there may be slight difference on the overall steps that can be followed, most of the
time, whenever we want to analyze sentiment we follow five phases (D’Andrea et al., 2015).

These phases are:

12



e Data collection: the first phase of sentiment classification is to collect data. Data might
be collected manually or automatically from personal blogs, social media, and other data
sources.

e Text preparation: the second phase of sentiment classification is text preparation. Text
preparation is the process of filtering the extracted data before analysis. In this phase, the
main thing to do is to identify and eliminate non-textual content and content that is
irrelevant to the area of study from the data.

e Sentiment detection: the third phase of sentiment classification is sentiment detection. In
this phase through carefully examination subjective and, objective sentences are
identified. Sentences with subjective expressions are retained and that which conveys
objective expressions are discarded.

e Sentiment classification: sentiment classification is the fourth phase. In this phase, each
subjective sentence detected is classified into groups-positive, negative, good, bad, like
dislike.

e Presentation of output: the last phase is the presentation of output. It means converting

unstructured text into meaningful information.

Having these phase of sentiment classification, based on the level of granularities sentiment
analysis has been investigated mainly at three levels; Document, Sentence, and Entity and
Aspect level (Liu, 2012). The document-level analysis identifies whether the overall opinion
expressed is positive or negative. According to (Liu, 2012), this level of analysis assumes that
the whole document expresses an opinion about the single entity and not applicable to the
document that contains the opinion about more than one entity. The second level of sentiment
classification is a sentence level which is concerned about, identifying which sentences express a
positive, negative or neutral opinion. It considers the sentence as a basic information unit. The
third level of sentiment classification is an Entity and Aspect level. Entity and Aspect level
classify opinion given by users about specific aspects of an entity. Aspect level performs finer-
grained analysis and Instead of looking at language constructs (documents, paragraphs,
sentences, clauses or phrases), aspect level directly looks at the opinion itself (Liu, 2012).
Document-level analysis and sentence level analysis are not good in identifying what opinion

holder feeling or opinion about specific future of entities.
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2.4 Common Features in Sentiment Analysis

Converting a piece of text into a feature vector or other representation that makes its most salient
and important features available is an important part of data-driven approaches to text processing
(Pang & Lee, 2008). A set of documents is used as a training set to the classifier. These
documents are represented as vectors (Ghag & Shah, 2014). The following are the common

features used in sentiment analysis:

2.4.1 Term Presence and Frequency
It is common in information retrieval to represent a piece of text as a feature vector wherein the
entries correspond to individual terms (Pang & Lee, 2008). These features include uni-grams or
n-grams and their frequency or presence (Vohra & Teraiya, 2013).

Term frequencies have traditionally been important in standard IR, as the popularity of TF-IDF
(term frequency-inverse document frequency weighting shows; but in contrast, Pang et al. (Pang
et al., 2002) obtained better performance using presence rather than frequency (Pang & Lee,
2008).

Term Presence and Term Frequency are two popular techniques for Information Retrieval when
representing documents as vectors (Cambria, Schuller, Liu, Wang, & Havasi, 2013).

In Term Presence technique an element can take a binary value. This element is set to one if the
term is present in document otherwise set to zero if the term is not present in the document. In
the Term Frequency technique, an element in the document vector is a non-negative integer that

is set to count of the given term in a document (Ghag & Shah, 2014).

This finding may be indicative of an interesting difference between typical topic-based text
categorization and polarity classification: While a topic is more likely to be emphasized by
frequent occurrences of certain keywords, overall sentiment may not usually be highlighted

through repeated use of the same terms (Pang & Lee, 2008).
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2.4.2 Part of Speech Information
POS is used to disambiguate sense which in turn is used to guide feature selection (Pang & Lee,
2008).In POS tagging each term in sentences will be assigned a label, which represents its

position/role in the grammatical context.

Among parts of speeches, adjectives are good indicators of sentiments. The fact that adjectives
are good predictors of a sentence being subjective does not, however, imply that other parts of
speech do not contribute to expressions of opinion or sentiment (Pang & Lee, 2008). For
example, with POS tags, we can identify adjectives and adverbs which are usually used as
sentiment indicators (Turney, 2001).In a study by Pang et al. (Pang & Lee, 2008) on movie-
review polarity classification, using only adjectives as features were found to perform much
worse than using the same number of most frequent unigrams. The researchers point out that,

nouns (e.g., “gem”) and verbs (e.g., “love”) can be strong indicators for the sentiment.

2.4.3 Negations
Negation is also an important feature to take into account since it has the potential of reversing a
sentiment (Pang & Lee, 2008).

Using a bag-of-words representation, the supervised classifier has to figure out by itself which
words in the dataset, or more precisely feature set, are polar and which are not (Wiegand,
Balahur, Roth, Klakow, & Montoyo, 2011).

The standard bag-of-words representation does not contain any explicit knowledge of polar
expressions. As a consequence of this simple level of representation, the reversal of the polarity
type of polar expressions as it is caused by a negation cannot be explicitly modeled (Wiegand et
al., 2011).

Since standard bag-of-words representation does not contain any explicit knowledge of polar
expressions, a simple bag of words is not enough to handle negation. There are different ways to
handle negation. The usual way to handle negation is to attaché “NOT” to words occurring close
to negation terms. such as “no” or “don’t,” so that in the sentence “I don’t like deadlines,” the

token “like” is converted into the new token “like-NOT (Pang & Lee, 2008).
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The other way to handle negation is to consider the usage of higher order n-grams. Imagine a
labeled training set of documents contains frequent bigrams, such as not appealing or less
entertaining. Then a feature set using higher order n-grams implicitly contains negation modeling
(Wiegand et al., 2011). This also partially explains the effectiveness of bigrams and trigrams for
this task as stated in (Ng, Dasgupta, & Arifin, 2006).

2.4.4 Opinion Words and Phrases
Opinion words and phrases are words and phrases that express positive or negative sentiments
(Vohra & Teraiya, 2013). The main approaches to identify the semantic orientation of an opinion

word are statistical-based or lexicon-based.

2.5  Feature Selection Methods

Feature selection is the process of selecting a subset of relevant features for use in model
construction (Parlar, Ozel, & Song, 2018). It is effective in the reduction of large data by
removing irrelevant and noisy data and chooses a representative subset of all data to minimize
the complexity of the classification process in sentiment classification (Sammut & Webb, 2016).
Feature selection methods improve classification accuracy and decrease the running time of
learning algorithms and better model interpretability (Sammut & Webb, 2016). Here we select

possible feature selection methods:

Information Gain

Information gain represents the entropy reduction given a certain feature, that is, the number of
bits of information gained about the category by knowing the presence or absence of a term in a
document (Adel, Omar, & Al-Shabi, 2014):

1G (1) = - XI5 P(C)*log(P (C) + P ©*Z\, P(Cilt)*log(P(Cilt)) +

= 1=

PE)*XIL P(CIEY OGP (CLE)). v eveoeeeeeeeeeeeeeeeeeee e 4.1

Where, P(C;) represents the likelihood of the occurrence of C; class; P(t) represents the

likelihood of the occurrence of t; P(t) represents the likelihood of the non occurrence of t.

Since 1G is a filter technique; it can scale well with the high dimensionality without a vast decrease

in performance, and it is also applicable to several classifiers due to being classifier independent. So
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it is useful in testing the effect of feature selection on the efficiency of more than one classifier

(Saeys, Inza, & Larrafiaga, 2007).

Chi-Square

Chi-square measures the dependence between a feature and a class (Parlar et al., 2018). The Chi-
square statistics formula is related to information theoretic feature selection functions which try
to capture the intuition that the best terms t;, for the class c; are the ones distributed
most differently in the sets of positive and negative examples of class c;. A higher score of Chi-
square implies that the related class is more dependent on the given feature (Adel et al., 2014). A
feature with a low score is less informative and should be removed (Parlar et al., 2018). Terms or
words will be selected as a feature if their Chi-Square value is higher (Adel et al., 2014). The
Chi-Square value will be calculated as follows (A. Sharma & Dey, 2012):

Chi-Square (tx, ¢;) = (N(AD — CB))?/((A+ C)(B+ D)(A+B)(C+D))...ovvvvvnn... 4.2
Where,

N = The total number of training sentence,

A = The number of sentences that contain the term t in class c;.

B = The number of sentences that contain the term t in other classes.

C = The number of sentences in class c; that do not contain the term t.

D = The number of sentences that do not contain the term t in other classes.

Simplified Chi-Square

Simplified Chi-Square also called Galavotti-Sebastiani-Simi (GSS) Coefficient is the simplified
version of Chi-Square in which The P and N factor and the denominator have
completely removed (Kandarp, 2009). The denominators have also removed; because the
denominator gives high correlation coefficient score to rare words and rare categories (Kandarp,
2009), therefore, the score for rare or low-frequency terms words is not reliable (Adel et al.,
2014):

(AD - CB)

T ST 43
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Where,

N = The total number of training sentence,

A = The number of sentences that contain the term t in class c;.

B = The number of sentences that contains the term t in other classes.
C = The number of sentences in class c; that do not contain the term t.

D = The number of sentences that do not contain the term t in other classes.

A. Mutual Information Gain

Mutual information (MI) of two random variables is a measure of the mutual dependence
between the two variables. Due to its computational efficiency and simple interpretation,
information gain is one of the most popular feature selection methods (Tang, Alelyani, & Liu,
n.d.). A weakness of M1 is that the score is strongly influenced by the marginal probabilities of
terms (Matsumoto, Sproat, Wong, & Zhang, 2006), as can be seen in this equivalent form
(Bramer, 2009):

I (t, ¢) =log(B-(t|c)) - log Pr(t)....ccovvvveniiiiiiieenn 4.4

In another term, for terms with equal conditional probability P.(t|c), rare terms will have a
higher score than common terms. The scores therefore are not comparable across terms of widely
differing frequency. Since Ml is one of the popular features selection methods the researcher is

interested in evaluating its performance against other feature selection methods.

B. Combination of feature selection methods

When two or more feature selection methods combined, there is a chance to select better
features, since by combining we may compensate for the shortcoming of individual feature
selection methods. This is done by adding the weighted score of the top N selected feature, from
different feature selection methods, and the weight can be calculated by identifying the rank of

features in individual feature selection method and gives some weight based on their rank.

2.6 Approaches of Sentiment Classification
Whenever we want to classify sentiments or opinion into specific groups like positive or

negative, we can perform this task by one of the three classification methods namely lexical
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approaches, machine learning approaches and hybrid approaches (D’Andrea et al., 2015). These

three approaches will be discussed as follows:

2.6.1 Lexical classification approach
The lexicon-based approach involves calculating orientation for a document from the semantic
orientation of words or phrases in the document (Turney, 2001). According to (Palanisamy,
Yadav, & Elchuri, 2013), the lexicon-based approach is based on the assumption that the
contextual sentiment orientation is the sum of the sentiment orientation of each word or phrase.
In other word, in lexicon based sentiment analysis, an attempt made to predict the sentiment of
the sentence or document based on the overall sentiment of opinion words in the sentence or

document.

Even though, sentiment words are very important in sentiment analysis using them alone is not

enough due to the following issues (Liu, 2012):

1. Sentiment word in one domain may have opposite orientations on others. For example,
suck usually indicates negative sentiment, e.g., this book sucks, but it can also imply
positive sentiment, e.g., this vacuum cleaner really sucks.

2. A sentence containing sentiment words may not express any sentiment. e.g., Can you tell
me where can | find a good meal? The above sentence contains the word good but does
not express any sentiment.

3. The difficulty of sarcasm sentences.

4. Sentences without sentiment words can have sentiment. For example, the mobile phone |
bought last night has a battery that needs charging every 5 minutes. In the example

above, there is no sentiment word, but the sentence expresses sentiment.

Lexicon-based approaches have the advantage that labeled data and the procedure of learning is

not required.

However, there are a number of drawbacks to lexicon-based classification (Jacob, 2017). First,
while intuitively reasonable, lexicon-based classification lacks theoretical justification: it is not
clear what conditions are necessary for it to work. Second, the lexicons may be incomplete, even

for designers with strong substantive intuitions. Third, sentiment lexicons tend to assign a fixed
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sentiment orientation and score to words, irrespective of how these words are used in a text, but
some words may be more strongly predictive than others. Fourth, lexicon based classification
ignores multi-word phenomena, such as negation (e.g., not so good) and discourse (e.g., the
movie would be watchable if it had better acting). Supervised classification systems, which are
trained on labeled examples, tend to outperform lexicon-based classifiers, even without
accounting for multi-word phenomena (Liu, 2015; Pang & Lee, 2008). Fifth, Lexical don’t need
labeled data but is hard to create a unique lexical-based dictionary to be used for different
contexts. For example, slang used in Social Networks is rarely supported in lexical methods
(Xia, Jiliang, Huiji, & Huan, 2013).

Lexicon construction approaches
There are three approaches to construct a sentiment lexicon: manual construction, corpus-based

approach and dictionary-based approach (Liu, 2012).

Manual approach

The manual construction the sentiment lexicons are constructed by human labor and, it is a
difficult and time-consuming task. Given the time we have, it is difficult to prepare a huge
corpus and use corpus-based approach and, also the dictionary based approach has a major
disadvantage which is the inability to find opinion words with domain and context specific
orientations. Therefore, in our research work, we use a manual approach to collect lexicons of
seed words and, then, expand the number of lexica using a dictionary by search synonyms of the

seed words.

Dictionary-based approach

In dictionary-based approach, the idea is to first collect a small set of opinion words manually
with known orientations, and then the algorithm grows this set by searching in the WordNet
dictionary for their synonyms and antonyms (Rajput & Solanki, 2016). In general, these methods
assume that positive adjectives appear more frequently near a positive seed word and negative
adjectives appear more frequently near a negative seed word (Liu, 2012). The dictionary-based
approach has a major disadvantage which is the inability to find opinion words with domain and
context specific orientations (Rajput & Solanki, 2016).
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Corpus-based approach

The Corpus-based approach helps to solve the problem of finding opinion words with context-
specific orientations. Its methods depend on syntactic patterns or patterns that occur together
along with a seed list of opinion words to find other opinion words in a large corpus (Medhat,
Hassan, & Korashy, 2014; Rajput & Solanki, 2016). Using the corpus-based approach alone is
not as effective as the dictionary-based approach because it is hard to prepare a huge corpus to
cover all English words (Liu, 2012; Rajput & Solanki, 2016).

2.6.2 Machine learning approaches
Machine Learning approach is a field of artificial intelligence that trains the model from the
existing data in order to forecast future behaviors, outcomes, and trends with the new test data
(Narayan, Roy, & Dash, 2016). The main advantage of machine learning approaches is the
ability to adapt and create trained models for specific purposes and contexts (D’Andrea et al.,
2015). This approach generally achieves higher accuracy than that of the unsupervised approach
for sentiment analysis; however, it requires building a gigantic corpus (dataset) and labeling it
manually by human experts. The process of manual annotation can be very difficult even for
native speakers due to sarcasm and cultural references. It can also be expensive and time-
consuming. Moreover, the model built may be a domain-biased. That is, it could give low

accuracy when is applied to such a different domain (Read & Carroll, 2009).

The machine learning methods are applicable to sentiment analysis ordinarily belongs to
supervised learning in trendy and textual classification strategies in particular (Singh & Agrawal,
2017).

Naive Bayes (NB)

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’
theorem with the “naive” assumption of independence between every pair of features. In
assuming independence, the presence of a feature has no impact on the probability of another
feature also being a member of the document vector (Smith, 2015). Despite its simplicity and the
fact that its conditional independence assumption clearly does not hold in real-world situations,
Naive Bayes-based text categorization still tends to perform surprisingly well (Pang et al., 2002).

We get the model form by using Bayes Rule:
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P(label|sentence) = p(sentence|label)p(label)/p(sentence)...... (2.1)

Each sentence is represented as a feature vector and by conditional independence assumption

between features, we get (Abreham, 2014):

]'[F p(fj|label)p(label)
p(sentence)

P(label|sentence) =

There are several variations in Naive Bayes classifier (Gupte, Joshi, Gadgul, & Kadam, 2014):

e Multinomial Naive Bayes — this is used when Multiple Occurrences of Word Matter a
lot in Text Classification problems. Such an example is when we try topic classification.

e Binarized Multinomial Naive Bayes — this is used when frequencies of the words don’t
pay a key role in our classification. Such an example is Sentiment analysis where it
doesn’t matter how many times someone enters the word ‘bad’ or ‘good’ but rather only
the fact that he does.

e Bernoulli Naive Bayes - this is used when in our problem the absence of a particular
word matters, For example, Bernoulli is commonly used in Spam or Adult Content

Detection with very good results.

Due to the intuitive motivation and speed of classification (Lewis, 1998), the Naive Bayes (NB)
classification model is one of the more frequently used models in the sentiment classification
literature. When training, the NB classifier does not over-fit the training data, meaning a reliable

classification model should be generated given a suitable input (Andrew & Michael, 2001).

Support vector machines (SVMs)

SVMs are a set of new supervised learning methods used for binary classification, regression
and outlier’s detection (Amarappa & Sathyanarayana, 2012). The basic concept of SVM is
that it is looking for the Optimal Separating Hyper-plane between the two classes by maximizing
the margin between the classes’ closest points (see Figure 2.1) (Saud, 2015). The points are

located on the boundaries are called support vectors.
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Fig. 2.1 support vector machine

When given a set of learning data, in which each example is marked to show which class this
example belongs to, then SVM learning algorithm builds a model that assigns the new example
to one of these classes. In general, the SVM model represents the training examples as points in
spaces that are mapped such that the training examples belonging to different classes are
separated by a gap as wide as possible. When a new example is given then based on which side
of the gap it falls in, the SVM predicts the class to which this example belongs to (ShehlaKulsum
& Vaidya, 2017).

The first advantage of SVM s effective in high dimensional spaces. It is effective in cases
where a number of dimensions are greater than the number of samples. The second
advantage is that it uses a subset of training points in the decision function (called support
vectors), so it is memory efficient. The third advantage is that Different Kernel function can
be specified for the decision function i.e. SVM is versatile (Amarappa & Sathyanarayana,
2012).

The disadvantage is that, if the number of features is much greater than the number of
samples, the method is likely to give poor performances (Amarappa & Sathyanarayana,
2012).

23



Maximum Entropy (MaxEnt)

It is a probabilistic classifier which has a place with the class of exponential models (Joshi,
Prajapati, Shaikh, & Vala, 2017). The maximum entropy principle is based on selecting the most
uniform distribution which is to be known by the one having maximum entropy (Patel, Saxena,
Verma, & Student, 2007). The model makes no assumptions about the independence of words.
This means we can add features like bigrams and phrases to MaxEnt without worrying about
feature overlapping (Gupte et al., 2014). Due to the minimum assumptions that the Maximum
Entropy classifier makes, we regularly use it when we don’t know anything about the prior
distributions and when it is unsafe to make any such assumptions (Raghuwanshi & Pawar, 2017).
However, it is computationally more expensive (Mehra, Khandelwal, & Patel, 2002). The Max
Entropy requires more time to train compare to Naive Bayes, primarily due to the optimization
problem that needs to be solved in order to estimate the parameters of the model. Nevertheless,
after computing these parameters, the method provides robust results and it is competitive in

terms of CPU and memory consumption (Raghuwanshi & Pawar, 2017).

This classifier always tries to maximize the entropy of the system by estimating the conditional
distribution of the class label. The conditional distribution is defined as (Raghuwanshi & Pawar,
2017):

Py (y]X) =$ XD (EA i, 1)) oo 2.3

"X’ 1s the feature vector and ’y’ is the class label. Z(X) is the normalization factor and A;
is the weight coefficient. fi(X, y) is the feature function which is defined as(Raghuwanshi
& Pawar, 2017) :

fi(X,y)={ 1, X=x; and y=y;
0, otherwise
b 2.4
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Logistic regression (LR)

Logistic regression sometimes called the logistic model or logit model analyzes the relationship
between multiple independent variables and a categorical dependent variable and estimates the
probability of occurrence of an event by fitting data to a logistic curve. There are two models of
logistic regression, binary logistic regression, and multinomial logistic regression. Binary logistic
regression is typically used when the dependent variable is dichotomous and the independent
variables are either continuous or categorical. When the dependent variable is not dichotomous
and is comprised of more than two categories, a multinomial logistic regression can be employed
(Park, 2013).

The logistic model is popular because the logistic function, on which the logistic regression
model is based, provides estimates in the range 0 to 1 and appealing S-shaped description of the

combined effect of several risk factors on the risk for an event (Kleinbaum & Klein, 2002).

Using logistic regression for multiple predictors (numerical and categorical), the probability of

the occurrence of the interested outcome can be calculated as follows (Park, 2013):

p=P(Y=interested outcome/X;=x;,... X; = x3 )

a+B1X 4 4, x
e T TR P RO UTRUURP RPN 25

p_ 1+ea+ﬁlx1+'+ﬁkxk
Where p is the probability of interested outcome and Xu,.., Xk are the explanatory variable. The

parameters of the logistic regression are a and f.
Advantages of Logistic Regression (Teja, Sai, Kumar, & Manikandan, 2018):

e Itis much more robust to correlated features.

o If two features f1 and f2 are perfectly correlated, regression will simply assign half the
weight to wl and a half to w2.

e Itisdiscriminative

e It works well on large datasets when compared with Naive Bayes.
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K-Nearest Neighbor Classifier (K-NN)

Nearest neighbor classifiers are based on learning by analogy. The training samples are described
by n-dimensional numeric attributes. Each sample represents a point in an n-dimensional space.
In this way, all of the training samples are stored in the n-dimensional pattern space. When given
an unknown sample, a k-nearest neighbor classifier searches the pattern space for the k training
samples that are closest to the unknown sample. The unknown sample is assigned the most

common class among its k nearest neighbors (Phyu, 2009).

K-NN is a nonparametric method used for classification or regression. K-NN is powerful
because it does not assume anything about the data, other than a distance measure can be
calculated consistently between two instances. As such, it is called non-parametric as it does not

assume a functional form (Dey, Chakraborty, Bose, & Tiwari, 2016).

But, nearest neighbor classifiers are instance-based or lazy learners in that they store all of the
training samples and do not build a classifier until a new (unlabeled) sample needs to be
classified. Therefore, it is slower at classification since all computation is delayed to that time.
Lazy learners can incur expensive computational costs when the number of potential neighbors
(i.e., stored training samples) with which to compare a given unlabeled sample is great. Nearest
neighbor classifiers assign equal weight to each attribute. This may cause confusion when there

are many irrelevant attributes in the data (Phyu, 2009).

Decision trees

Decision trees are trees that classify instances by sorting them based on feature values
(Gullapelly & Shanmukhi, 2017).In this tree, the internal node represents a test on the attribute,
each branch of the tree represents the outcome of the test and the leaf node represents a particular
class label means the last decision after all computations (Kaur & Jindal, 2016). It categorizes a
document by starting at the tree root and moving successfully downward via the branches (whose
conditions are satisfied by the document) until a leaf node is reached. The document is then

classified in the category that labels the leaf node (Chauhan, 2015).

Decision trees are the most widely used classifier (Manne, 2011) and consist of a set of rules

which are applied in a sequential way and finally yield a decision (Manne, 2011). Their
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robustness to noisy data and capability to learn disjunctive expressions seem suitable for

document classification(Manne, 2011).

One of the most useful characteristics of decision trees is their comprehensibility. People can
easily understand why a decision tree classifies an instance as belonging to a specific class. Since
a decision tree constitutes a hierarchy of tests, an unknown feature value during classification is
usually dealt with by passing the example down all branches of the node where the unknown

feature value was detected, and each branch outputs a class distribution (Kotsiantis, 2007).

2.6.3 Hybrid approaches
Given the advantages and the disadvantages of both machine learning and lexicon based
approaches, different researchers tried to combine them together so that they can take advantage
from the benefits of each approach (Amira, 2013). The hybrid approach, the combination of both
the machine learning and the lexicon based approaches has the potential to improve the
sentiment classification performance (D’ Andrea et al., 2015).

The main advantages of hybrid approaches are the lexicon/learning symbiosis, the detection and
measurement of sentiment at the concept level and the lesser sensitivity to changes in the topic
domain. While the main limitation is that reviews are with a lot of noise (irrelevant words for the
subject of the review) are often assigned a neutral score because the method fails to detect any
sentiment (D’ Andrea et al., 2015).

2.7 Related Works

In this section, sentiment mining related researches done for different language opinionated
documents such as English (Appel, Chiclana, Carter, & Fujita, 2016; Pedro, Balage, & Thiago,
2013), Arabic (Amira, 2013), French(Hamdan, Bellot, & Bechet, 2016), (Hussaini, Padmaja, &
Sameen, 2018) and Amharic (Abreham, 2014; Gebremeskel, 2010; Tulu, 2013) using different
techniques and approaches are reviewed.

2.7.1 Sentiment Mining from Opinionated English Texts
Pedro, Balage, and Thiago (Pedro et al., 2013) develop a system that adopts a hybrid
classification process that uses three classification approaches rule-based, lexicon-based, and
machine learning approaches. The purpose is to better understand the use of a hybrid system in
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Twitter text and to verify the performance of this approach in an open evaluation contest. The
researcher in this work suggests a pipeline architecture that extracts the best characteristics of
each classifier. In this pipeline architecture, each classifier may assign a sentiment class, if it
achieves a particular confidence threshold, otherwise, it will pass to the next classifier.

A training dataset, with 6,686 messages, a development dataset, with 1,654 messages, and two
test datasets, with 3,813 Twitter Test test data and 2,094 SMS based test data messages are used.
With this data different experiment has been done and the hybrid system achieved an F-score of
56.31% in the Twitter message-level subtask, which is better than rule-based, lexicon based or
machine learning alone. Sentiment Analysis in Twitter compares the systems by the average F-
score for positive and negative classes. As shown in the table below

Table 2.1: Average F-score

classifier Twitter TestSet | SMS TestSet
Rule-based 0.1437 0.0665
Lexicon-Based 0.4487 0.4282
Machine learning | 0.4999 0.4029
Hybrid Approach | 0.5631 0.5012

The reason why their system improves the classification process because it takes advantage of
the multiple approaches. For example, the rule-based classifier is the most reliable classifier. It
achieves good results when the text is matched by a high-confidence rule. However, due to the
freedom of language, rules may not match 100% of the unseen examples; consequently, it has a
low recall rate. Lexicon-based classifiers, for example, are very confident in the process to
determine if a text is polar or neutral. Finally, machine learning is known to be highly domain
adaptive and to be able to find deep correlations (Taboada, Brooke, Tofiloski, Voll, & Stede,
2011).

Appel et al. (2016), proposed an approach that uses a hybrid approach to Sentiment Analysis
encompassing the use of Semantic Rules, Fuzzy Sets, and an enriched Sentiment Lexicon,
improved with the support of SentiWordNet is described. The proposed hybrid method is applied
to three different data-sets and the results achieved are compared to those obtained using Naive
Bayes and Maximum Entropy techniques. It is demonstrated that the presented hybrid approach
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is more accurate and precise than both Naive Bayes and Maximum Entropy techniques when the
later are utilized in isolation. The result obtained has shown that their hybrid method performs

well than the other approaches.

Table 2.2 Naive Bayes Table 2.3 Maximum Entropy Table 2.4 Hybrid
Accuracy 0.67 Accuracy 0.68 Accuracy 0.76
Precision 0.63 Precision 0.63 Precision 0.73
Recall 0.85 Recall 0.86 Recall 0.83
F1-score 0.72 F1-score 0.73 F1-score 0.77

The creation of an improved Sentiment Lexicon was decisive in obtaining good experimental
results and SentiWordNet became an important component of their proposed solution and
certainly enriched dramatically the quality of their Lexicon.

Sentiment mining from opinionated Arabic language Amira (Amira, 2013) combined semantic
orientation and machine learning. In this research work, her aim was to improve the performance
measures of Egyptian dialect sentence-level sentiment analysis by proposing a hybrid approach
which combines both the machine learning approach using support vector machines and the semantic
orientation approach. Two methodologies were proposed, one for each approach, which was then
joined, creating the hybrid proposed approach. The corpus used contains more than 20,000 Egyptian
dialect tweets collected from Twitter, from which 4800 manually annotated tweets are used (1600
positive tweets, 1600 negative tweets, and 1600 neutral tweets). Several experiments have been
performed to; 1) compare the results of each approach individually with regards to her case which is
dealing with the Egyptian dialect before and after preprocessing; 2) compare the performance of
merging both approaches together generating the hybrid approach against the performance of each
approach separately; and 3) evaluate the effectiveness of considering negation on the performance of
the hybrid approach. The results obtained show significant improvements in terms of accuracy,
precision, recall, and F-measure, indicating that the proposed hybrid approach is effective in
sentence-level sentiment classification. Also, the results are very promising which encourages

continuing in this line of research.
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2.7.2 Sentiment Mining from Opinionated French Language

Hamdan et al. (2016) work on Sentiment Analysis in Scholarly Book Reviews in the French
language. Their objective is to extract the opinion expressed towards a book in all its reviews.
They chose aspect level of sentiment analysis. Therefore, given a collection of book reviews,
they aim at finding out the aspects of the book and the sentiment expressed towards each aspect.
The aspects are determined by asking domain experts to extract the aspects of books found in
book reviews of social and human sciences. They have listed aspects like Book presentation,
Problematic, Scientific context, Scientific method, Author’s arguments, Book organization, and
Judgment about the book. Different features are combined in order to be presented to supervise
classifiers which extract the opinion target expressions and detect their polarities in scholarly
book reviews. For creating an annotated corpus of French book reviews, 200 book reviews in the
French language have been selected with the help of domain experts.

Different experiments have been done for opinion target extraction and determine whether the
polarity of each opinion target is positive, negative or neutral. In the experiments for opinion
target extraction, Conditional Random Fields (CRF) suite tool is used for target extraction with
the L-BFGS algorithm. Part of speech tag to each term (Pos), the type of the word (uppercase,
digit, symbol, and combination), the shape of each character in the word (capital letter, small
letter, digit, punctuation, and other symbol), prefixes and suffixes, are used for target extraction.
They found 61.53% when using all the above features together. From the experiment, we
understand that the word and POS features seem to be enough to produce a good result, 61.02%.

In the experiments for Sentiment Polarity determination, they train Logistic regression classifier
on the training dataset using N-grams and Z score as a feature with the three polarities (positive,
negative, and neutral) as labels. In these experiments in addition to books review, restaurant and
laptop reviews also considered. The best result is given when using terms and Z score (or
standard score) features with Z threshold of -0.5. The accuracy is 79% which seems fair enough
when comparing with the results produced in restaurant reviews (about 75.5%). Where Z-score
(or standard score) represents how many standard deviations a given measurement deviates from

the mean.
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2.7.3 Sentiment Mining from Opinionated Hindi Language
Hussaini et al (Hussaini et al., 2018), apply a score-based approach for sentiment classification
of book reviews in the Hindi language. Opinion words were extracted from individual sentences
using parts tagger, incorporated within the Hindi shallow parser. They consider adjectives,
adverbs, nouns and verbs for extraction. Their approach uses subjectivity lexicons for retrieving
polarity scores of the extracted words. The overall positive and negative scores were calculated

for each sentence, the higher value between the two determining the polarity of the sentence.

A dataset of 700 sentences pertaining to book reviews was considered for this work. These
sentences were first annotated by three Hindi-speaking annotators. The mutual agreement
between them was calculated and the kappa value was found to be 79.4%. The results obtained
from the system were tested against these human annotations. An accuracy of 86.3% was
achieved working with H-SWN, after applying word-sense disambiguation (WSD) and handling
morphological variations. An accuracy of 87.4% was achieved working with HSL.

2.7.4 Sentiment Analysis for Amharic Language
Selama Gebremeskel (Gebremeskel, 2010), proposed a sentiment mining model for determining
the sentiments expressed in opinionated Amharic texts or reviews. They Used Lexicon based
approach and the proposed model has the following components: preprocessing, sentiment words
detection, weight assignment and propagation, polarity classification, polarity strength
representation, and sentiment lexica. The system designed based on the proposed model detects
positive and negative sentiment terms including contextual valence shifters such as negations and
the lexica of Amharic sentiment terms are used to identify and assign initial polarity value to the
sentiment terms detected in order to determine the polarity classification of the opinionated text.
Based on the weights of the sentiment values, the reviews are classified into predefined
categories: positive, negative or neutral. Finally, the polarity strength of the reviews is rated. A
prototype system is developed to validate the proposed model and the algorithms designed. Tests
on the prototype are done using movie and newspaper reviews where the result obtained with
these test data is very much encouraging. Experiment, using contextual valence shifter, terms

such as negations give better results.
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The sentiment lexica are built manually from different sources and after having lexicons, the
review document is preprocessed and relevant term in the review is checked whether it is a
sentiment word or not, by scanning the whole lexicon for every term. If the term exists in the
dictionary, then the term is a polarity word (positive or negative). The total polarity weight of a
review is calculated by adding the polarity weight of the individual sentiment terms in the review
if the summation of polarity is greater than zero, then the review is categorized into predefined
category positive. Similarly, if the summation of polarity is less than zero then the review is
categorized into a predefined category negative. Otherwise, if the weight of all the individual

terms is equal to zero, the review is categorized into the neutral category.

As we can show in the table below, the researcher gets a better result using both general lexica,
specific lexicons and considering contextual valance shifter terms. Summary of the experimental

result of Gebremeskel (Gebremeskel, 2010) is as shown in the table below:

Table 2.5: Summary of experimental result

system Class Precision Recall F-measure
General purpose Amharic | Positive 0.929 0.823 0.867
sentiment terms(Basic system) Negative 0.6 0.573 0.589
Basic + Domain lexicon Positive 0.937 0.943 0.939
Negative 0.62 0.78 0.69
Both lexica + contextual valance | Positive 0.943 0.949 0.945
shifter terms Negative 0.666 0.842 0.743

Selama Gebremeskel (2010) uses lexicon approach alone. Therefore, sentiment lexicons assign a
fixed sentiment orientation and score to words, irrespective of how these words are used in a
text, but some words may be more strongly predictive than others. These can affect the
performance, and if we combine machine learning with lexicon based classifier, there is a
possibility of improving the performance. Machine learning can give us the ability to learn from
training data, how much a word lean towards positive or negative, instead of assigning fixed
orientation. In our research work, we combine machine learning and lexicon classifiers and

create a hybrid approach. Therefore, first, a review classified as positive or negative based on
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fixed sentiment orientation and a score of words (lexical classifier). If it can not be classified, the
review passed to machine learning, which assigns sentiment orientation and a score of words
after learning through training, instead of just use fixed sentiment orientation like a lexical
classifier.

Tulu (Tulu, 2013) work on feature-level opinion mining model for the Amharic language by
employing manually crafted rules and lexicon. The proposed model consists of five major
components that can extract features, determine opinion words regarding identified features with

their semantic orientation, aggregate multiple opinions and generate a structured summary.

Two experiments have been conducted for features extraction and opinion words determination
by using 484 reviews from three different domains. The first experiment indicated that an
average precision of 95.2% and recall of 26.1% were achieved in the features extraction and an
average precision of 78.1% and recall of 66.8% were achieved in the determination of opinion
words. The precision of the second experiment in features extraction gets lower by 15.4%
whereas the precision of opinion words determination gets higher by 1.9% and the recall of both
features extraction and opinion words determination gets higher by 7.8% and 25.9% respectively
when compared to the first experiment. Thus, their experimental results demonstrate the

effectiveness of the techniques they have applied.

Abreham (Abreham, 2014), develop an Opinion Mining model for classifying the Amharic
opinionated text into positive and negative. Two simple feature sets are employed (all unigram
and the most informative bag-of-words of the review) and Information Gain feature selection
method used to calculate most informative words from the document. For classification, three
supervised classifiers implemented from the Natural Language Toolkit (the Naive Bayes,

Decision Tree, and Maximum Entropy classifiers).

The datasets for conducting the experiment are manually collected from Ethiopia Broadcasting
Corporation in Addis Ababa. The rest of the dataset is collected from diretube.com and

habesha.com sites. A total amount of 616 reviews were collected for experiments.

Different experiments have been done and the Experiment indicates that Information Gain

feature selection methods perform the best through all algorithms (Naive Bayes, Decision Tree,
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and Maximum Entropy). Based on their relative performance of classification, NB with 90.9%
accuracy outperforms Decision Tree with 83.1% and Maximum Entropy with 89.6%. The result

obtained is encouraging.

2.7.5 Summary
But both machines learning and lexical have their own advantage and disadvantage. Machine
learning has the ability to adapt and create a trained model for specific purpose and context but,
disadvantages of low applicability to new data because it is necessary availability of labeled data
that could be costly. Lexicon based advantages wider term coverage but, their disadvantages are,
Finite number of words in the lexicons and the assignation of a fixed sentiment orientation and

score to words.

Table 2.6: Overview of some previous work

Author Language Domain Labeling Approach accuracy

(Filho & Pardo, 2013 ) | English Twitter manual rule-based, 61.85%
lexicon-based
and machine

learning (svm)

(Amira, 2013 ) Arabic Twitter manual (SVM,NB, and 75.4%
ME), and
semantic
orientation

(Appel et al., 2016) English movie manual NLP-techniques, 76%

semantic rules

and fuzzy sets

To gain the advantages and avoid disadvantages of machine learning many researchers in
English, Arabic, and other languages, have done research by combining lexicon based and
machine learning approaches. This kind of combination (hybrid approaches) become the focus of

researchers.
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But sentiment analysis is language dependent, and the work done by one language is not directly
applicable to another language (Bal et al., 2011). This is due to differences in grammar and other
behavior of the language. For example, word order in Amharic is generally subject-object-verb
(SOV), with subordinate clauses preceding the main clause. Noun phrases are also generally
headed final with modifiers, including relative clauses, preceding the noun. In addition to that,
Ambharic language has a complex inflectional morphology, particularly in the verbal system,
employing not only prefixes and suffixes but also internal modification of the typical Semitic
consonantal root-and-pattern type (Keith & Sara, 2010).

But, as far as my knowledge is concerned, sentiment classification researches on Amharic
language focus only on lexical, machine learning like or feature based sentiment analysis.
Therefore, the researcher is interested in exploring the performance of Hybrid classification

approach in this research work.

Even in machine learning classification, almost all researches in Amharic language try to explore
only the performance of sentiment classification algorithms, but not on between feature selection
methods. But machine learning algorithms performance in addition to the quality of data used,;
partially depend on the kind of feature selection method used. Therefore, in my opinion, there is
a need to compare the performance of different feature selection methods like Chi-square,
Mutual Information gain, simplified Chi-Square and other popular feature selection method

on Amharic language.

In addition to the above two tasks (exploring the performance of Hybrid Approach and popular
feature selection methods), the performance of some machine learning algorithms like Logistic

Regression, SVM, and Naive Bayes has been explored.

Challenges of sentiment analysis for Amharic language

There are different factors that make sentiment analysis in Amharic. The first factor is that, for
Ambharic language, there is no standardized corpus (both for review data and lexicons) for
opinion mining. Secondly, People usually use positive words in negative reviews, but the word is
followed by valance shifters (negation) words like aydel em or “A22A9°”, in this research work

we attempt to handle negation using rules developed for a lexical component of the hybrid
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classifier. Also, the use of Amharic slang words makes sentiment classification challenging. To
reduce this effect, we incorporated slang words that have sentiment. The other factor is that
sometimes people use objective text to express their opinion but the classifier did not identify

those facts from opinions.
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CHAPTER THREE

METHODOLOGY

The following wide-spread methodologies have been employed to design and develop a hybrid

sentiment classification for Amharic book review.

3.1 Data Collection Methodology

In this research work, we use Qualitative Data Collection Method in collecting Amharic book
review data. Even though most of Amharic book review data have been collected manually from
different online sources, one Open-ended qualitative questionnaire designed for the purpose of
analysis, and classification. This simple questioner has been adapted from Gebremeskel
(Gebremeskel, 2010) and slightly modified to fit with the domain we are working. The opinion
of selected readers, who at least read one of the selected Amharic books, have been collected
using this questionnaire and opinion holders fill their positive and negative opinion about

selected books in a space provided.

These reviews are qualitative data, which means that these data are unstructured and usually
textual. But these qualitative data are not in a form to be manipulated and analyzed by a
computer. Therefore, qualitative data transformed into quantitative data, which involves turning
the data from words into numbers (Bernard, 1996), thereby unleashing the full power of

guantitative analytics on the qualitative data.

3.2 Data Sources

In this research work, two types of data are collected. These data consist of 1370 lexicons and
600 book review. From 1300 lexicon used in this research work, we collect 870 lexicon or
opinion words by translating from English source (Liu, Hu, & Cheng, 2005) and the rest, 500,
lexicons are adapted from Gebremeskel (Gebremeskel, 2010). The 600 reviews (dataset) for
conducting the experiment are manually collected from different sources such as Facebook,
personal blogs, book review sites and also, through a questionnaire distributed for randomly
selected book readers. With the limited time we have, we can collect only 500 reviews manually.
Therefore, it was necessary to collect additional reviews using Open-ended qualitative

questionnaire distributed for book readers. The questionnaire distributed for 150 book readers,
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but only 101 people respond positively, fill the questionnaire and returned. We use 100 of these
reviews collected using questionnaire which is filled correctly. 500 reviews collected manually
and 100 reviews collected using questionnaire. Make up total review used in the research work
600. These reviews are stored in a text file and, any time, if we want to incorporate new data, we

simply append on a text file that stored these reviews.

The amount of reviews used in our research work is small. However, data extraction for Amharic
was difficult due to lack of Amharic web content and it took a significant proportion of the time.
In other research works like (Aggarwal & Gupta, 2017) in English, (Mittal, Agarwal, Chouhan,
Bania, & Pareek, 2013) in Hindi, and (Abreham, 2014; Gebremeskel, 2010; Tulu, 2013) in
Ambharic language use a similar amount of dataset.

3.3 Tools
A number of tools have been used to design and develop a hybrid sentiment classification. These

tools include NLTK, SERA, Hornmorpho, and python as a programming language:

Python is a simple yet powerful programming language with excellent functionality for
processing linguistic data (Bird, Klein, & Loper, 2009). In this study, preprocessing activities
like stop word removal, transliteration, and stemming are done using python programming,
version 3.5. In addition to preprocessing activities, tools like NLTK and HORNMORPHO are
implemented using python programming. The reason why we chose python is that; Python is a
programming language with clear and readable syntax. The way Python's syntax is organized
imposes some order to programmers as a result; experts and beginners can easily understand the

code.

NLTK is the natural language toolkit, a comprehensive python library for natural language
processing and text analytics. Although Python already has most of the functionality needed to

perform simple NLP tasks, it’s still not powerful enough for most standard NLP tasks (Madnani,
2007). This is where the Natural Language Toolkit (NLTK) comes. NLTK defines an
infrastructure that can be used to build NLP programs in Python (Bird et al., 2009). Since NLTK

provides basic standard modules for performing classification tasks and have extensive
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documentation for reference at (Ojokoh & Kayode, 2012), we chose to work with NLTK. All

classification tasks have been done using NLTK in python programming.

In this research work, we use NLTK, but NLTK does not support Ge’ez characters. To represent
Ge’ez character using its equivalent English characters, we use a convention called SERA.
SERA is a convention for the transcription of Ethiopic script into the seven bit American
Standard for computer information interchange (ASCII) (Firdyiwek & Yaqob, 1997).

HORNMORPHO is a system for morphological processing of Amharic, Oromo, and Tigrigna.
According to (Gasser, 2012), HORNMORPHO is a Python program that analyzes Amharic,
Oromo, and Tigrinya words into their constituent morphemes (meaningful parts) and generates

words, given root or stem and a representation of the word’s grammatical structure.

In this research work, the researcher uses HORNMORPHO for two purposes. The first purpose
we use HORNMORPHO s to convert every word to their base forms to avoid data sparseness.
The second purpose we use HORNMORPHO is to convert an input word in Ge’ez characters to
a phonetic representation of the word. The phonetic representations conform to the Romanization

conventions of the SERA system.

3.4  Feature Selection Methods

Feature selection methods reduce the original feature set by removing irrelevant features for text
sentiment classification to improve classification accuracy and decrease the running time of
learning algorithms (A. Sharma & Dey, 2012). Before using machine learning methods in text
categorization, it is essential to choose which features are the most suited for this task. Feature
selection can be done using different feature selection methods. We select Chi-Square, Mutual
Information, and GSS coefficient, as feature selection methods.

The reason we select to work with these three feature selection methods is that first because they
have a reputation to have good performance in English language and we are interested to know
the performance of these algorithms in Amharic language. According to Oystein (Oystein, 2009)
among feature selection methods, Chi-Square and Mutual Information perform best also, the
Chi-Square variant GSS coefficient was also among the top performers. The second reason is

that, in addition to performing well, they have contrasting and different behavior. Chi-Square and
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Mutual Information have a tendency to gave a high score for common features that have a high
frequency of occurrence in the corpus. In another hand, the GSS coefficient gives a high score
for rare words. Therefore by considering these feature selection methods, we can easily see the
importance of common words and rare words on the performance of machine learning. The
performance of these three feature selection methods has been compared against each other. For
comparing these three algorithms we use three machine learning algorithms namely NAIVE
BAYES, SVM, and LOGISTIC REGRESSION.

3.5  Algorithms

Three machine learning algorithms were employed for classifying reviews as positive and
negative such as Naive Bayes, SVM, and Logistic Regression. Testing with more than one
classification algorithms provides comparison clues for determining algorithm with the best
performance for Amharic opinionated text in the domain and many research works in opinion
mining achieved high performance using them. For example, in research works like (Ashari,
Paryudi, & Min, 2013; Pang et al., 2002) SVM and Naive Bayes outperform other algorithms
like MaximumEntropy and K-Nearest Neighbors. In another research (Hao & Priestley, 2016)
Logistic Regression outperforms K-Nearest Neighbors and Random Forest classifier algorithm.
Before deciding to use these three algorithms, we checked their performance against the other
two popular algorithms K-Nearest Neighbors and Random Forest classifier algorithm. K-Nearest
Neighbors and Random Forest classifier algorithm performs with an accuracy of 59.4% and
60.1% respectively, which is very low compared to the performance achieved by Naive Bayes
(93.3%), SVM (88%) and Logistic Regression (86%).

Naive Bayes

Naive Bayes is a supervised classification method developed using Bayes’ Theorem of
conditional probability with a Naive assumption that every pair of feature is mutually
independent (Das, Behera, & Tech, 2017). Bayesian classifiers are often used for classification
because they require far less computing power than other methods (Abreham, 2014). Also, Naive
Bayes need only a small amount of training data. Beside, NB classifiers have considerably
outperformed even highly advanced classification techniques (Das et al., 2017). Therefore, we

choose Naive Bayes to be one of the algorithms for our experiments.
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SVM

SVM is a supervised classification algorithm, proposed by Vapnik in the 1960s have recently
attracted major attention of researchers (Das et al., 2017). The main idea of SVM is to construct
the hyperplane in a high dimensional space which can be used for classification (Kaur & Jindal,
2016). One remarkable property of SVMs is that their ability to learn can be independent of the
dimensionality of the feature space (Joachims, 1998). That means SVM is effective in high
dimensional spaces (Muhammad & Yan, 2015). Since SVM uses a subset of training points in
the decision function (called support vectors), so it is also memory efficient (Muhammad & Yan,
2015). SVM classifier method is outstanding from other with its effectiveness (Yaming & Xin,
1999) and according to Vohra and Teraiya (Vohra & Teraiya, 2013), most of the researchers
reported that Support Vector Machines (SVM) has high accuracy than other algorithms. Because
of its effectiveness in high dimensional spaces and performance, we select SVM to be one of the

candidate algorithms in this research work.

Logistic Regression

Logistic regression is a statistical method for analyzing a dataset in which there are one or more
independent variables that determine an outcome (Hao & Priestley, 2016). In addition to logistic
function, since it is logistic regression is efficient to train, does not require too many
computational resources, highly interpretable, and it doesn’t require any tuning logistic
regression is the most widely used model in biomedicine (Dreiseitl & Ohno-Machado, 2002). In
the research (Hao & Priestley, 2016; Teja et al., 2018), Logistic Regression outperforms other
algorithms like K-Nearest Neighbors, SVM, and Naive Bayes. Despite its popularity and
efficiency, as far as the researcher knowledge concern, the performance of Logistic Regression
against the two baseline algorithms, Naive Bayes and SVM is not known in Amharic language.

Therefore, we are interested to explore the performance of these three algorithms.

3.6 Numbers of Features

Even though different researchers use different numbers of features, the range typically
considered for text classification is between 500 to 3000 numbers of features (Parlar et al.,
2018). In this research work, for each feature selection method, we tried four feature sizes at 750,

1000, 1250, and 1500. We chose to show results for 750 features because it is low enough so the
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classification is well possible and for the numbers of features, less than 750 the accuracy is too
small. We stop at 1500, because, for the number of features greater than 1500, the accuracy of

classifiers starts to drop and the maximum accuracy we found is at this point.
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CHAPTER FOUR

AMHARIC LANGUAGE

4.1  Overview

Ambharic is the working language of the government of Ethiopia and some of the federal states
(Martha, 2010), with 25,873,820 (Eberhard, David, Simons, & Fennig, 2019). It is also the native
language of several million Ethiopian immigrants, especially in North American and Israel
(Gelbukh, 2018).

Ambharic has been the language of government and the ruling group in Ethiopia since the end of
the thirteenth century. Despite its long history, Amharic really only became the written language
of Ethiopia from the second half of the nineteenth century onwards, when Emperor Tewodros Il
actively encouraged its use in the government bureaucracy. Prior to that, though, there are some
examples of writing Amharic going back some six hundred years. The language of literacy in
Ethiopia was Ge’ez (Appleyard, 2015).

Ambharic belongs to the Semitic language family (Leslau, 1995) and it is the second most spoken
Semitic language after Arabic (Solomon & Menzel, 2007). The Amharic language is related to
Hebrew, Arabic, and Syrian (Martha & Menzel, 2009), but unlike Arabic, Hebrew or Syrian, the
language is written from left to right (Leslau, 1995). Amharic exhibits typical Semitic behavior,
in particular, the pattern of inflectional and derivational morphology, along with some
characteristics Ethiopian Semitic features, such as subject—object-verb (SOV) word order, which
are generally thought to have resulted from long contact with Cushitic languages (Gelbukh,
2018).

Amharic is a syllabic language which uses a script which inherited from the Ge‘ez
alphabet(lsenberg, 1842; Leslau, 1995). Geez is an ancient South Semitic language which now
serves only as liturgical language of the Ethiopian Orthodox Tewahedo Church (MARKOS,
2010). Amharic has five dialectical variations (Addis Ababa, Gojjam, Gonder, Wollo, and Menz)
spoken in different regions of the country (Rosenhouse & Kowner, 2008; Solomon & Menzel,
2007). Of the five, the Addis Ababa dialect has emerged as the accepted standard since its
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introduction as the medium of instruction and press during the reign of Emperor Menelik 11
(Goldenberg, 2013; Rosenhouse & Kowner, 2008).

4.2  The Amharic Characters (Fidel)

Ambharic has 33 basic characters with each having 7 forms for each consonant-vowel
combination (MARKOS, 2010). Out of 33 basic characters, 26 are from Ge’ez (Isenberg, 1842).
These 26 characters are shown in figure 3.1 below (Scelta, 2001):

Table 4.1 Ge’ez Alphabet

SN2y |2 =T O g T || F D% N Y>>
B[22 (P3| p| R F| 2| B|F|F| 7| F 2| PP 5| 52|
S R F g R P b F P e P P e P P R P R I A g
IR R R B RO RS AT PO -] g i B YR RO Y AU S O Y BN g S
w20 D IO P TP B T| | V| oF| | 2| | | B & |||
I R I S B N R B R R R R R R IR S I
N[ R[22 30| = ]8T >R A R[22 %8>

But besides the 26 Ge’ez Characters, the Amharic language has 7 peculiar Orders of Letters,
Which serve to express sounds not existing in former (Isenberg, 1842).These 7 Characters
Which serve to express sounds not existing in Ge’ez are 1 [Xe] , e [Ce], °F [ce], 2 [je], T [Ne],
T [Ke] and 1 [Ze] .

42



4.3  Deficiencies of the Amharic Alphabet
The deficiencies of the Amharic alphabet are (Leslau, 1995):
1. Lack of a special symbol for germination. Thus a word such as AA may be read either ale
‘he said’ or ‘alle’ ‘there is’; 79 may be read gena ‘still’ or ‘genna’ Christmas’. In writing
of western scholars, germination is marked by two dots placed above the letter.
2. The 6™ order designates both a constant followed by the vowel e and a constant without a
vowel. Unless the word or the principles underlying the syllabic structure are known, one
does not know how to pronounce it properly. Thus a word such as £71¢, whose actual

pronunciation is ‘yengar’, maybe read mistakenly ‘yenegar’, or ‘yenneggaar’.

4.4  Characteristics of the Amharic Language
4.4.1 Amharic Alphabet Orthography

On the whole, no real problems exist in Amharic orthography, as there is, more or less, a one-to-
one correspondence between the sounds and the graphic symbols. Since, however, a few sounds
are expressed by more than one symbol; some confusion occasionally arises in the spelling.
Sounds that are represented by more than one symbol are: s (a: w), s (&:8), h (V:h#10), and the
vowels carry (A:0). Moreover, V:ch::h:0 Written in the 1st order are pronounced as 7:ch:p+h:4,
that is, with the vowel a. Thus, the word ‘seyyum’, proper name, maybe spelled #¢g° or agg°
(Leslau, 1995). Although these different ‘fidels’ give each word different meaning in Ge’ez, in
Ambharic language they have been used interchangeably (Mindaye, Redwan, & Atnafu, 2010).

Ambharic orthography reflects the spoken phonetic features to a large extent. The rule generally
followed is “if a word sounds right when reading aloud then it was rightly written”. Ambharic
spelling has rules, even though, it is not strict. There are acceptable levels of precision, a phono-
orthographical radius that renderings may fall within to be considered recognizable and
acceptable. Some phonetically spelling variations are more acceptable than others. Wider degree
of spelling variance considered acceptable at the basic level (a working medium for all informal
exchanges) and At the Advance level of writing, the canonical forms of words must be used and

words can no longer be written merely as they would be spoken (Yacob, 2004).
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4.4.2 Amharic Compound Word
The Ambharic writing system uses multitudes of ways to denote compound words and there is no
agreed upon, spelling standard for compounds (Gelbukh, 2018). For example, the word school
can be represented in Ambharic like “FPUCTF-0b1, ““FPUCT (bt and “t9PUCHLT”. This Kind of
non-uniform representation of the same word is not suitable for sentiment analysis; therefore, we

must form uniformity by choosing only one of the representations.

4.4.3 Amharic Short form of Words
For suitability or other reason, people like to write words in short form. But the way how to write
a short form of a word or phrase is not uniform. In Amharic language, people use dot operator
“.” Or forward slash “/” to make a short form of a word or phrase and this create confusion in
sentiment mining. Let us see this with an example, the capital city of Ethiopia, Addis Ababa can
be written in Amharic like “A.4” or “4/A”. Therefore we must deal with this kind of issues in this

research work.

4.4.4 Words adapted from foreign languages
Non-uniform representation is also the problem we may face in opinion mining in Amharic
language. For example, the word director represents in different ways, sometimes as “4.&h+C” or
“g2&0tC”. To reduce confusion, Mersehaizen (Mersehaizen W/Mariam, 1934) suggest using a

uniform way of representing words adapted from a foreign language.

45  Morphology

Amharic is a morphologically rich language where up to 120 words can be conflated to a single
stem (Mindaye et al., 2010). Amharic has a complex inflectional morphology, particularly in the
verbal system, employing not only prefixes and suffixes but also internal modification of the
typical Semitic consonantal root-and-pattern type. In general, the morphology of Amharic has
been less influenced by the Cushitic substratum than, for instance, syntax or the lexicon. The
inflectional morphology of noun, on the other hand, is relatively simple (Keith & Sara, 2010).

4.6  Slang Words
Nowadays it is common to use Amharic slang words in social media. These slang words make

challenging the detection of opinionated expressions. For example, in the word ‘aynefam’ or
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“AL14-9°” have similar meaning with English phrase not good. Dealing with Amharic slang
words will help in sentiment analysis. To handle this kind of slang words, some slang words are

added to our lexicon.

Table 4.2 Amharic slang words

Ambharic Slang Phonetic Meaning in common Amharic Phonetic
et zlget AONVE asel_lci
AAn al_as oPG mlgeNa

2920+t yemaybatt pre0m- yem_aygebaw
4CM farTa 2 fara
Y menCu avpayt megem_at
184 gejerece AL ANT ‘ambi "alece
ACh arka 4 gur_a
ey bokema ace ser_eqge
fiaomm xemeT _eTe P wax_e
nTIE Cemagqi DT wereNa
10 neg_ele TGLRL tenad_ede
nch borko ‘HChCh zlrklirk
23 neqE aPe awagi
hOg asef_u L5 wereNa
enhha ylxekkal L.LAEAN yldebral
(53 din_lc_ vaty has_eteN_a

4.7  Punctuation

Punctuation in Ambharic language consisting of word-divider or hulet-netib (:), end of the
sentence indicator or arat-netib (::), drib serez (z), netela serez (), and other symbols inherited
from the Latin language like (?), exclamation mark (!), quotes (“”’) and parenthesis (Mesay,
2003).

4.8  Amharic Numbers
The original Amharic character set has no symbol for representing zero, Negative numbers,

decimal points, and mathematical operators for performing a mathematical operation (Mesay,
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2003). Ambharic numbers that are borrowed from Ge’ez are not suitable for mathematical

operations (Mersehaizen W/Mariam, 1934). Consequently, Arabic numerals are used for the

representation of numbers and Latin based scripts for operators (Mesay, 2003).

Table 4.3 Amharic numbers (Ge’ez) with Arabic equivalent (Isenberg, 1842)

Ambharic

5 [3 E |0 | & | % Z T |8 | 4 Ie # Tk
numrals
Arabic

1 2 3/14|51|6 7 8 9 |10 100 1000 | 10000 | 100000
numrals
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CHAPTER FIVE

DATA COLLECTION AND PREPROCESSING

5.1 Data collection

Building the list of Sentiment Words

A very basic and simple idea to build a classifier for unannotated data is to use a lexicon of
words. A lexicon is a dictionary of words, each word associated with a score showing its
polarity. For our work, we gathered 1370 sentiment words out of which, 570 of them are
positive sentiment word and 800 of them are negative sentiment words. Out of the 1370
sentiment words 870 of them are collected by translating from English lexicons compiled by Liu
(Liu et al., 2005) and then increase their numbers by looking for synonyms from Ambharic to
Ambharic dictionaries. And the rest, 500 lexicons were adapted from Gebremeskel (Gebremeskel,
2010).

Book review data collection

Ambharic is one of the languages that have scarcity in labeled reviews, especially in a domain like
a book review. As a solution for this, we first collect manually 600 unlabeled book reviews from
sources like “facebook”, “ethiopaizare.com”,”cyberethiopia.com”, and manually collect from
book readers using questionnaire. After collecting these 600 reviews, we have removed

unnecessary symbols like ‘#’, and ‘@’. We also removed subjective sentences or side talks.

5.2  Preprocessing

The majority of the text produced by social websites is considered to have
an unstructured or noisy nature (Amira, 2013). The reason for this can be a lack of
standardization, spelling mistakes, missing punctuations, nonstandard words, and repetitions. We
perform four activities in preprocessing our data. These four activities are tokenization,

normalization, stemming and transliteration, and stop word removal.

Tokenization
Given a review, tokenization is the task of chopping it up into pieces, called tokens, perhaps at
the same time throwing away certain characters, such as punctuation and numbers. In English,

word tokens are delimited by a blank space. But in Amharic language, punctuation marks like
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word-divider or (vt 110) (), end of the sentence indicator or (a¢-t 1) (::), semicolon or
(&c agn) (2), comma or (1mA aZH) (F), and other symbols inherited from the Latin language
like question mark or (?7£¢ °Aht) (?), and exclamation mark or ($A 429) (1) can be used as

word separators.

Open the file
While not end of file do
For each character in the file
If the characteris ' ‘=, “:*, ‘2,9, ?", and ‘I’
Split at that point
End if
End for
End while

Fig.5.1 Tokenization algorithm
Normalization
The normalizing process puts the text in a consistent form, thus converting all the various forms
of a word to a common form. Amharic language alphabet contains letters with the same sound
but different shapes called homophones. Homophone has been represented with only one
symbol, for example, homophones “v”,”h”,”7”,”5”,”"1 " are represented only by the symbol “v”.
Table 4.1 shows the list of homophone in our sentiment classification model (Yacob, 2004).

Table 5.1 Simplification of Phonetically Equivalent Syllables

and their family

Phonemic Equivalents Simplification
U, Y7, ch, 1,0 0 v
and their family and it's family
0, w 0
and their family and it's family
Ak 0,% _ A _
and their family and it's family
&, 0 A

and it's family
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(Y32

The next step is to handle abbreviations. Punctuation marks like dot operator “.”, or forward
slash “/” is used interchangeably to form abbreviation. Accepted standards for many
abbreviations and acronyms do not yet exist. Instead of just removing dot operator and forward
slash, for common abbreviations like “A.A” or “A/A” has been replaced with “A%4.0 ANQ”.
While not end of file do
For each character in the file
If the character is 4, 7, 7 - or their family then
Changed to v
Else if it is 2z or their family then
Changed to 7
Else if it is # or their family then
Changed it to £
Else if it is, 4, 4, 4 or their family then
Changed it to 4
Else if it is #*then
Changed itto #
Else if it is # then
Changed itto #
Else if it is /- then
Changed itto £
Else if it is 7then
Changed itto 7
Else ifitis “/” then

Changed it to*.”
Else if'itis “-” then
Changeditto "
End if
End for
End while

Fig.5.2 Normalization algorithm
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Stop words removal
Stop words are most common words found in any natural language which carries very little or no
significant semantic context in a sentence (Lemaire, Salperwyck, & Bondu, 2015) and so that the
process is not over-influenced by very frequent words (Ceska & Fox, 2009).
Open file-1(corpus)
Open file-2(stop-word)
While not the end of file file-1
For each term in the file-1
If the term is in file-2(stop-word) then
Remove the term
End if
End for
End while

Fig.5.3 Stop words removal

Stemming and Transliteration Using Horn-Morpho

In this step, Amharic book review has been transliterated and change to stem. Machine learning
algorithms NLTK do not work with Amharic language and we shall change Amharic symbols to
English Equivalent representative in Horn-Morpho. Horn-Morpho, use SERA (System for
Ethiopic Representation in ASCII) to represent Amharic characters with English character. The
input to Horn-Morpho is a file that contains Amharic book reviews and the output is also file but

in ASCII representation.

Ambharic is a morphologically rich language where up to 120 words can be conflated to a single
stem this clearly shows that stemming has a profound effect on the retrieval process of the
language documents and (Mindaye et al., 2010). After transliteration complete, we use the output
of transliteration, by Horn-Morphon as input to stemming process, Stemming also is done by
Horn-Morphon. After Horn-Morphon completes stemming, the output will further be changed to
a form suitable for the next process. In this process, special attention is given to the words like
‘ayIm_ec_Im’ or “A@avF9°”, because it has another form ‘temec_e’ or ““Fe»F” with a positive
orientation which is opposite to original words ‘aylm ec Im’ or “A@aevF9°”  with negative

sentiment orientation. Therefore, we represent two words containing the stem or root and
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negative, as “temec_e nEgativ” so that it will keep its original sentiment orientation. In Amharic,

there are a lot of words of this type, therefore we have to be careful when we stem.

After installing Horn-Morpho you have to import it like, import I3, and then, pass the file to
Horn- Morphine like, 13.anal_file (‘am’, file-1.txt', file-2.txt), the output from Horn-Morpho note
in a format suitable for processing, it contains detain analysis result that we do not want in
addition, it contains English word, punctuations, and numbers. Therefore we have to remove
unnecessary elements, keeping only the stem and its label indicating the word is negative. The
following section shows its process.

BEGIN Store reviews into file-1.txt

Give file-1.txt to Horn-Morpho as input and save the output as file-2.txt
Open file-2.txt
While not end of file-2.txt Do
For each character in file-2.txt
Else the character is Amharic punctuation-marks or digits then
Remove character
End if
End for
For each word in a file-2
If the word is equal to the English word ‘negative’ then
Replace the English word ‘negative’ with Amharic word
1A
End if
End for
For each character in file-2.txt
Else the character is Amharic English character then
Remove character
End if
End for
End while
Fig.5.4 Stemming
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For transliteration or to produce phonetic representations of the Amharic words in a file, use the
function phon_file, and pass it like I3.phon_file (‘am’, input_file, output_file). The reason for
transliteration is that classification algorithms in NLTK do not work with Amharic alphabets.

Give file-2.txt to Horn-Morpho as input and save the output as phonetic.txt
Open phonetic.txt
While not end of phonetic.txt Do

For each character in phonetic.txt
Else the character is Amharic punctuation-marks or digit or non-

English character then
Remove character
End if
End for
End while

Fig.5.5 Translitration
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CHAPTER SIX

DESIGN

6.1 Introduction
In this chapter data preparation and design of a hybrid sentiment classification model for
Ambharic book reviews will be discussed. This will involve combining lexical based classifier

with machine-learning classifier in a sequential manner (lexical and then machine learning).

This chapter is organized as follows: section 6.2 discusses lexicon based classifier, section 6.3
then describes the Machine learning classifiers, section 6.4 clarifies how these two
methodologies are combined together, and finally, section 6.5 lists the evaluation measures

followed in order to evaluate our proposed approaches.

6.2 Lexical based classifier

6.2.1 Pre-processing
In this research work, the first sub-component of the system is preprocessing. Data acquired from
various sources often need to be preprocessed before analysis. We have done preprocessing
activities like tokenization, normalization, steaming and transliteration on 600 review data and

1370 lexicons.

6.2.2 Sentiment Word Detection
In this process, every word in review checks if it exists in sentiment word collected. Count the
number of positive and negative sentiment words in each review and the same time incorporate

the effect of valance shifters.

Sentiment Words
Sentiment words are words that express an opinion like ‘glrum’ or “949°” which means
marvelous and this kind of sentiment words are collected and put into two separate files

containing positive and negative sentiment words.
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Valance Shifters (negations and intensifiers)

As the name indicates, valance shifters are words that change the strength or orientation of
opinion word. The first kind (negations) have the effect of changing the orientation from
negative to positive and positive to negative. Amharic words like ‘aydel_em’ or “A2.2A9°” belong
to this group. For example, the sentence ‘asdes_ac meShaf ¢ or “A0LaT av&h&” roughly means
the book is interesting, but if it is followed by the word ‘aydel_em’ or “Ae2A9°” like in the
following sentence ‘asdes_ac meShaf aydel em* or “A0fAT P h& ALLA®” the polarity
change from positive to negative. The other group of valance shifters, intensifiers, changes only
the strength of sentiment-bearing word and words like ‘beTam’ or “0Ng>” and ‘lj_Ig’ or “aA%<1”

belongs to this group.

6.2.3 Polarity Word count and valance shifter incorporation

In this step, the 570 positive and 800 negative sentiment words collected are put into two
separate files. These opinion words transliterated, stemmed and used in lexicon based
classification. To determine the weight of a review, each word in review has been check if it is

sentiment word or valance shifter, and the following rules are used:

Rule 1: if a word in the review found in positive lexicon file and not followed by negation
» Positive_count=Positive_count+1
Rule 2: if a word in the review found in positive lexicon file and followed by negations
» Negative_count=Negative_count+1
Rule 3: if a word in the review found in negative lexicon file and not followed by negation
> Negative_count=Negative_count+1
Rule 4: if a word in the review found in negative lexicon file and followed by negations
» Positive_count=Positive_count+1
Rule 5: if a word in the review found in negative lexicon file, followed by none opinion word,
and then followed by Negation.
» Positive_count=Positive_count+1
Rule 6: if a word in the review found in positive lexicon file, followed by none opinion word,

and then followed by Negation.
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> Negative_count=Negative_count+1
Rule 7: if a word in the review found in positive lexicon file and proceeded by intensifiers
» Positive_count=Positive_count+2
Rule 8: if a word in the review found in negative lexicon file and proceeded by intensifiers
> Negative_count = Negative_count +2
Rule 9: if a sentence contains the word ‘bihonlm’ or “0Lr79®” disregard all previous sentiment

and only take the sentiment of the one after ‘bihonlm’ or “0LUr9°”.

6.2.4 Sentiment Classification
Here we will decide whether the polarity of each review, in such a way that:
» If the number of negative terms (negative_count) greater than the number of positive
counts the review has been labeled as negative.
> If the number of positive terms (Positive_count) greater than the number of negative
counts the review has been labeled as positive.
» Otherwise, it is unclassified

6.3  Machine Learning Component Design

Data Annotation

We have manually annotated 600 reviews consisting of 300 positive, 300 negative reviews to be
our training corpus. We already preprocess the review data in the lexical component of the

hybrid model we do not have to do preprocessing here.

6.3.1 Feature selection

Feature selection is an important preprocessing stage of text classification, which increases the
performance of a predictive model (Adel et al., 2014). To choose a subset of high discriminative
features and eliminate the non-discriminative features, in this study, we investigate the
performance of three common feature selection methods namely, Chi-Square, Mutual-
Information and Galavotti-Sebastiani-Simi (GSS) Coefficient and combinations of the two
highest performing feature selection methods for Amharic text classification. For this purpose,
three classifiers are used to conduct the experiments namely Naive Bayes, Support Vector

Machine, and Logistic-Regression. At the end of this experiment, we identified which selection
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method and classification algorithm, perform best and use this selection method for a hybrid

model for Amharic book review as sub-component.

6.3.2 Training and Testing Classifiers

In this step, we have put labeled reviews into feature vectors, a format understandable by the
classifier. By feature, we mean that to capture the pattern of the data selected and the entire
dataset must be represented in terms of them before it is fed to a machine learning algorithm
(Abreham, 2014). We chose to work with NLTK classification packages, scikit-learn library and
python programming. NLTK and scikit-learn library together they provide several machine
learning algorithms such as SVM, Naive Bayes, and Logistic-Regression and others. It also
provides a number of test options, such as cross-validation, test set, and percentage split.

We split our data into training and testing in a ratio of 9:1 and use cross-validation for
evaluation. By using different feature selection methods we select feature that supposed to
represent the data at hand. Then, we transform the review into a collection of selected unigram
features. After that, all three algorithms are trained and tested. Finally, we select the best
combination of feature selection method and algorithm to use for machine learning component of

the hybrid classifier.
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6.4 Proposed Hybrid Approach
To take advantage of the benefits of each approach, we combined lexical based and machine
learning classifiers in a sequential manner to form a hybrid approach for sentence-level

sentiment analysis.

6.4.1 Architecture of Hybrid Approach for Amharic Book Review

- e " : . Lexicon
Review Classified (Positive and negative) review eXiEons as
- — Feature
Lexicons
A 4
v Feature selection

Pre-processing

A 4

»| Sentiment word v
detection Train
The machine learning
v algorithm
Sentiment word ,

count and valance
shifter incorporation

Model

\ 4
Sentiment

classification
/:'

Testing
Classified
review

Fig. 6.1 Architecture of hybrid approach for Amharic book review

\ 4
Unclassified

Lexical classifier
Machine learning

57



The general architecture for a hybrid approach for Amharic book review is shown in figure 4.1.
As shown in the figure, the system contains different component based on the process required.
Generally, the proposed model composed of two major components, lexicon based component

and machine learning component.

The lexicon component contains sub-components like preprocessing, opinion word detection and
counting, polarity classification. After collecting the review the first thing we have done is
cleaning the data by identifying and eliminate non-textual content and, content that is irrelevant
to the area of study from the data, and normalization of the data, this is what we call
preprocessing. Then using python programming, sentiment words and valance shifters identified,
count the number of positive and negative words, incorporate the effect of valance shifters and
based the result classify the review as positive and negative. The review classified as positive or
negative used to train the machine learning algorithm and the review that cannot be classified by

lexicon based part is the input for the machine learning for further analysis.

When we come to the second component (machine learning part) it contains feature selection,
machine learning algorithm training, and testing. The model uses the output of lexical based
component as training data for a machine learning component and also incorporates the
knowledge of lexicon to improve performance. The machine learning algorithm decides the

categories of unclassified review.

6.4.1.1 Lexical Component
Since lexical component discussed in sections before and no new thing is added here we will not
discuss it again. But, one thing to recall is that the lexical classifier has two types of output; these
are classified review and unclassified reviews. These two outputs are given as input to a machine
learning algorithm. In the proposed hybrid approach, we do not train our machine learning
algorithm using manually labeled training data. Instead, we use classified reviews, which is the
output lexical classifier. In this way, we save time that otherwise would be spent to classify the

review.
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6.4.1.2 Machine Learning Component
At this stage, we already identified which feature selection method and algorithm to use. We also
have review annotated by the lexical classifier for Training the algorithm selected. And finally,
we have unclassified reviews that cannot be classified by the lexical component, which will be

used for testing purpose.

Feature selection

Unigram is used as a feature, for that reviews have chopped down into unigram words. And then,
using the best performing feature selection method, among chi-square, galavotti-sebastiani-simi
(GSS) coefficient and mutual information gain, we select a subset of unigram features. In addition to the
feature selected by feature selection method (let us call them feature-group-1), to improve the

performance of the classifier, we incorporate lexicon as a feature (let us call them feature-group-2).

Training machine learning algorithm

By using review labeled by the lexical classifier and using the above two group of features
combined as a feature, we train a machine learning algorithm.

Testing machine learning algorithm

After training, the performance of machine learning algorithm tested by the reviews which could
not be classified by the lexical component.

6.5 Evaluation Measures
In this research work classification models mainly evaluated with an accuracy of the model
against test data that contain labeled positive and negative classes. In addition to accuracy, other

measures like precision, recall and f1 sore will be used.

For comparing the performance of the classifying algorithms we use K-Fold cross-validation
method. With K-fold cross-validation, the available data is partitioned into k separate sets of
approximately equal size (Craven, 1996). The cross-validation procedure involves Kk iterations in
which the learning method is given k-1 as the training data and the rest used as the testing data.
Iteration leaves out a different subset so that each is used as the test set once (Craven, 1996).

Since the training and testing are repeated k times with different parts of the original dataset, it is
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possible to average all test errors in order to obtain a reliable estimate of the model performance
on the test data (Nelles, 2001). This approach is advantageous as each test set is independent of
the others (Omary & Mtenzi, 2010). In the experiments performed, 10-fold cross-validation
(k=10) has been used to evaluate classifiers performance.

For the purpose of evaluation, four metrics are used these are accuracy, precision, recall, and f1-

measure.
Table 6.1 Confusion Matrix
predicted class
p n
p true positive (tp) false negative (fn)
8
c
(’% n false positive (fp) true negative (tn)
2
Accuracy

Accuracy is the ratio of correctly predicted instances. Accuracy can be calculated as

follows:
tp+tn
Accuracy = e e 6.1
tp+tn+fp+fn
Precision

Precision is about how precise our model is out of those predicted positive, how many actually

positive. Precision calculated as:

.. t
PIECISION = 6.2
tp+fp

Recall
Calculate how many of the actual positives, our model capture through labeling it as positive
(true positive). Recall calculated as:

RECAIl = — 6.3

tp+fn
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Where:
True Positives (TP): Predicted as positive instances that were actually positive.
True Negatives (TN): Predicted as negative instances that were actually negatives.

False Positives (FP): Predicted as positive but were negative instances.

False Negatives (FN): Predicted as negative but were positive instances.
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CHAPTER SEVEN

EXPERIMENTS AND EVALUATION

7.1  Experimental Setup

Since the proposed hybrid model for Amharic book review combine lexical and machine
learning, the experiment includes both machine learning (supervised) and lexical (
unsupervised).

Generally, the experiments done can be classified into three groups these are lexical experiment
(unsupervised), Machine learning experiment (supervised), and Combining lexical and machine
learning. In the first group, only one experiment has been done, and the aim of this experiment is
to know the performance of our lexical classifier. In the second group, 36 experiments have been
done, with the combination of 3 feature selection methods, 3 machine learning classifiers, and
with 4 different numbers of features. The aim of this second group of experiments is to select a
combination of feature selection method and machine learning algorithm pair. In the last groups
of the experiment, 2 experiments have been done with or without incorporating lexical
knowledge in machine learning as a feature. The aim of these last groups of experiments is to see
the effect of incorporating lexical knowledge in machine learning. These three groups of

experiments will be discussed below:

A. lexical experiment(unsupervised )
The researcher writes an algorithm to classify reviews, based on sentiment word counting using
python programming and test the performance of this algorithm based on different performance

metrics like accuracy, precision, recall, and f-measure.

The outputs of this step are classified and unclassified reviews. And classified reviews are used
to train in the latter experiment, in hybrid classifier as training dataset and, the unclassified

reviews are input to the third group of experiments, as testing dataset.
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B. Machine learning experiment(supervised )

In this experiment, three supervised machine learning algorithms were used which are: Naive
Bayes, Logistic Regression, and SVM Classifier. All the above classifiers were tested using
different feature selection methods (Chi-Square, Mutual Information Gain, and GSS) and a
different number of features (750, 1000, 1250 and 1500 features). We test each technique
individually and evaluate its performance. The procedure is, as is standard in supervised machine
learning tasks, first training a classifier on pre-classified training data and then evaluating the
performance of the classifier on an unlabeled set of test data.

For the purpose of these experiments, the researcher uses NLTK and SCIKIT-LEARN library
with python as a programming language. At the end of the experiment, we will identify the
performance of each feature selection method mentioned above. We also know which

classification algorithm performs well.

C. Combining lexical and machine learning

Here, we combine the lexical and machine learning technique for performing the experiment.
First machine learning algorithm, which was selected in supervised machine learning experiment
above, will be trained with review data that is labeled positive or negative by unsupervised
technique (lexical technique). Second machine learning algorithm selected in the supervised
experiment will be tested with an unclassified review of lexical output. For testing purpose, the
researchers classify unclassified review manually and use it as criteria to check the performance

of the machine learning algorithm.

7.2 Experimental Result

7.2.1 Lexical Experiment Result
Based on rules developed in chapter five, section 6.2.3, algorithm to classify the review as
positive or negative was written using python programming. All 600 reviews are given to this
algorithm, and the algorithm classifies the reviews. Then the result is evaluated against the actual

label (manually labeled). The table below shows the result from lexical based classifier:
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Table 7.1 result of lexical classifier

Class Recall Precision F1-measure Accuracy
positive 0.937 0.845 0.888 74%
negative 0.820 0.926 0.870

Explanation of the result

» Most of the file that is positive correctly identified as such, with 93.7 % recall. This
means very few false negatives in positive class.

> But, a file given a positive classification is only 84.5 % likely to be correct. Not so good
precision leads to 14.5% false positives for the pos label.

> Any file that is identified as negative is 88.8 % likely to be correct. This means a few
false positive in the negative class.

> But, many files that are negative are incorrectly classified.

» The positive class has higher F1-measure 88.8%.

7.2.2 Supervised Machine Learning
Machine learning works on one principle that, if you give it garbage data it will give you garbage
as output. In addition to cleaned data, the features you use highly affect the result you get from
machine learning. There are different feature selection methods available, and identifying which
feature selection method to use is very important. In this regard, there are different researches in
English, Arabic and other languages. But as far as the researchers are concerned, there is no
research on the comparison of feature selection methods in Amharic language. Most sentiment
classification researches on Amharic language focus only on comparing the performance of
machine learning algorithms. That is why the researcher interested to investigate different feature

selection methods.

It is necessary to extract clues from the text that may lead to correct classification, In order to
perform machine learning (Abreham, 2014). Based on previous works unigrams outperform
bigrams in works like (Tan, 2007; Ramdass, 2009) and according to Oystein (Oystein, 2009),
among feature selection methods Chi-Square, and Mutual Information Gain perform best also,

the Chi-Square variant GSS coefficient was also among the top performers. But the performance
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of these feature selection methods against each other is not known in Amharic book review
domain. Therefore, we are interested in exploring the performance of these feature selection

methods.

For the purpose of this experiment three feature selection methods (Chi-square, Galavotti-
Sebastiani-Simi (GSS) Coefficient, and Mutual Information gain) and three machine learning

algorithms like Naive Bayes, Logistic Regression, and SVM Classifier algorithms are used.

The experiment will be done using 750, 1000, 1250 and 1500 number of feature on all feature
selection methods and machine learning algorithm and compare the result. The next sections
present the result:

7.2.2.1 Experimental result using basic naive bayes
The researcher, conduct the first experiment by using Naive Bayes in three stages. In all three

stages, the three feature selection methods used one at a time and see the result.

A. 750 numbers of features

In the first step, we use 750 numbers of features and conduct an experiment on Naive Bayes by
using different feature selection methods like Chi-Square, GSS, and Mutual Information Gain,
and combining Chi-Square and Mutual Information Gain feature selection methods.

Table 7.2 below present experimental result of Naive Bayes with 750 numbers of feature, and
different feature selection methods. Based on the result, Naive Bayes works well with Mutual
Information Gain feature selection method with 76.81% of Accuracy.

Table 7.2 Experimental result of Naive Bayes with 750 numbers of features

Chi-Square Combined(MI+Chi-Square) | simplified chi MI
Accuracy 66.6666667 59.4202899 55.0724638 | 76.8115942
Precision-Positive 0.62903226 0.58208955 |  0.64285714 | 0.70909091
F-measure- Positive 0.77227723 0.73584906 |  0.53731343 | 0.82978723
Precision-Negative 1 1 0.48780488 1
Recall- Negative 0.23333333 0.06666667 0.66666667 | 0.46666667
F-measure- Negative 0.37837838 0.125 0.56338028 | 0.63636364
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When we come to positive reviews when we see F-measure using Ml as a feature selection
method, every review that is identified as positive is 82.97% likely to be correct. That means
among review labeled as positive 17.03% are falsely identified as positive. For negative using
M1 feature selection method, every review that is identified as negative is 63.63% likely to be

correct. That means among review labeled as negative 36.37% are falsely identified as negative.

B. 1000 numbers of features
In the second stage, we use 1000 numbers of features to experiment with different feature

selection methods on Naive Bayes.

Table 7.3 Experimental result of Naive Bayes with 1000 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi Ml
Accuracy 72.4637681 65.2173913 47.826087 | 85.5072464
Precision-Positive 0.75 0.62711864 0.56 | 0.79591837
Recall- Positive 0.76923077 0.94871795 0.35897436 1
F-measure- Positive | ¢ 75949367 0.75510204 0.4375 | 0.88636364
Precision-Negative 0.68965517 0.8 0.43181818 1
Recall- Negative 0.66666667 0.26666667 0.63333333 | 0.66666667
F-measure- Negative | g 6779661 0.4 0.51351351 0.8

As can be seen from the result, MI feature selection method out-performs the other feature
selection methods. When using 1000 numbers of features Naive Bayes performs best with an
accuracy of 85.50% which is better than we get when we use 750 numbers of features. In
positive class when using M1 as a feature selection method F-measure improve when we increase
the number of features from 750 to 1000.Among the review labeled as positive 88.63% likely to
be correct. The rest 11.34% of the time it is falsely labeled as positive. In negative review when
using M1 as a feature selection method, among the review labeled as negative 80% likely to be

correct, and the rest 20% of a time it is falsely identified as negative.
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C. 1250 numbers of features

In the third stage, we use 1250 numbers of features to experiment with different feature selection

methods on Naive Bayes.

Table 7.4 Experimental result of Naive Bayes with 1250 numbers of features

Chi-Square | Combined(MI+Chi-Square) simplified chi MI
Accuracy 66.47 78.23 72.74 92.94
Precision-Positive 0.681 0.736 0.901 0.910
Recall- Positive 0.809 0.976 0.593 0.973
F-measure- Positive 0.737 0.838 0.713 0.940
Precision-Negative 0.620 0.933 0.901 0.910
Recall- Negative 0.460 0.503 0.913 0.870
F-measure- Negative 0.524 0.650 0.733 0.910

As can be seen from the result MI feature selection method out-performs the other feature

selection methods. When using 1250 numbers of features Naive Bayes performs best with an

accuracy of 92.94%. In positive class when using Ml as a feature selection method F-measure

improve when we increase the number of features from 1000 to 1250.Among the review labeled

as positive 94% likely to be correct. The rest 11.34% of the time it is falsely labeled as positive.

In negative review when using Ml as a feature selection method, among the review labeled as

negative 91% likely to be correct, and the rest 9% of a time it is falsely identified as negative.
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D.1500 numbers of features
As shown in Table 7.5 below, when we increase the number of features to 1500, the result is

improved.

Table 7.5 Experimental result of Naive Bayes with 1500 numbers of features

Chi-Square | Combined(MI+Chi-Square) simplified chi Ml
Accuracy 91.96 92.74 79.21 93.33
Precision-Positive 0.911 0.932 0.907 0.941
Recall- Positive 0.956 0.941 0.709 0.941
F-measure- Positive 0.932 0.936 0.793 0.940
Precision-Negative 0.929 0.917 0.907 0.941
Recall- Negative 0.862 0.908 0.904 0.920
F-measure- Negative 0.893 0.911 0.782 0.919

In the third stage, using 1500 numbers of features there is a big improvement in the result in Chi-
Square. This is because chi-square gave a high score to rare words, and, these rare words are
selected, before frequent words that matter but if you increase the number of feature this effect is

reduced since frequent words that matter will be included and finally the result will be improved.

In this stage feature selection method that combined Chi-Square and MI perform better with
Accuracy of 93.33%. Positive class using a combined feature selection method, review labeled as
positive is 94% likely to be correct, but 6% of a time it is falsely labeled as positive.

For negative class 91.9% of time likely to be correct and 8.1% of a time falsely labeled as
negative. To summarize the above three experiment, Naive Bayes performs well in a different
number of features and Chi-Square and combined feature selection methods work well when the

number of features increased. At a high number of features, M1 perform better than others.
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Experimental result using Logistic Regression classifier

The researcher, conduct the second experiment by using Logistic Regression classifier like the

experiment in naive Bayes, in three stages. In all three stages, the three feature selection methods

used one at a time and see the result.

A. 750 numbers of features

The result when using 750 features on Logistic Regression classifier and different feature

selection methods presented in table 7.6 below:

Table 7.6 Experimental result of Logistic Regression with 750 numbers of features

Chi-Square Combined(MI+Chi-Square) simplified MI
chi(GSS)
Accuracy 81.1594203 68.115942 | 69.5652174 | 81.1594203
Precision-Positive 0.80952381 0.68888889 | 0.73684211 0.75
Recall- Positive 0.87179487 0.79487179 | 0.71794872 1
F-measure- Positive 0.83950617 0.73809524 | 0.72727273 | 0.85714286
Precision-Negative 0.81481481 0.66666667 | 0.64516129 1
Recall- Negative 0.73333333 0.53333333 | 0.66666667 | 0.56666667
F-measure- Negative 0.77192982 0.59259259 | 0.6557377 | 0.72340426

From the table above, we notice that Logistic Regression perform well even when the number of
features is less. Both Chi-Square and MI perform 81.15% of accuracy. But when we see their
result, in terms of f-measure Ml is 85.71% to be accurate on positive class labeling, and out of
the reviews labeled as positive, 14.69% of a time it is falsely labeled as positive. On the other
hand, Chi-Square performs better when it comes to negative class labeling. Chi-Square label

with 77.19% outperforms M1 which scores only 72.34% in f-measure.
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B. 1000 numbers of features

In the second stage of the experiment we use 1000 numbers of features and with a different
number of feature selection methods one at a time. In this step, MI increase in performance and
score 82.60 of accuracy. For positive class Logistic Regression reviews are 86.67% are likely to
be correctly labeled as positive. But negative class label assignment is only 75% likely to be

correct. Generally, M1 still shows improvement as the number of features increase.

Table 7.7 Experimental result of Logistic Regression with 1000 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi Ml
Accuracy 73.9130435 69.5652174 62.3188406 | 82.6086957
Precision-Positive 0.73333333 0.6875 0.65116279 | 0.76470588
Recall- Positive 0.84615385 0.84615385 0.71794872 1
F-measure- Positive 0.78571429 0.75862069 0.68292683 | 0.86666667
Precision-Negative 0.75 0.71428571 0.57692308 1
Recall- Negative 0.6 0.5 0.5 0.6
F-measure- Negative 0.66666667 0.58823529 0.53571429 0.75

C. 1250 numbers of features

In the third stage of the experiment we use 1250 numbers of features and with a different number
of feature selection methods one at a time. In this step, Ml increase in performance and score
87.25 of accuracy. For positive class Logistic Regression reviews are 88.7% are likely to be
correctly labeled as positive. But negative class label assignment is only 84.7% likely to be

correct. Generally, Ml still shows improvement as the number of features increase.

Table 7.8 Experimental result of Logistic Regression with 1250 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi Ml
Accuracy 66.47 71.56 86.27 87.25
Precision-Positive 0.681 0.672 0.870 0.899
Recall- Positive 0.809 1.0 0.897 0.876
F-measure- Positive 0.737 0.803 0.883 0.887
Precision-Negative 0.620 1.0 0.870 0.899
Recall- Negative 0.460 0.309 0.807 0.861
F-measure- Negative 0.524 0.465 0.826 0.847
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D. 1500 numbers of features
When using 1500 features MI decrease in performance, but MI score 86.27 in accuracy. For
positive class, 88.1% likely to be correct and 11.9% of a time reviews classified as positive are
labeled falsely. For negative class only 83% correctly identified as negative and 17% of a time it
is falsely classified as negative.

Table 7.9 Experimental result of Logistic Regression with 1500 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi Ml
Accuracy 85.88 85.88 80.58 86.27
Precision-Positive 0.861 0.857 0.764 0.862
Recall- Positive 0.901 0.898 0.958 0.904
F-measure- Positive 0.878 0.876 0.847 0.881
Precision-Negative 0.858 0.856 0.764 0.862
Recall- Negative 0.800 0.804 0.605 0.809
F-measure- Negative 0.824 0.827 0.723 0.830

7.2.2.3 Experimental result using SVM classifier
Here the same as experiments before, the experiment done in 3 stages using 750, 1000 and 1500

numbers of features.

A. 750 numbers of features
Based on the result on table M still outperforms other feature selection methods and score 82.60
of accuracy.

Table 7.10 Experimental result of SVM classifier with 750 numbers of features

Chi-Square | Combined(MI+Chi-Square) simplified chi MI

Accuracy 76.8115942 68.115942 56.5217391 | 82.6086957
Precision-Positive | 4 79487179 0.74285714 0.63636364 | 0.76470588
Recall- Positive 0.79487179 0.66666667 0.53846154 1
F-measure- Positive | 79487179 0.7027027 0.58333333 | 0.86666667
Precision-Negative 0.73333333 0.61764706 0.5 1
Recall- Negative 0.73333333 0.7 06 06
F-measure-

Negative 0.73333333 0.65625 0.54545455 0.75
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B. 1000 numbers of features
When using SVM classifier, Increasing the number of feature from 750 to 1000 shows a negative
impact on Chi-Square, MI and Combined (MI+Chi-Square). Here M1 still performs better with

an accuracy of 78.26%.

Table 7.11 Experimental result of SVM classifier with 2000 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi MI
Accuracy 72.4637681 66.6666667 56.5217391 | 78.2608696
Precision-Positive 0.7173913 0.65384615 0.61538462 | 0.72222222
Recall- Positive 0.84615385 0.87179487 0.61538462 1
F-measure- Positive 0.77647059 0.74725275 0.61538462 | 0.83870968
Precision-Negative 0.73913043 0.70588235 05 1
Recall- Negative 0.56666667 0.4 0.5 0.5
F-measure- Negative 0.64150943 0.5106383 0.5 | 0.66666667

C. 1250 numbers of features

In the third stage of experiment we use 1250 numbers of features and with a different number of
feature selection methods one at a time. In this step, Ml increase in performance and score 87.25
of accuracy. For positive class Logistic Regression reviews are 89.6% are likely to be correctly
labeled as positive. But negative class label assignment is only 87% likely to be correct.

Generally, Ml still shows improvement as the number of features increase.

Table 7.12 Experimental result of SVM classifier with 1250 numbers of features

Chi-Square | Combined(MI+Chi-Square) | simplified chi MI
Accuracy 67.05 79.60 77.45 88.62
Precision-Positive 0.639 0.741 0.827 0.929
Recall- Positive 1.0 1.0 0.779 0.867
F-measure- Positive 0.778 0.850 0.800 0.896
Precision-Negative 1.0 1.0 0.827 0.929
Recall- Negative 0.201 0.501 0.757 0.914
F-measure- Negative 0.332 0.660 0.727 0.870

72




D. 1500 numbers of features

When we increase the numbers of features from 1250 to 1500, a combination of MI and Chi-
square perform better with an accuracy of 88.03. For positive class, 89.40% likely to be
classified as positive correctly, and only 10.6% of classified as positive are falsely categorized as

positive.

Table 7.13 Experimental result of SVM classifier with 1500 numbers of features

Chi-Square | Combined(MI+Chi-Square) simplified chi MI
Accuracy 85.49 88.03 77.84 86.47
Precision-Positive 0.844 0.882 0.819 0.863
Recall- Positive 0.921 0.912 0.803 0.905
F-measure- Positive 0.877 0.894 0.805 0.882
Precision-Negative 0.877 0.883 0.819 0.863
Recall- Negative 0.775 0.838 0.748 0.817
F-measure- Negative 0.815 0.855 0.730 0.835
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7.2.3 Combining Lexical and Machine
Both lexical and machine learning approaches have their own drawback. To compensate this by
taking the advantages of the two approaches the researcher combined them. From previous
experiments on machine learning algorithms, we identified a classification algorithm to use (i.e.
Naive Bayes algorithm) and feature selection method (i.e. Mutual-Information) in our hybrid

model as a machine learning component.

Unlabeled reviews are given to lexical classifier. Then if the review cannot be classified as
positive or negative, it will be passed to a machine learning algorithm that is Naive Bayes with
MI feature selection method. The machine learning decides on the label of this unclassified

review.

Data for Training

507 Reviews, that are classified as either positive or negative by the lexical classifier, used for
training for the machine learning component of a hybrid model for Amharic book review. By
doing this we avoided the need for labeling the data manually, this is important for a language

like Amharic that has a scarcity of labeled data especially domains like a book review.

Data for Testing

93 Reviews that could not be classified as either positive or negative previously by the lexical
classifier, are used for testing the performance of the machine learning component of a hybrid
model for Amharic book review. We manually labeled unclassified review and use it for testing

purpose.

Experiment and result for the machine learning part trained by the lexical output

Lexical component of a hybrid classifier performance is already known from the previous
experiment and 93 of unclassified review which could not be classified by lexical component
pass to Naive Bayes algorithm with MI feature selection method and the final decision on

classifying these unclassified reviews. The result of the experiment is shown in the table below:
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Table 7.14 machine learning using naive Bayes trained by the output of lexical

Class Recall Precision F1-measure Accuracy
positive 0.918 0.739 0.819 79.45
negative 0.666 0.888 0.761

> Most of the file that is positive correctly identified as such, with 91.8% recall. This means

a few false negatives in positive class.

> But, a file given a positive classification is only 73.9% likely to be correct. Not so good

precision leads to 26.1% false positives for the pos label.

> Any file that is identified as negative is 82% likely to be correct. This means a few false

positive in the negative class.

> But, many files that are negative are incorrectly classified. Low recall causes 38% false

negatives for the negative label.

» The positive class has higher F1-measure of 81.9%.

Experiment and result for machine learning part trained by lexical output (Effect of

lexicon incorporation)

At this experiment, we are incorporating lexicons as features into the machine learning

algorithm. The following table shows the effect of incorporating lexicon knowledge on machine

learning:

Table 7.15 effect of lexicon incorporation on machine learning
Class Recall Precision F1-measure Accuracy
positive 1.0 0.732 0.845 83.87
negative 0.711 1.0 0.831

We can see from the result that, the accuracy of machine learning component improved 79.45 to

83.87.
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7.2.4 Summary of the Results
The combined result of section B and C above will be as follows.

Accuracy for hybrid= (Accuracy for LX*total+ (accuracy of ML component*No test data))/total
= (0.74*600+0.83.87*93)/600=0.8711

Where

Accuracy for lexical=0.7411
Total=600

Accuracy of ML component=83.87
No of test data=93

LX: Lexical component

ML.: Machine learning component

Table 7.16 Comparison of lexical vs. machine vs. hybrid performance

Accuracy

Lexical | Hybrid | Machine learning
74% 87% | 93%

From the above result, we can see that the proposed hybrid approach is better than lexical based
classifier, but the result found shows that machine learning is still better in accuracy. Even
though supervised machine learning perform better than the Hybrid model we develop, one thing
to remember that the result of Hybrid model use unsupervised machine learning approach which
reduce the time and cost because there is no need of manually labeled data in our hybrid model,
therefore hybrid model developed is more useful in language like Amharic which lake organized
and labeled data resource. In addition to that, most of the time machine learning classifiers
trained in one domain do not perform well in another domain (Ding & Pan, 2016). That means, if
the target domain is very different from the source domain, the sentiment analysis performance

can deteriorate significantly.
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7.3 Findings of the Study
Based on different experiments which are grouped into lexical, machine learning and

combination (hybrid) we get the following:

Based on the first group of experiment lexical classifier perform with an accuracy of 74%. And
then, from the second group experiment, we found that the combination of Mutual-Information-
Gain, Nayev Bayes algorithm and using 1500 numbers of feature perform the best with 93.3%

accuracy.

In the third group of experiments, by combining lexical and machine learning we found that

hybrid approach performs with an accuracy of 87%.

Finally, by comparing the result found in the three groups of experiments, we found that our
hybrid approach with an accuracy of 87%, outperform lexical classifier which performs only
74%. But, our hybrid approaches, outperformed by machine learning approach which performs
93.3%.

In this research work, there are more false positive labeled reviews as compared to false negative
reviews. We have learned some reasons for the slanted results. The first reason is that when
writing reviews in Amharic, many reviewers use positive opinion terms to express negative
opinions. For example: in the review “a®Zhé Ah aPANI® AT PAI® P00 PCO APNAT AP AP
11C AW¥8e0F a@- HOTY” Polarity: Positive”, the expressed opinion is negative but the system
labeled it as positive. This is because the reviewer used the positive opinion terms ‘@phhg®’
(good), ‘“rag™ (delicious), and ‘AT (interested) in the sentence to express negative opinion
towards the film. The second reason we have learned is that most of the lexicons we have used

for the experimental purpose are negative lexicons that may contribute to this slanted results.
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CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Nowadays, with the growth of social media like reviews, forum discussions, blogs, micro-blogs,
Twitter, comments, and postings in social network sites like Facebook on the Web, individuals,
and organizations are increasingly using the content in these media for decision making. But
Social Media contains a huge volume of opinion text that is not always easily deciphered. The
average human reader will have difficulty identifying relevant sites and extracting and

summarizing the opinions in them. Automated sentiment analysis systems are thus needed.

In this research work, we made a sentence-level hybrid sentiment classification for Amharic
book reviews. For this, we combined lexical classifier with machine learning in a sequential
manner, first lexica and then machine learning. To accomplish our aim, we perform 1 experiment
on the lexical classifier, 27 experiments to know the performance of three classifiers (Naive
Bayes, Logistic-Regression, and SVM), three feature selection methods, and three different
numbers of features. For hybrid classifier, we also perform two experiments with and without

incorporating manually crafted lexicons into machine learning component.

As we can observe from 1 experiment done on the lexical classifier, the lexical classifier
performs with an accuracy of 74%. Also, we can observe from the 27 experiments made for
machine learning, mutual information gain feature selection method with naive Bayes using
1500 numbers of features perform best with 93.3% accuracy. In addition, from the 2
experiments done for the hybrid approach with and without incorporating the effect of lexicon on
the machine learning component of the hybrid approach, the overall performance of hybrid
classifier increased. Finally, by comparing the output of lexical classifier, machine learning, and
hybrid approach, the hybrid approach with an accuracy of 87%, outperforming lexical
classifier with 74% accuracy. But machine learning with an accuracy of 93.3%, outperforms
both lexical and hybrid approach.

Here we conclude by examining factors that makes the sentiment classification problem

challenging in Amharic language. For Amharic language, there is no standardized corpus (both
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for review data and lexicons) for opinion mining. People usually use positive words in negative
reviews, but the word is followed by valance shifters (negation) words like aydel em or
“h2LA9°”, In this research work we attempt to handle negation using rules developed for a lexical
component of the hybrid classifier. Also, the use of Amharic slang words make sentiment
classification challenging. To reduce this effect, we incorporated slang words that have

sentiment.

8.2 Recommendations

Sentiment analysis research work in Amharic language is at the beginning stage. Developing a
full-fledge system in Ambharic language needs the contribution of many researchers. In this
regard, the researcher recommends the following area as a work in sentiment analysis task for

feature work.

The first possible sentiment analysis area to work is opinion spam detection, according to
(Yadollahi, Shahraki, & Zaiane, 2017) opinion spam detection is the task detecting opinions in
favor of or against a product or a service that malicious users intentionally write to make their

target popular or unpopular.

The second possible area to work in sentiment analysis for Amharic language in the feature is
subjectivity detection which the task of detecting if a text is objective or subjective. Objective
texts carry some factual information, while subjective texts express somebody’s personal views
or opinion (Liu, 2012). Since sometimes people expressed their view by combining objective and
subjective text and identifying objective and subjective sentence is the major task to be

accomplished for developing full-fledged sentiment mining system.

The third recommendation is that since sentiment analysis research works highly dependent on
the availability of corpus, and Amharic language don’t have publicly available corpus. We

recommend the development of corpus as feature work.

Based on research for language like English, there is a chance to improve the performance of
sentiment classification by combining lexical and machine learning. So | recommend working

further research work in hybrid sentiment classification for future work.
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APPENDICES

Appendix A: List of Amharic positive sentiment terms in SERA (System for Ethiopic
Representation in ASCII)

ageg_eme ar_egag_eTe
ab_erar_a ageN_e ar_eme
ab_ere agwagi ar'aya
ab_eretat_a agWagWa arbeN_a
abeleS _ege aj_ebe arek_a
aber_ede akeb_ere areka
abeT ere al_efe arif
abln_et alama arin_et
abronet alega as_am_ere
aC_awac almaz as_ebe
aC_Ir am_elak_ete as_elas ele
ad_ab_ere amare aS_enan_a
ad_ege amenEta as_IqgiN_
ad_ele amlro asad_ege
ad uN_a amW _al_a asam_ene
adane anbes_a asaqge
adem_eTe andafta asdem_eme
aden_eqe andeN_a asden_eqe
adlawi aneholele asdes_ete
adnagot aneSe asedesac
afel_ege anSebar_ege aSefa
afez_eze anTeleT _ele asela
ag_elab_eTe anTelTaynet asfel_ege
ag_enaz_ebe aq_erar_ebe asger_eme
ag_eze aqll asmare
agbab_a aglm asmeseg_ene
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asred_a
asrek_ebe
astar_eqe
astekak_ele
astemam_ene
astemari
asTeneq_eqge
astewaS'o
asteway
aTare
aTgabi
aw_aT_a
awenta
awentawi
awTeneTene
ax_en_efe
axeber_ege
aynafar
ayneteNa
az_eze
aznan_a
balemuya
balewleta
balnljera
befit

beg o
bel a

bel eTe
belal _a
beq_a
beq_ele

ber_a
ber_ere
bereket
beret_a
bes ele
bll_ICa
bll_ICta
bIICIIC
bllha
bllhat
bllhateN_a
blIT
blITablIT
blgat
birhan
biruk
bor_ege
cale
Cem_ere
cer

cere
cerln_et
Cewa
cllota
Clm_lIr
Col_E
def ar
defer_ese
deg_
deg_efe
deg_In_et

dehna
dehnin_et
del_ebe
dem_aq
dem_eqe
demam_Im
denb
denbeN_a
denta

des
des_Ita
des IteN a
desyllal
desyllel
dlbag

dll

dlleNa
dllot
dimget
dingll
ding

dirq

faf a

fana

fata

fayda
fegegta
fek a
fel_ege
feneT eze

fenTezly_a
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feqadeN_a
fet_a
feT_an
fetena
fews
fll_agot
fligllq
fIndeqga
flgad
flgadeNa
fIrE
flrE'ama
fls_Iha
flseha
flthawi
gab_eze
gale
geb_a
gebey e
gebirawi
gedeb
gehad
gelelteN_a
gen_et
genananet
geneb_a
ger
ger_eme
geseSe
gET
geT_eme

gEta
gETagET
gez_a
glblZ_a
glbregeb
gllsS

gllS
gIN_It
glrma
glrmawi
glrum
glzuf
gobez
gola

gox
gug_ut
gulbet
gWadeNa
habt
habtam
halafin_et
hamelmal
hag_
hag_eN_a
harnet
hawariya
hay_al
hayleN_a
haymanoteN_a
hibret

hlgawi

hik_Imin_a
hili

hlyaw
hlywetawi
hlzbawi
Id_IlI

Idget
Im_ebEt
Im_Iq
Imerta
Imnet
In_at
Inglda
Inklblk_abE
lg_Id

IqC
Ir_Imat
IrgliTeN_a
Iwnet
IwneteN_a
Iwq

jegna
kabete
kase
keberEta
kef IteN_a
kWale

lage

lef a
leg_ese

lega
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lemel_eme
lemlem
leslas_a
lez_a
lez_a
lb_
lbawi
I1det
IlkeNa
II'n_a
limat
limd
lImlamE
HmuT _
lig

Iy u
loga
ma'areg
mahteb
mar_eke
ma'rege
medhanit
meftlhE
megneTisawi
mehandis
mehari
mek_ere
meketa
mel_a
melekotawi
mel'lkt

melkam
melkemelkam
menfesawi
merzeN_a
mes_aC
mes_eTe
mesebe
mlic_ot
migb
mihret
mlhur
mlhurawi
mina
mir_
mlr_lqat
mir_uq
mirT
mls_alE
mlsgana
mIT_anE
mizan
mizanawi
moges
mol_a
moq
moqge
moya
mudeNa
mulu
muya

muyawi

naf_eqe
nam_una
naN e
nebelbal
nek_a
neq_a
neSa
neSan_et
nlbret
niSuh
nWay
geb_a
gel_al
geldeN_a
gelTaf _a
gen_a
gEnTeN_a
geT_lIta
geTteNa
glCWan
gld_us
gldmiya
glT
gliTIfIn_a
glmem
gln
gonjo
qub
qunCo
qurT
qurTeNa
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qurTeNnet
quT_eba
quT_Ib
quTblinet
quTlIT _Ir
gWam_eTe
qWeT _ebe
ra'ly

reb_a
red_a
reqiq

ret_a
ridata

rigb

rigum
rikata

ritu’

ruhru

sabe
seb'awi
sebeb
Sebele
Sed_a
Sedal
sef a
Seg_a
selam
selamawi
selamteNa
sem_ere

sema't

Sen_a
seq_ele
sereSe
seT_e
sib'Ina
Sldq
slkEtama
sll_IT_anE
slit

sliTun
simmin_et
slr'at

sisay
slTota

Taf eTe
tag_ele
tag_ese
Ta'lm
tal_aq
tal_eme
tam_ene
tam_Ir
tam_IreN_a
Tame
Tare
tas_ebe
tat_ere
taw_eqe
taw_ese
taz_eze

te'amani

te'amaninet
te'amrawi
Teb_eqge
tebar_eke
Tebib
tebrara
teCawac
tedelad_ele
tedem_eme
tedem_eTe
teden_eqe
tederaj_e
tedla

tefCereC_ere

tefel_ege
teg_a
Teg_ene
tegag_eze
tegbaba
tegbarawi
tegeb_a
tegenez_ebe
teger_eme
tegeTeg_eTe
tegeza
tegsaS
tehadso
tek_a
tekane

Tel _eqe
telem_ede
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telew _eTe
telewaw_eTe
tel'lko
temam_ene
temare
temec_e
temer_eTe
temeseg_ene
temeT _ene
temeTaT _ene
temWal_a
TEna
TEnam_a
tenbogeb_oge
TEneN_a
tenes_a
tenesaxnet
Tenkar_a
Tenkaranet
tenketek_ete
TEnnet
Tengaqg_a
Teq_eme
Tegaminet
tegeb_ele
tegebaynet
TegemEta
Ter a
teram_ede
tered a

teredad_a

teregag_eTe
tergaga
tesak a
tesemam_a
teseT'o

tesfa
testekakele
teTeb_eqe
teTey eqe
tetrefer_efe
tewaTa
tewed_ede
tewedad_ere
tewehade
texag_ere
texale
texaxale
TlbebeN_a
tiblb_Ir
Tlbq

Tlgab

tlgat

tl'glst
tl'glsteNa
tihtin_a
tihut
tiklk_IleN_a
tikklleNanet
Tllq

tllg

TIm_ona

timhirt
tinglrt
TInquq
Tiglm
Tlret

Tirt

tlz_lta
tub_a
waga
wan_a
wan_eN_a
wastIn_a
waw
webete
wed_ede
wedajln_et
wedjewalehu
weg

wel_ad

wendIm_amaclin_et

werota
werq
wergam_a
wez

wlb

wid_
wid_asE
wll

wlleta
wliT_Et
wITEtama



wlyly It
wubet
wunet
xeN_e
xIl_Imat
Xum
yaze
yewah
ylfa

ylhunta
ylgrita
zedEN a
zelalemawi
zelaginet
zele'alemawi
zelegEta
zemenawi

zemenawinet

zemeneNa
zenkat_a
zerez_ere
Zew_ere
zlglj_u
zIn_a

zIn_eN_a
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Appendix B: List of Amharic negative sentiment terms In SERA (System for Ethiopic

Representation in ASCII)

ab_ak ene
ab_ar_ere
ab_ede
ab_eTe
abase
abelax_e
abesa
abesaC e
abEtuta
aC_enag_efe
aCbereb_ere
ad_af ene
ad_al a
adag_ete
adbeseb_ese
adega
adegeN_a
adek_eme
adenag_ere
adenag_efe
adma
admeN_a
af_ene
af_ere
afeneg_eTe
afer_ese

ag_aC e

ag_ad_ele
ag_al_eSe
ag_an_ene
agel_ele
agodefe
agodele
ahly_a
ahzab
ak_erak_ere
akes_ere
akrari
al_ak_eke
al_efe
al_eqge
alagbab
alageTe
alasfelagi
ale'agbab
aleqT
aleqT
allb_alE
alubalta
aluta
alutawi
am_a
am_ar_ere

am_etat_a

amasSi
amaSya
ambagen_en
ambagWaro
amel
amel_eTe
amenet_a
amenzari
amer_ere
ameS
an_ad_ede
an_ag_a
an_eqe
an_ese
anaweSe
aneb_a
anek_ese
angebeg_ebe
angWax_exe
anzar_eTe
ag_as_ete
ag_aT _ele
aq_aT _ere
ag_at_ete
agagqir

agate

aqebet
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aglexel_exe
aqWeref_ede
ar_ere
aremenk
arengWa
arogk
as_asate
as_elec e
as_eq_aqi
aS_ey efe
asaf ere
asas_abi
asceg_ere
asCen_eqge
asdeneg_eTe
asecegari
aselec_e
asfer_a
asged_ede
askef i
asleq_ese
asmes_ele
asgey_eme
astebab_ele
astegab_a
astegWagole
asTel a
asTey efe
asweg_ede
asweT _a

aT_a

aT_abqiN_
aT_ad_efe
aT_am_eme
aT_eraT_ere
atal_ele
aTed_efe
aTefa

aTega
aw_ar_ede
aw_elaw_ele
aw_enab_ede
awdelday
awed_eme
awegeze
awezagebe
awrkn_et
ax_eb_ari
ax_ekaka
ax_emaq_eqe
ax_eme
axangul_it
axofe

ayb

az_ab a
azenEta

ba'd

bado

bado

balegE
barln_et

bariya

base
bed el
bedeleN_a
bedin

bel _eze
begel
beseb_ese
bet_ene
beTeb _eTe
bex_Ita
bex_IteN a
bezeb_eze
bic_a
bic_eN _a
blc_eN_In_et
blceNnete
bid_Ir
blklet
blkun
bllgin_a
billx_u
bliSIg_In_a
bird
bIsIC_It
bisklisk
bITIb_IT
blZta
bok a
bokete
bozenE
bukata
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CaCata
Cana

Care
CefeC_efe
Cefgag_a
Cek_ene
Cel_ema
cel IteN a
Celameme
CelemteNa
Cemdad_a
CeqgCag_a
ClfCefa
clg_Ir
clk_ul
clkola
clkyale
CimCimta
Cing
Clnget
Cinging
Clg_un
ClqgClq
Clgone
Clir

Clraq
Clret

clsta

Cohe
Cuhet
daget

dateN_a
debed_ebe
debere
debez_eze
debzaz_a
ded_eb
deg_eme
dek _eme
dekama
dem
demeN_a
demenef
demes_ese
denbar_a
denef_a
deneg_eTe
denez
dengoro
deg_aq
dereq
dewE
dib_Iq
difam
diggimo
diha
dihin_et
dlkam
dlkmet
dil_ela
dil_Iz
dingeteN_a

dinlg_aTE
dink
digala
dlrito
dubda
durye
fage
fel a
fened _a
fer a
fer_ese
fes_ese
fet
feTaTa
fEz
fezaz_a
fICt
fld_a
flj_It
flrhat
fITCa
fogere
funga
gagata
gan
gaTeweT
gebgab_a
ged_ele
gedel
gef a
gef _efe
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gegema
gehan_em
gEja
geleb_eTe
geleba
geljaja
gem_ete

gememteNa

gena
geneT _ele
ger_efe
get_a

glb
glb_Iz
glbslbs
gldEle
gldfet
gldly a
glf

glf_it
glfeN_a
gll_Ib_aC
gliflteN_a
glm
glmatam
glr_Ifat
glr_Iglr_
glra

glra
glra'agabi
glrfiya

glt_Ir

gl'uz
glxbet
godolo
gomlz_aza
gorbaTa
goriT
goseNa
gosqlwala
gub_o

gud
gudeN_a
gudf
gudlete

gul
gur_eN_a
gurmlrmlita
gusqul
gWeda
gWedele
gWesegose
hafret
ham_Et
haraj
has_et
has_eteN_a
haTi'at
haTyat
hazen
hlgeweT

himem

hig_lIta
his

hiSeS
hlwalager

hiwalagernet

hukata
huket

Ibab

Ibd

Iblet
IbriteN_a
Ida

Idf
iftlhawi
iftlhawinet
lg_eda

Ik ek _am
'l

Ikuy
IIhaNa
lgit_
Imba
ImbiteN_a
imnlt

Inba

Inken
Inglfat
Ingllf
Ingogll_Ix
InToroTo
Irbltblt
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IrgiC_a
Irgiman
Irita

Irgan
Is_Ir
iseb'awi
Isslt

IT abi
ITot

ITret
IX_Iruru
jaj_e
jegnin_et
jelgaga
ji
jHIn_et
jin_In
kade

keb _ad
keb_ede
ked a
kedateN_a
kef ele
kefaf ele
kehadi
kenek_ene
kentu
kerdad_a
kerek _ere
kes_eme

kes_ere

kes_ese
kewkaw_a
kex_efe
keysi
Klftet
Klftet

kifu
klhdet
klkIl

Kls_
Kisara

Kiw
komTaTa
korma
kostar_a
kotet
kotetam
kumtlr
kur_eja
kurateN_a
kWebel _ele
kWen_ene
kWer_a
KWer_ete

kWerekW _ere

kWesas_a
lafe

IEba
lebel_ebe
lefel_efe
IElit

lem_ene
leyay e
I1fslfs
l1fya
llgmeN_a
lkslks
lolE
maq_eqe
ma'geb
mat

mehay_Im

mehay_Imin_et

mekera
melti
men_a
menem_ene
menman_a
meqIn
meqseft
meqseft
mer_eze
merar_
merara
merz
mes_ele
mesenakll
metecete
metet
meTfo
mex_e

mexewed
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mezez
meZger
mici

mil_ax

mlg_eN_In_et

mlgeNa
mIS_et
miskin
misqligll
misTir
misTir
miTiTi
mlzbera
molfaT_a
molgaqg_a
moN e
moNnet
mote
muCC
museNa
musna
muT _IN_
nage
neCnaC_a
nefnaf_a
nefTeN_a
negereN_a
nehulala
nek_ese
negefa

nes_a

neT_efe
new_ere
newT
newTeNa
neznaz_a
niCnIC
nid_Et
nifg

nifug
nlget
nitlr_Ik
nlznlz
ona
gaTelo
gebaT _ere
gebeT
geblr
ged_a
gedada
gef _efe
gefo
gelaTE
gelgal_a
gem_aN_a
gen_ateN_a
gen_ese
genber
ger_e
gerfaf_a
ges_efe

geT_a

geT _efe
gewlal_a
gews
geZgaZ_a
gezgaz_a
glb

qil

qll_Et
gilaqil
gim
gimeN_a
glnata
glnate
ginTat
ginTot
glr_Eta
qlSbet
qlSbetawi
glTat
qlTfet
glZet
glZetam
gonglwa
qoraTeTe
goTgWaTa
goxaxa
qulqulet
qurTet
qusll
quT_a
gWarT _ere



gWer_eTe
gWeseqW _ese
rage
rasmltat
reb_exe
rebxa
res_a
rEsa
rikas_a
rikax
rikus

rir

riTh

sate
seb_ere
SebeNa
seg_a
sek_aram
sel_ebe
seleba
senef
seneTTeqge
SEre
sEreN_a
SeS_ete
sEseN_a
SeSet
Sey_af
seyTan
sid_

sldb

slgat
slhtet
slkene'akatE
siImEtawi
sImEtawinet
sin_IkWII
SinfeNa
SinfeNa
si'ol

slgay
slr_Iz
slrgot

sls

sus
Taremot
Tase
taw_eke
taz_ebe
Teb

Teb _ab
Teb_ebe
Tebasa
tebed_ere
tebeg_ere
tebelax_e
TebeN_a
tebesaC e
tebet_ebe
tebkenek_ene
tebtab_a
teCaCane

teCeb_eTe
tedaf _ene
tedbeseb_ese
tedenag_ere
Tef a
teferekak_ese
tegaC_e
tegaC_e
tegal_eSe
tegan_ene
teged_ebe
tegemed_ele
tegoda
tek_eze
tekade
tekes_ese
Tel a

Telat

Telefa
telekefe
Temam_a
temenam_ene
temeSad_eqe
temesas_ele
temeseqgaq_ele
temeSew_ete
temWaT _eTe
Temzaz_a
tenad_ede
tenade

tenCebarere
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tenezaz_a
tenkol

Tenq
tenglwaq
tentebat_ebe
tenxerat_ete
teqar_ene
tegarani
teqaT _ele
teqaw_eme
teqWeTa
Ter_a

tera

teragW _ete
tereg_eme
teret
teSarere
tesasate
teseb_ere
teSey_efe
teS'Ino
teS'Ino
teTaTame
teTeq_a
teTeraT _ere
tewenab_ede
teweq_ese
tewes_ene
tewesas_ebe
Tewlag a

texeb_ere

texen_efe
TEza
tezab a
tezebab_ete
tezeberar_ege
tI'bit
tI'biteNa
tic_It
Tldflya
Tldfiya
TlfateN_a
Tlg_eN_a
Tig_eN_In_et
T

Tllac_a
Tllaxet
TlleN_a
TImb
timklht
timklhteN_a
tin_Ix

TInb
tinkosa
TIntawi
Tlgaq_In
Tlgat
Tlgerxa
tirim_Is
TIrIT _arE
tirtlr

tizblt

Torln_et
u'uta
wal_ele
walg
waTe
wed_eqe
wefzera
weg_a
wekeba
welaw_ele
weleblaba
welefEnd
welemta
welgad_a
wenfit
wenjel
wenjeleN_a
weq_esa
weq_ese
wer_ad_a
wer_ede
wer_ere
WerEN_a
wereNa
weret
wereteN_a
werobela
weT a
weTeTE
wld_aqi

wldmet



wlguz
wlgzet
wirdet
wlrjlb_IN_
wisblsb
wIX_a
wixet
wixetam
wiZmlblr
xag_ete
xakara
xefafa
xefT
xegege
xekIm
xelebta
xer_eN_a
Xerex_ere
xermuTa

xewede

Xex_e
Xex_ege
xIb_Ir
xlIba
xlbet
xlbriteNa
xIfta
xInfet
xIngela
xIrdeda
yalteger_a
yeqll
ylluNta
ylyulIN
zage

zale

zaza
zebet
zefegede

zeg_a

zegemteN_a

zegen_ene
Zegey e
zel_eqe
zelefa
zelzal_a
zeneg_a
zer_efe
zereN_a
zereNnet
zewet_ere
zlbrigriq
zlgmliteNa
zIm_ut
zlmteNa
zingu
zlg_aC
zlg_IteN_a
zlqTet
zlrklirk
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Appendix C: Questionnaire with Sample Responses
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Appendix D: List of Sample Amharic sentences with negative sentiment

w

© N o o &

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

meShaffu yelblweled aS_aSaf meseretawiyanin ayamW _al_am yewer_ede new
tarikIn lemaTelxet teblo yeteSafe bado yeqalat kWakWata

beTam yedek eme ye'arefteneger as_eraru Inkuwan dlrsetun aydel_em amarIN_awn
gel_otal

ye'artl'ot In_a ye'arefteneger as_ekak gldfet yebez _ab et zlIrkirk slra

te'amaninet yel ewlm yemender quCbhelu new yeSafew

meShafu kers as_eTaT jem_lIro an_adaj In_a as_afari new

meShafu beClb_ITIm hone be'aSaSaf werdob IN_al

kinawi wlbet yelEl ew tera yesblket zeye yalew yeqalat gagata bado gll yehone
geleba meShaf new

bebekulE ylIhE meShaf altemec_eN_Im mizanawinet ylgodlewal

has_aboc_u yeteqed u mehonac_ew sayans kesaynls alabawyan meseretawi lwqet
yetefat_ u mehonac_ew Ilj yabokaw mehonun fintlw adrlgo yasay al

yetekeb_eru gud_ayoc In yesne Slhuf glrmamoges nesto mag_ alblso yager_ebe
telkaxa meShaf new

ylhEn meShaf saneb glra kemeg_abatE yetenes_a merEt yet Indehonec

ylTefab _IN_al

bez_ihuw meShaf lit_elal_ef yetefel egew ma'kelawi mel'lkt min Indehone InkWan
anbabiw Irasu derasiwm yem_iyawgew aymesleN_Im

yeqgalat blzEt lay tedegagami slhtet yeteser ab_et yegdElex slra new

keqgalat gagata besteger glTmlinetacewn yemiyagola Im_Ig yehas ab blslet gomrito
altay eb_ac_ewlm

meShafu wlisT berkat_a yefidel yegalat In_a yehas_ab alemeTaTam slhtetoc_
yetemol_a zIrkirk new

balemuya yalhonec sEt Indeqolaclw aynet bun_a hono new yageNhut

Sehafiw basay ew mizanun yesate ye'aSaSaf sllt sineShufun aTewllgotal
yaltemec_eN_ neger yeqWangWaw guramaylEnet IlIk_ bengllizIN_a fidelat
amarIN_a Indem_In_ISfew aynet abazE bamarIN_a fidelat ye'gllizNa qalatin besfat
teT
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Appendix E: List of Sample Amharic sentences with positive sentiment

1. derasi dira'az meShafun yagerebubet yeTbebawi dereja kefta maletim yeTera
yeqWangWa aTeqagemacew mel'lktun lemastelalef yeteketelut yem'lraf aderejajet
yemaydeneqaqgef yehasab flset Ik llbweled yemnaneb yahll andE kejemerin
sanCers yemanasgemTew Indihon blrtu aglm alabsotal

2. adefrls yequwanquwa aTegagemu geleSaw Indihum ylzetu yeteleye bota
yemiyaseTew yemnlgzEm mlrT meShaf new

3. kelbu meShaf be'amarNa Ilbweled meSahflt tarik beTam anegagariw Ina

akerakariw Indihum Iske ahun dlres yehzlb flglr kaltenefegacew TlIqit

meSahflt andum new

wlb yehonu berkata yebeleSegu geleSawocln yetadele glrum meShafnew

yemeShafu CIbT yemigerlm ana astemari bemehonu leljocE asgemcEwalehu

beTam agWagi belom Ilb anTelTay meShaf new

gonjo meShaf new

beTam mesaC mlirT meShaf new anblbut

© o N o g &

meShafu wede hWala wesdo lljnetin sllemiyastaws des blloN wedjEw new

yanebebkut

10. malefic yehone slra

11. waw mecEm yemayselec zemen texagari meShaf mecEm ityoPyawi hono flgir
Iseke meqgabrin yalanebebe aynorim

12. meShafu geSebahriyatun benebarawiw yehylwet awed yemnagacew yahll Indimeslen
tedergo beTru hunEta newe yetesalew

13. besneShuf yetlim mewaqlr ketarik misreta tenesto geSebahriyatin bemastewaweq
giICt kesto wede llgetu bemadres keziyam bemargeb Ina wede Ifoyta yemiwesd kef
yale lIb segela yemiytaybet asdemami aynet slra new

14. Inde wlha TeTcE yerekahubet mlIrT meShaf

15. yerasun ye'aSaSaf sllt ylzo yemeTaw adam mereq betebalew mlirT sine Slhuf

afnlCah slr balewu gin tlkuret nefgehwu abrehwu benorkewu gInTat Iwuneta lay

tenterso gudayon baltelemede ateyay yezhon yakll agzifo yemislilh mIrT derasi

mehonun asmesklrWal

16. tarikawi mesrejawocIn be'agbab yeteTegeme aznaNna astemari meSehaf new
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17. alweledIm kegizEw yegedeme slra yemigerlm geSebahri gena ke'natu mahSen
sayweTa lwnetln ylzo mahberesebun yemimogt yemiweded aSaSafu llk Inde weraj
wiha kulll bllo yemifes feta yemiyaderg ayn kefac Slhuf

18. adefrls beyzet be'aSaSaf sllt Ijg yeterarage gerami meTaTf

19. yesnlbt gelemat slfran bemsll nedfo bemsllocu denglgo behatit dereja lyeterageqe
CImir slletemeleketnew lehageracin slneShuf Inglda ana malefiya bllenewal

20. yefqlr Iske meqgablr tarik sinebeb anbabiwn befglr wejeb alagto yefqlr IsreNa
yemiyaderg te'amreNa meShaf yeTnat Ina mirmir Slhufoc siserubet yenore meShaf

new
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Appendix F: stop-words list

vav-
U+
U-gP
AhHA
AaoPY
A9°7e7
A
Mot
LY
a7
a7y
TThas
9oy
ag
no-
ALUP7
ok
ALY
Poay,
(HY
A
F
F
e
1@~
710

G Fo-
Al
ACN

ATt

WL
ATe&P
hU-L&
Al

hq
Wert
h2
¥4 %

L §44
W8T
he
ALLE
AC
haoPy
me,79J°
L

Pq
Hi
eo.ntA@-
(4

(43

2y
eho-
1%

2C

17
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Appendix G: Result of Hybrid Approach

2 Pynon 250 shel ST I T T T T

File Edit Shell Debug Options Window Help

Pvchon 3.5.0 (v3.5.0:374f£501f4567, Sep 13 2015, 02:16:59) [M5C v.1900 32 bitc (Intel)] on win32
ITvpe "copyright™, "creditc=" or "license ()™ for more informatcion.

>

RESTART: Cr\Windows=\System32\researchfilesl\code for hybrid classification.py
true negative: 201 ..........false negative: 16

true positive: 240 .......... false positive: 44

number of UNCLASSIFIED reviews which is passed to machine learning: 53

pure lexical ACCURACY 0.74117647T0S58823S53

pricisionp: 0.E450704225352113

pricisionn: 0.2Z26267TZ811052008

recallp 0.9375

recalln 0.82Z040B1632653061

flscorep O0.8BEEESEEEEBEBEEEE

filscoren 0.8701298701298701

Original Haive bay Classifier machine learning component ACCURACY percentc: 83.87096774193549
Mo=2t Informative Features

dIng = True pos @ neg = i14.9 z 1.0
saThtet = True neg : pos bl i12.8 = 1.0
gereme = True pos : neg - i10.8 =z 1.0
dekama = True neg : pos - 10.2 =z 1.0
melTfo = True neg 1 Ppos - T.5 : 1.0
adam = True ros : ey - &.3 : 1.0
Ppos precision: 0.732142857142B57T1
Ppos recall: 1.0
pPo=s F-measure: 0.8453608247422672
neg precision: 1.0
neg recall: 0.7115384615384616
neg F-measure: 0.8314606T741573034
............................. Combining lexical & Machine Learning......-cuccceeseesesesennen=
COver All Accuracy of hybrid Approache Accuracy : 0.87T11764705882353

>>> |
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Appendix H: Sample Classified Reviews

............................................ The First 10 Classified Reviews 83 & JDLE....vvivviiviii i

L. [(['aba’, 'TEna’, 'iyas', 'WIR', 'qereme’, 'neger', 'ale’, 'migativ', 'mednaf', 'ale', 'meShaf'], 'pos')]

o [(['belan’, 'misdenq', 'nIywet', 'misllr', 'alegalele’, 'arif', 'gITIn'], 'pos')]

3o [(['InE', 'Tnnet!, 'yIR', 'fit', 'ityoPya', 'tarik', 'yIb', 'dIng', 'medhaf’, 'tedafe', 'aweqe!, 'mEqativ'], 'pos')]

4.. [(['haymanat', 'menet', 'miqeSbet’, 'menged', 'tInx', 'oWerebele'], 'neg')]

5o [(['belan’, 'wedede', 'gonjo', '"Gafe', "telemede', 'nigativ', 'Cerese'], 'pos')]

6., [{['hasab’, "teqeda’, 'home', 'anese', 'mEgativ', 'saynls', 'alabawya', 'meseretawi!, 'Diget!, 'tefata', 'home', '1I3', 'aboka', 'home', 'fIntIv', 'aderege’, 'asay
e'], "pos')]

T.. [(['asreda’, 'hasab', 'wiha', 'gWeTere', 'mEqativ'], 'pos')]

. [(['vID', 'meShaf', 'zerfe!, 'bIzu', 'wisblsh', 'hne', 'sew', '1I3', 'sIllan®', 'nidet’, 'qlrun’, 'home', 'fesete', 'gelede', 'tereke'l, 'pos')]
9. [{["teTeqene’, 'TIgs', 'tesasate', 'reba', 'nEqativ', 'asnewari', 'SInuf'], 'pos')]

10., [(["tarik’, 'malelxet', "tebale’, 'teSafe', 'bado', 'mlat', 'KIwakwata'], 'neg')]
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Appendix I: Sample Code for Machine Learning

import nltk

import re

import csv

import collections

from collections import OrderedDict

import random

import re

import math

from nltk.classify.scikitlearn import SklearnClassifier
import pickle

from sklearn.naive bayes import MultinomialNB,BernoulliNB
from sklearn.linear model import LogisticRegression,SGDClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC

from nltk.classify import ClassifierI
from statistics import mode
from sklearn.metrics import precision score

class VoteClassifier (ClassifierI):
def init (self, *classifiers):
self. classifiers = classifiers

def classify(self, features):
votes = []
for ¢ in self. classifiers:
v = c.classify(features)
votes.append (v)
return mode (votes)

def confidence (self, features):
votes = []
for ¢ in self. classifiers:
v = c.classify(features)
votes.append (v)

choice votes = votes.count (mode (votes))
conf = choice votes / len(votes)
return conf

documentsp=1]
documentsn=/[]
documents=1[]

doc=[([], 'neg'), ([]l, 'pos')]

d={}

#4#//7777777777777777777777777777777777777777777777///open file "allpos.py"
that contain positive reviews and tokenize each sentence and attach

label (pos)

with open('allpos.py','r',encoding='utf-8') as f:
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for line in f:
x=(list(line.split()),"pos")
##///7/7777777777777777777777777777777777////7//change the above tokenized
and labeled revew into dictionaty containing tokenized review as key and
label (pos) as wvalue

documentsp.append (x)
documentsn=[]

#4///177777777777777777777777777777777777/7777/////open file "allneg.py"
that contain negative reviews and tokenize each sentence and attach
label (neqg)

with open('allneg.py', 'r',encoding='utf-8') as f:

for line in f:
x=(list(line.split()),"neg")

#%#////7/777777777777777777777777777/7777//////change the above tokenized
and labeled revew into dictionaty containing tokenized review as key and
label (neg) as wvalue

documentsn.append (x)

documentsn.remove (([], 'neg'))
documentsp.remove (([], 'pos'))

#¥#///777707777777777777777777777777777777//77//forming a dictionary that
contaon reviews as a key and label (pos or neg) as value
documents=documentsn+documentsp

random.shuffle (documents)

all words=[]

myfile=open('all words.py','r',encoding="'utf-8")

myfile2=str (myfile.read())

line3 = re.sub('\n', ' ', myfile2)

with open('all words.py', 'w',encoding='utf-8') as f:
f.write(line3)

with open('all words.py', 'r',encoding="'utf-8') as f:

for line in f:
x=line.split ()
p=open ('all words.py', 'r',encoding='utf-8")
p=p.read()
p=set (p.split())

with open('vvall.py', 'w',encoding='utf-8'"') as x:
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for item in p:
X.write ("%$s\n" % item)

num_words = 0

counta= dict ()
counta2= dict ()
countb= dict ()
countb2= dict ()
countc= dict ()
countc2= dict ()
countd= dict ()
countd2= dict ()

p3=open ('vvp.py', 'r',encoding='utf-8")
myfile=p3.read()
line = re.sub('\n',' ',myfile)

with open('vvp2.py','w',encoding="'utf-8"') as g:
g.write(line)

f3=open('vvp2.py', 'r',encoding='utf-8")

xp2=f3.read () .split ()

f3=open('vvall.py', 'r',encoding="utf-8")

myfile=£f3.read ()

line = re.sub('\n',' ',myfile)

with open('vvall2.py', 'w',encoding='utf-8') as g:
g.write(line)

pall=open('vvall2.py', 'r',encoding='utf-8")

xt2=pall.read() .split ()

$4///0770777777777777777777777777777777777777777777
ncn=250

##print (ncn)

N=600

##print (N)

import math

z=(ncn/N) * (math.log(ncn/N)) + (ncp/N)* (math.log(ncp/N))

##/////77777777777777777777777/7//////words and their frequency count to be

used in calculating thier importance based on different feature selection
methods

##y=open('vvall.py', 'r',encoding='utf-8"')
##xt=str(y.read () .strip())
##xt2=xt.split ()
##print (len (xt2))
for word in xn2:
if word in xn2:
if word in countb:
countb [word] +=1
countd[word] -=1
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else:
countb [word]=2
countd[word]=248

else:
countb[word]=1
countd[word]=249

for wp in xp2:

if wp in xp2:
if wp in counta:
counta [wp]+=1
countc [wp]-=1

else:
counta [wp]=2
countc [wp]=348
else:
counta[wp]=1
countc [wp]=349

for word in xt2:
counta2 [word]=1
##counta3=dict ()
for word in xt2:
countb?2 [word]=1
for word in xt2:
countc2 [word]=1
for word in xt2:
countd2 [word]=1
counta3=dict ()
countb3=dict ()
countc3=dict ()
countd3=dict ()
##print (counta?2)
for k, v in counta2.items () :

counta3[k] = v + counta.get(k, 0)
for k, v in countb2.items () :
countb3[k] = v + countb.get(k, 0)
for k, v in countc2.items () :
countc3[k] = v + countc.get(k, 0)
for k, v in countd2.items () :
countd3[k] = v + countd.get(k, 0)
AD={k : v * counta3[k] for k, v in countd3.items () if k in counta3}
##print (AD)
CB={k : v * countc3[k] for k, v in countb3.items() if k in countc3}
##print (CB)
AC={}

for k, v in counta3.items () :
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AC[k] = v + countc3.get(k, 0)

##print (AC)

BD={}

for k, v in countb3.items () :
BD[k] = v + countd3.get(k, 0)

##print (BD)

AB={}

for k, v in counta3.items () :
AB[k] = v + countb3.get (k, 0)

##print (AB)

CD={}

countavc=0
countavi=0
countavm=0
countavsc=0
for k, v in countc3.items () :

CD[k] = v + countd3.get(k, 0)
##print (CD)
psub={}
for k, v in AD.items () :

psubl[k] = abs(v - CB.get(k, 0))

psubsg={k : v * psub [k] for k, v in psub.items() if k in psub}

for key in psubsqg:
psubsqglkey] *=600

ACBD={k : v * AC[k] for k, v in BD.items() if k in AC}
ABCD={k : v * AB[k] for k, v in CD.items() if k in AB}
##print (ABCD)

ACAB={k : v * AC[k] for k, v in AB.items() if k in AC}
AN={k : 600 * counta3[k] for k, v in counta3.items ()}

N NS

alculate mutual information gain for each words in review (MI)

m={k : v / ACAB[k] for k, v in AN.items() if k in ACAB}

mi=dict ()
for k, v in m.items{() :
mif[k] = math.log(v)

ACBDABCD={k : v * ACBD[k] for k, v in ABCD.items () if k in ACBD}
##print (ACBDABCD)

N NI,

calculating chi-square value for each words in review
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posoutl = dict((k, float (psubsqlk]) / ACBDABCD[k]) for k in psubsq)

N VN

calculating GSS value for each words in review
posout2=dict ((k, float(psubl[k]) / (600*600)) for k in psub)

N NV

dictionary representing features selected by CHI-square
posout=sorted(sorted (posoutl), key=posoutl.get, reverse=True)

i o

dictionary representing features selected by GSS(simplified chi
posout2=sorted(sorted (posout?2), key=posout2.get, reverse=True)

N N

dictionary representing features selected by Mutual information gain (MI)

posout3=sorted(sorted(mi), key=mi.get, reverse=True)

x=dict ()
c=dict ()
g=dict ()
infor=dict ()
avxx=dict ()
avxxt=dict ()
avxx2=dict ()
av2xxt2=dict ()
u=dict ()
z=dict ()
count=1500
for i, y in enumerate (posout3) :
gly]=1900-1i

for i, y in enumerate (posout) :
cly]=1900-1

for k, v in c.items () :
avxxt[k] = v + g.get(k, 0)

#//77777777777777777777777777777777777777777777777777777777777777777777a
dictionary representing features selected by combination of (MI & chi-
square)

posoutav=sorted(sorted (avxxt), key=avxxt.get, reverse=True)

avl=dict ()
av2=dict ()
av3=dict ()
avtl=dict ()
avt2=dict ()
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avt3=dict ()
posoutsm=dict ((k, float (psublk]) / (600*600))

with open('all words.py','r',encoding="utf-8")

all

for line in f:
x=line.split ()

words = nltk.FregDist (x)

word features2 = list(all words.keys()) [:1899]

word features = posout[:1500]
word features4 = posoutav[:1500]
word features5 = posout2[:1500]

word featuresé6

def

def

def

def

def

def

posout3[:1500]

find features (document) :

words = set (document)

features = {}

for w in word features:
features[w] = (w in words)

return features

find features2 (document) :

words = set (document)

features2 = {}

for w in word features2:
features2[w] = (w in words)

return features?

find features3 (document) :

words = set (document)

features3 = {}

for w in word features3:
features3[w] = (w in words)

return features3

find features4 (document) :

words = set (document)

featuresd = {}

for w in word features4:
featuresd4[w] = (w in words)

return featuresi4

find featuresb (document) :

words = set (document)

featuresb = {}

for w in word features5:
features5[w] = (w in words)

return featuresb5

find features6 (document) :

words = set (document)

features6 = {}

for w in word featuresé6:

for k in psub)
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featureso[w] = (w in words)
return featureso6

myfile=open('all words.py','r',encoding="'utf-8")

myfile2=str (myfile.read())

line3 = re.sub('\n', ' ', myfile2)

with open('all words.py', 'w',encoding='utf-8') as f:
f.write(line3)

with open('all words.py', 'r',encoding="utf-8') as w:
for line in w:
y=line.split ()

##//////feature set for chi-square
featuresets = [(find features(rev), category) for (rev, category) in
documents]

##//////feature set for bag of words
featuresets2 = [ (find features2(rev), category) for (rev, category) in
documents]

##//////feature set for combinition of chi-square and MI

featuresets4 = [ (find featuresd (rev), category) for (rev, category) in
documents]

##//////feature set for GSS(simple-chi
featuresets5 = [ (find features5(rev), category) for (rev, category) in
documents]

##//////feature set for MI
featuresets6 = [ (find features6(rev), category) for (rev, category) in
documents]

##/////////7/7/7//77777////////Start of Naive bayes///////////////////

num folds=10

subset size=60
accurc=0
accurbag=0
accuravl=0
accursim=0
accurmi=0

precisionnaivechi=0
precisionnaivebag=0
precisionnaiveav=0

precisionnaivesim=0
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precisionnaivemi=0

precisionnaivechin=0
precisionnaivebagn=0
precisionnaiveavn=0
precisionnaivesimn=0
precisionnaivemin=0

recallchi=0
recallbag=0

recallav=0
recallsim=0
recallmi=0

recallchin=0
recallbagn=0

recallavn=0
recallsimn=0
recallmin=0

f measurechi=0
f measurebag=0

f measureav=0
f measuresim=0
f measuremi=0

f measurechin=0
f measurebagn=0

f measureavn=0
f measuresimn=0
f measuremin=0

[/ 7777777777777/7777//7all with k-forl validation
##%//////////////////naive bayes with Chi-square

for a in range(num folds) :
refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)

testing set = featuresets[a*subset size:][:subset size]
training set= featuresets[:a*subset size] +
featuresets|[ (a+l) *subset size:]

classifier = nltk.NaiveBayesClassifier.train(training set)

accurc+=(nltk.classify.accuracy(classifier, testing set) *100)

for i, (feats, label) in enumerate (testing set):
refsets([label] .add (i)
observed = classifier.classify(feats)
testsets[observed] .add (1)

precisionnaivechi+=nltk.precision (refsets|['pos'], testsets['pos'])
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recallchi+=nltk.recall (refsets['pos'], testsets|['pos'])

f measurechi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivechint+=nltk.precision(refsets['neg'], testsets['neg'])
recallchin+=nltk.recall (refsets['neg'], testsets['neg'])

f measurechin+=nltk.f measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with bag of words

for a in range(num_ folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set2 = featuresetsZ[a*subset size:][:subset size]

training set2= featuresets2[:a*subset size] +
featuresets2[ (a+l) *subset size:]
classifier2 = nltk.NaiveBayesClassifier.train(training set2)
accurbag+=(nltk.classify.accuracy(classifier2, testing set2)*100)
for i, (feats, label) in enumerate (testing set2):
refsets[label] .add (1)
observed = classifier2.classify(feats)
testsets[observed] .add (1)
precisionnaivebagt+=nltk.precision(refsets['pos'], testsets['pos'])
recallbag+=nltk.recall (refsets['pos'], testsets['pos'])
f measurebag+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivebagnt+=nltk.precision(refsets['neg'], testsets['neg'])
recallbagnt=nltk.recall (refsets['neg'], testsets['neg'])
f measurebagn+=nltk.f measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with combination of Chi-square and MI

for a in range(num folds) :
refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set4d = featuresetsd4[a*subset size:][:subset size]
training setd4= featuresets4[:a*subset size] +
featuresets4 [ (a+l) *subset size:]
classifier4 = nltk.NaiveBayesClassifier.train(training setd)
accuravl+=(nltk.classify.accuracy(classifier4, testing setd)*100)
for i, (feats, label) in enumerate(testing setd):
refsets[label] .add (1)
observed = classifierd.classify(feats)
testsets[observed] .add (1)
precisionnaiveav+=nltk.precision(refsets['pos'], testsets['pos'])
recallav+=nltk.recall (refsets['pos'], testsets|['pos'])
f measureav+=nltk.f measure (refsets['pos'], testsets['pos'])
precisionnaiveavn+=nltk.precision (refsets|['neg'], testsets['neg'])
recallavn+=nltk.recall (refsets['neg'], testsets['neg'])
f measureavn+=nltk.f measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with simple Chi-square (GSS)

for a in range (num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set5 = featuresets5[a*subset size:][:subset size]
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training setb5= featuresets5[:a*subset size] +
featuresets5[ (a+l) *subset size:]
classifier5 = nltk.NaiveBayesClassifier.train(training setH)
accursim+=(nltk.classify.accuracy(classifier5, testing set5)*100)
for i, (feats, label) in enumerate (testing set)):
refsets[label].add (1)
observed = classifier5.classify(feats)
testsets[observed] .add (1)
precisionnaivesimt+=nltk.precision(refsets['pos'], testsets['pos'])
recallsim+t=nltk.recall (refsets['pos'], testsets|['pos'])
f measuresimt+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivesimnt+=nltk.precision(refsets['neg'], testsets['neg'])
recallsimn+=nltk.recall (refsets['neg'], testsets['neg'])
f measuresimn+=nltk.f measure(refsets['neg'], testsets['neg'])

#%//////////////////naive bayes with MI

for a in range (num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set6 = featuresets6[a*subset size:][:subset size]

training set6= featuresets6[:a*subset size] +
featuresets6[ (a+l) *subset size:]
classifier6 = nltk.NaiveBayesClassifier.train(training set6)
accurmi+=(nltk.classify.accuracy(classifier6, testing set6)*100)
for i, (feats, label) in enumerate (testing setb6):
refsets[label].add (1)
observed = classifier6.classify(feats)
testsets[observed] .add (i)
precisionnaivemi+=nltk.precision (refsets|['pos'], testsets['pos'])
recallmi+=nltk.recall (refsets['pos'], testsets|['pos'])
f measuremi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivemint+=nltk.precision(refsets['neg'], testsets['neg'])
recallmin+=nltk.recall (refsets['neg'], testsets['neg'])
f measuremint+=nltk.f measure(refsets['neg'], testsets['neg'])

print ("Original Naive bay Classifier accuracy percent Chi-
Square:",accurc/10)

print ("Original Naive bay Classifier accuracy percent bag of
words:",accurbag/10)

##print ("Original Naive bay Classifier accuracy percent Info
Gain:",accuri/10)

print ("Original Naive bay Classifier accuracy percent AV:",accuravl/10)
print ("Original Naive bay Classifier accuracy percent simplified
chi:",accursim/10)

print ("Original Naive bay Classifier accuracy percent MI:",accurmi/10)
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print (M. ... e e naive-bayes with

0 ")
print ('pos precision:',precisionnaivechi/10)

print ('pos recall:',recallchi/10)

print ('pos F-measure:', f measurechi/10)

print ('neg precision:', precisionnaivechin/10)
print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/lO)

Print (M. ..t e e e e naive-bayes with bag of
WO A S e v e e e et ettt et ettt teeeeeeeeeeeeneeeeeeennans ")
print ('pos precision:',precisionnaivebag/10)

print ('pos recall:',recallbag/10)

print ('pos F-measure:', f measurebag/10)

print ('neg precision:', precisionnaivebagn/10)
print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f measurebagn/10)

FHorint (M. e e naive-bayes with Information
(75 o ")

##

##print ('pos precision:',precisionnaiveinfo/10)
##print ('pos recall:', recallinfo/10)

##print ('pos F-measure:', f measureinfo/10)

##print ('neg precision:', precisionnaiveinfon/10)
##print ('neg recall:', recallinfon/10)

##print ('neg F-measure:', f measureinfon/10)
a0 o A naive-bayes with (Combination if
5 5 3 ")

print ('pos precision:',precisionnaiveav/10)

print ('pos recall:', recallav/10)

print ('pos F-measure:', f measureav/10)

print ('neg precision:', precisionnaiveavn/10)

print ('neg recall:', recallavn/10)

print ('neg F-measure:', f measureavn/10)

print (M. . it e naive-bayes with SIMPLE-
5 ")

print ('pos precision:',precisionnaivesim/10)

print ('pos recall:', recallsim/10)

print ('pos F-measure:', f measuresim/10)

print ('neg precision:', precisionnaivesim/10)

print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f measuresimn/10)

ol 15 0 (O naive-bayes with
M. e e e e e e e ")

print ('pos precision:',precisionnaivemi/10)

print ('pos recall:', recallmi/10)

print ('pos F-measure:', f measuremi/10)

print ('neg precision:', precisionnaivemi/10)

print ('neg recall:', recallmin/10)
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print ('neg F-measure:', f_measuremin/lO)
2 150 (O ")

w4/ /7707707777707 77777777777777/ end of NAIVE
NAYES/////// /1117777777

##////begining of logistic regeretion

accurc=0

accurbag=0

accuri=0

accurav2=0
accursim=0
accurmi=0
precisionnaivechi=0
precisionnaivebag=0
precisionnaiveinfo=0
precisionnaiveav2=0
precisionnaivesim=0
precisionnaivemi=0

precisionnaivechin=0
precisionnaivebagn=0
precisionnaiveinfon=0
precisionnaiveavn2=0
precisionnaivesimn=0
precisionnaivemin=0

recallchi=0
recallbag=0
recallinfo=0
recallav2=0
recallsim=0
recallmi=0

recallchin=0
recallbagn=0
recallinfon=0
recallavn2=0
recallsimn=0
recallmin=0

f measurechi=0
f measurebag=0
f measureinfo=0
f measureav2=0
f measuresim=0
f measuremi=0

f measurechin=0
f measurebagn=0
f measureinfon=0
f measureavn2=0
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f measuresimn=0
f measuremin=0

LogisticRegression classifier = SklearnClassifier (LogisticRegression())
LogisticRegression classifier2 = SklearnClassifier (LogisticRegression())
LogisticRegression classifier3 SklearnClassifier (LogisticRegression())
LogisticRegression classifier4 SklearnClassifier (LogisticRegression())
()
)

LogisticRegression classifier5 SklearnClassifier (LogisticRegression
LogisticRegression classifier6 = SklearnClassifier (LogisticRegression

##////////7/1/7//////1ogistic with MI

for a in range(num_ folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set6 = featuresets6[a*subset size:][:subset size]

training set6= featuresetso6[:a*subset size] +
featuresets6[ (a+l) *subset size:]
LogisticRegression classifier6.train(training set6)
accurmi+=(nltk.classify.accuracy(LogisticRegression classifierg,
testing set6)*100)
for i, (feats, label) in enumerate (testing setb6):
refsets[label] .add (1)
observed = LogisticRegression classifier6.classify(feats)
testsets[observed] .add (1)
precisionnaivemi+=nltk.precision(refsets['pos'], testsets['pos'])
recallmi+=nltk.recall (refsets['pos'], testsets['pos'])
f measuremi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivemin+=nltk.precision (refsets|['neg'], testsets['neg'])
recallmin+=nltk.recall (refsets['neg'], testsets['neg'])
f measuremint+=nltk.f measure(refsets['neg'], testsets['neg'])

#4//////////////////1logistic with simple Chi-square (GSS)

for a in range (num folds):

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set5 = featuresets6[a*subset size:][:subset size]

training set5= featuresets5[:a*subset size] +
featuresets5[ (a+l) *subset size:]
LogisticRegression classifier5.train(training setH)
accursimt+=(nltk.classify.accuracy (LogisticRegression classifierb,
testing setb5)*100)
for i, (feats, label) in enumerate(testing setH):
refsets[label] .add (1)
observed = LogisticRegression classifier5.classify(feats)
testsets[observed] .add (i)
precisionnaivesim+=nltk.precision (refsets|['pos'], testsets['pos'])
recallsim+=nltk.recall (refsets['pos'], testsets|['pos'])
f measuresim+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivesimn+=nltk.precision(refsets['neg'], testsets['neg'])
recallsimn+=nltk.recall (refsets['neg'], testsets['neg'])
f measuresimn+=nltk.f measure(refsets['neg'], testsets['neg'])
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##//////////////////1logistic with combination of Chi-square and MI

for

a in range (num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing setd4 = featuresetsd4[a*subset size:][:subset size]

training setd4= featuresetsd4[:a*subset size] +

featuresets4[ (a+l) *subset size:]

LogisticRegression classifierd4.train(training set4)
accurav2+=(nltk.classify.accuracy(LogisticRegression classifier4,

testing set4)*100)

for

for i, (feats, label) in enumerate(testing setd):
refsets[label] .add (1)
observed = LogisticRegression classifierd4.classify(feats)
testsets[observed] .add (1)
precisionnaiveav2+=nltk.precision(refsets['pos'], testsets['pos'])
recallav2+=nltk.recall (refsets['pos'], testsets|['pos'])
f measureavZ2+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaiveavn2+=nltk.precision(refsets|['neg'], testsets['neg'l])
recallavn2+=nltk.recall (refsets['neg'], testsets['neg'])
f measureavn2+=nltk.f measure(refsets['neg'], testsets['neg'])

#%//////////////////logistic with bag of words

a in range (num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set2 = featuresets2[a*subset size:][:subset size]

training set2= featuresets2[:a*subset size] +

featuresets2[ (a+l) *subset size:]

LogisticRegression classifier2.train(training set2)
accurbag+=(nltk.classify.accuracy(LogisticRegression classifier2,

testing set2)*100)

for

for i, (feats, label) in enumerate(testing set2):
refsets[label] .add (1)
observed = LogisticRegression classifier2.classify(feats)
testsets[observed] .add (1)
precisionnaivebagt+=nltk.precision(refsets['pos'], testsets['pos'])
recallbagt=nltk.recall (refsets['pos'], testsets|['pos'])
f measurebag+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivebagn+=nltk.precision(refsets|['neg'], testsets['neg'l])
recallbagnt+=nltk.recall (refsets['neg'], testsets['neg'])
f measurebagn+=nltk.f measure (refsets['neg'], testsets['neg'])

##//////////////////1logistic with Chi-square
a in range (num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
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testing set featuresets[a*subset size:][:subset size]
training set= featuresets[:a*subset size] +

featuresets|[ (a+l) *subset size:]

LogisticRegression classifier.train(training set)
accurc+t+=(nltk.classify.accuracy (LogisticRegression classifier,

testing set) *100)

for i, (feats, label) in enumerate (testing set):
refsets([label] .add (1)
observed = LogisticRegression classifier.classify(feats)
testsets[observed] .add (1)
precisionnaivechi+=nltk.precision(refsets['pos'], testsets['pos'])
recallchi+=nltk.recall (refsets['pos'], testsets|['pos'])
f measurechi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivechin+=nltk.precision(refsets['neg'], testsets['neg'])
recallchin+=nltk.recall (refsets['neg'], testsets['neg'])
f measurechin+=nltk.f measure(refsets['neg'], testsets['neg'])

print ("LogisticRegression classifier accuracy percent Chi-Square:",
accurc/10)

print ("LogisticRegression classifier accuracy percent bag of words:",
accurbag/10)

##print ("LogisticRegression classifier accuracy percent Info Gain:",
accuri/10)

print ("LogisticRegression classifier accuracy percent AV:",

print ("LogisticRegression classifier accuracy percent simplified CHI:",
accursim/10)

print ("LogisticRegression classifier accuracy percent MI:", accurmi/10)
a0 0 A
...... ")

##

print (M. ..t e e LG with

5 ")

print ('pos precision:',precisionnaivechi/10)
print ('pos recall:',recallchi/10)

print ('pos F-measure:', f measurechi/10)

print ('neg precision:', precisionnaivechin/10)
print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/lO)
Print (M. ... i e e e LG with bag of

L 3t 1= ")
print ('pos precision:',precisionnaivebag/10)
print ('pos recall:',recallbag/10)

print ('pos F-measure:', f measurebag/10)

print ('neg precision:', precisionnaivebagn/10)
print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f measurebagn/10)

accurav2/10)
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Print (M. ettt e e e e e e LG with (Combination if

0 ")
print ('pos precision:',precisionnaiveav2/10)
print ('pos recall:', recallav2/10)

print ('pos F-measure:', f_measureavZ/lO)

print ('neg precision:', precisionnaiveavn2/10)
print ('neg recall:', recallavn2/10)

print ('neg F-measure:', f measureavn2/10)

. I8 0 B (e LG with SIMPLE-
0 ")

print ('pos precision:',precisionnaivesim/10)
print ('pos recall:', recallsim/10)

print ('pos F-measure:', f_measuresim/lO)

print ('neg precision:', precisionnaivesim/10)
print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f_measuresimn/lO)
Print (M. e et e e e e e e e LG with

Ml e e e et e et ettt et et e e e e ")

print ('pos precision:',precisionnaivemi/10)
print ('pos recall:', recallmi/10)

print ('pos F-measure:', f_measuremi/lO)

print ('neg precision:', precisionnaivemi/10)
print ('neg recall:', recallmin/10)

print ('neg F-measure:', f_measuremin/lO)
a0 0 A (L ")

##////7777777777777777777777777/1ogistic-end

##///7777777777777 7000777777777 7777/start of SVM

accurc=0
accurbag=0
accuri=0
accurav3=0
accursim=0
accurmi=0

precisionnaivechi=0
precisionnaivebag=0
precisionnaiveinfo=0
precisionnaiveav3=0
precisionnaivesim=0
precisionnaivemi=0

precisionnaivechin=0
precisionnaivebagn=0
precisionnaiveinfon=0
precisionnaiveavn3=0
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precisionnaivesimn=0
precisionnaivemin=0

recallchi=0
recallbag=0
recallinfo=0
recallav3=0
recallsim=0
recallmi=0

recallchin=0
recallbagn=0
recallinfon=0
recallavn3=0
recallsimn=0
recallmin=0

f measurechi=0
f measurebag=0
f measureinfo=0
f measureav3=0
f measuresim=0
f measuremi=0

f measurechin=0
f measurebagn=0
f measureinfon=0
f measureavn3=0
f measuresimn=0
f measuremin=0

SGDClassifier classifier6 = SklearnClassifier(SGDClassifier())
for i in range(num_folds) :
refsets = collections.defaultdict (set)

testsets = collections.defaultdict (set)

testing set6 = featuresets6[i*subset size:][:subset size]
training set6= featuresets6[:i*subset size] +
featuresets6[ (i+1) *subset size:]
SGDClassifier classifier6.train(training set6)
accurmi+=(nltk.classify.accuracy(SGDClassifier classifier¢,
testing set6)*100)
for i, (feats, label) in enumerate(testing set6):
refsets[label] .add (i)
observed = SGDClassifier classifier6.classify(feats)
testsets[observed] .add (i)
precisionnaivemi+=nltk.precision(refsets['pos'], testsets['pos'])
recallmi+=nltk.recall (refsets['pos'], testsets['pos'])
f measuremi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivemin+=nltk.precision (refsets|['neg'], testsets['neg'])
recallmin+=nltk.recall (refsets['neg'], testsets['neg'l])
f measuremin+=nltk.f measure(refsets['neg'], testsets['neg'])
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SGDClassifier classifierb5 = SklearnClassifier (SGDClassifier())
for 1 in range(num_ folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set5 = featuresets5[i*subset size:][:subset size]

training setb5= featuresets5[:i*subset size] +
featuresets5[ (i+1) *subset size:]
SGDClassifier classifier5.train(training setH)
accursimt+=(nltk.classify.accuracy(SGDClassifier classifier5,
testing setb5)*100)
for i, (feats, label) in enumerate (testing set)):
refsets[label] .add (1)
observed = SGDClassifier classifier5.classify(feats)
testsets[observed] .add (1)
precisionnaivesim+=nltk.precision (refsets|['pos'], testsets['pos'])
recallsim+=nltk.recall (refsets['pos'], testsets|['pos'])
f measuresimt+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivesimn+=nltk.precision(refsets['neg'], testsets['neg'])
recallsimn+=nltk.recall (refsets['neg'], testsets['neg'])
f measuresimn+=nltk.f measure(refsets['neg'], testsets['neg'])

print?" ................................................................
...... ")
SGDClassifier classifier4 = SklearnClassifier (SGDClassifier())
for 1 in range(num folds) :
refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set4 = featuresets4[i*subset size:][:subset size]

training setd4= featuresets4[:i*subset size] +
featuresets4 [ (i+1) *subset size:]
SGDClassifier classifierd.train(training setd)
accurav3+=(nltk.classify.accuracy(SGDClassifier classifier4,
testing set4)*100)
for i, (feats, label) in enumerate (testing setd):
refsets[label] .add (1)
observed = SGDClassifier classifier4.classify(feats)
testsets[observed] .add (1)
precisionnaiveav3+=nltk.precision (refsets|['pos'], testsets['pos'])
recallav3+=nltk.recall (refsets['pos'], testsets|['pos'])
f measureav3+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaiveavn3+=nltk.precision(refsets['neg'], testsets['neg'])
recallavn3+=nltk.recall (refsets['neg'], testsets['neg'])
f measureavn3+=nltk.f measure(refsets['neg'], testsets['neg'])

SGDClassifier classifier3= SklearnClassifier (SGDClassifier())
for 1 in range(num_folds) :

refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)
testing set3 = featuresets3[i*subset size:][:subset size]

training set3= featuresets3[:i*subset size] +
featuresets3[ (i+1) *subset size:]
SGDClassifier classifier3.train(training set3)
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accurit+=(nltk.classify.accuracy(SGDClassifier classifier3,
testing set3)*100)

for i, (feats, label) in enumerate (testing set3):
refsets[label] .add (1)
observed = SGDClassifier classifier3.classify(feats)
testsets[observed] .add (1)

precisionnaiveinfot+=nltk.precision (refsets['pos'], testsets['pos'])

recallinfo+=nltk.recall (refsets['pos'], testsets['pos'])

f measureinfo+=nltk.f measure(refsets['pos'], testsets['pos'])

precisionnaiveinfon+=nltk.precision(refsets|['neg'], testsets['neg']

recallinfon+=nltk.recall (refsets['neg'], testsets['neg'])

f measureinfon+=nltk.f measure(refsets['neg'], testsets['neg'])

SGDClassifier classifier2 = SklearnClassifier (SGDClassifier())
for 1 in range(num_folds) :

refsets = collections.defaultdict (set)

testsets = collections.defaultdict (set)

testing set2 = featuresets2[i*subset size:][:subset size]

training set2= featuresets2[:i*subset size] +
featuresets2[ (i+1) *subset size:]
SGDClassifier classifier2.train(training set2)
accurbag+=(nltk.classify.accuracy(SGDClassifier classifier2,
testing set2)*100)
for i, (feats, label) in enumerate(testing set2):
refsets[label].add (1)
observed = SGDClassifier classifier2.classify(feats)
testsets[observed] .add (1)
precisionnaivebag+t=nltk.precision (refsets|['pos'], testsets['pos'])
recallbagt=nltk.recall (refsets['pos'], testsets|['pos'])
f measurebag+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivebagn+=nltk.precision(refsets|['neg'], testsets['neg'l])
recallbagnt+=nltk.recall (refsets['neg'], testsets['neg'])
f measurebagn+=nltk.f measure(refsets['neg'], testsets['neg'])

SGDClassifier classifier = SklearnClassifier (SGDClassifier())
for i in range(num_folds) :

refsets = collections.defaultdict (set)

testsets = collections.defaultdict (set)

testing set = featuresets[i*subset size:][:subset size]

training set= featuresets[:i*subset size] +
featuresets([ (i+l) *subset size:]
SGDClassifier classifier.train(training set)
accurc+=(nltk.classify.accuracy(SGDClassifier classifier,
testing set) *100)
for i, (feats, label) in enumerate(testing set):
refsets[label] .add (1)
observed = SGDClassifier classifier.classify (feats)
testsets[observed] .add (1)
precisionnaivechi+=nltk.precision(refsets['pos'], testsets['pos'])
recallchi+=nltk.recall (refsets['pos'], testsets['pos'])
f measurechi+=nltk.f measure(refsets['pos'], testsets['pos'])
precisionnaivechin+=nltk.precision(refsets|['neg'], testsets['neg'l])

)
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recallchint=nltk.recall (refsets['neg'], testsets['neg'])

f measurechin+=nltk.f measure(refsets['neg'], testsets['neg'])
##
##

print ("SGDClassifier classifier accuracy percent Chi-Square:", accurc/10)
2 15 o (Y
...... ")

print ("SGDClassifier classifier accuracy percent bag of words:",
accurbag/10)

2 15 o (Y

........ ")

print ("SGDClassifier classifier accuracy percent AV:", accurav3/10)

2 15 0 (Y
...... ")

print ("SGDClassifier classifier accuracy percent simplified CHI:",
accursim/10)

2 15 0 (N

###4///00777777777 77777777
w##t/ /)T

print ('pos precision:',precisionnaivechi/10)
print ('pos recall:',recallchi/10)

print ('pos F-measure:', f measurechi/10)

print ('neg precision:', precisionnaivechin/10)
print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/lO)

print (M. ... i SVM with bag of
WO A S e vt e e et ettt et ettt et eeseeeeeeeneeeeeeennans ")
print ('pos precision:',precisionnaivebag/10)
print ('pos recall:',recallbag/10)

print ('pos F-measure:', f measurebag/10)

print ('neg precision:', precisionnaivebagn/10)
print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f_measurebagn/lO)

Print (M. et e e e e e e e e SVM with (Combination if
0 5 3 ")

print ('pos precision:',precisionnaiveav3/10)
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('pos recall:', recallav3/10)
('pos F-measure:', f measureav3/10)

print ('neg precision:', precisionnaiveavn3/10)
(
(

print ('neg recall:', recallavn3/10)

print ('neg F-measure:', f measureavn3/10)

. I8 0 (e SVM with SIMPLE-
O ")

print ('pos precision:',precisionnaivesim/10)

print ('pos recall:', recallsim/10)

print ('pos F-measure:', f measuresim/10)

(
(
(
print ('neg precision:', precisionnaivesim/10)
(
(

print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f measuresimn/10)
Print (M. e et e e e e e e SVM with
M . e e e e e e e e e e e e ")
print ('pos precision:',precisionnaivemi/10)
print ('pos recall:', recallmi/10)

print ('pos F-measure:', f measuremi/10)

(
(
(
print ('neg precision:', precisionnaivemi/10)
(
(

print ('neg recall:', recallmin/10)
print ('neg F-measure:', f measuremin/10)
2 15 0 (O

#&//7707077707777707777777777777777//end-of-sgd
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