

St. Mary‘s University

School of Graduate Studies

Department of Computer Science

A Hybrid Sentiment Classification

for Amharic Book Reviews

By

Musa Shikur Muktar

A Thesis Submitted to

The Department of Computer Science of St. Mary‘s University

in the Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

January 2019

St. Mary‘s University

School of Graduate Studies

Department of Computer Science

A Hybrid Sentiment Classification

for Amharic Book Reviews

By

Musa Shikur Muktar

Thesis Examination Committee:

 Internal Examiner: _________________________ Signature_________Date________

 External Examiner: ______________________ Signature________Date________

 Dean, Faculty of Informatics: _______________ Signature________Date________

Declaration

I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials used

for the thesis work have been duly acknowledged.

Full Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Full Name of Advisor

Signature

Addis Ababa

Ethiopia

January 2019

Acknowledgments

First of all, I would like to express great gratitude to my research advisor Michael Melese

(Ph.D.) for his patience, friendly treatment, many insights, and support. I would also like to

thank my wife Zinet Adane for her love and support throughout the research work. Her

contribution to the research is greatly appreciated.

Musa Shikur

Table of Contents

List of Figures ... 1

List of Tables .. 2

List of Acronyms .. 3

Abstract ... 4

CHAPTER ONE : INTRODUCTION .. 5

1.1 Overview .. 5

1.2 Statements of the Problem.. 6

1.3 Objective of the Study .. 8

1.3.1 General Objective ... 8

1.3.2 Specific Objectives ... 8

1.4 Scope and Limitations .. 8

1.5 Significance of the Study ... 9

1.6 Organization of the Thesis ... 9

CHAPTER TWO : LITERATURE REVIEW .. 11

2.1 Overview .. 11

2.2 Opinion ... 11

2.3 Sentiment Analysis ... 12

2.4 Common Features in Sentiment Analysis .. 14

2.4.1 Term Presence and Frequency .. 14

2.4.2 Part of Speech Information ... 15

2.4.3 Negations .. 15

2.4.4 Opinion Words and Phrases .. 16

2.5 Feature Selection Methods ... 16

2.6 Approaches of Sentiment Classification .. 18

2.6.1 Lexical classification approach ... 19

2.6.3 Hybrid approaches .. 27

2.7 Related Works .. 27

2.7.1 Sentiment Mining from Opinionated English Texts ... 27

2.7.2 Sentiment Mining from Opinionated French Language ... 28

2.7.3 Sentiment Mining from Opinionated Hindi Language ... 29

2.7.4 Sentiment Analysis for Amharic Language .. 29

2.7.5 Summary ... 32

CHAPTER THREE : METHODOLOGY ... 35

3.1 Data Collection Methodology .. 35

3.2 Data Sources ... 35

3.3 Tools ... 36

3.4 Feature Selection Methods ... 37

3.5 Algorithms .. 38

3.6 Numbers of Features .. 39

CHAPTER FOUR : AMHARIC LANGUAGE .. 41

4.1 Overview .. 41

4.2 The Amharic Characters (Fidel) ... 42

4.3 Deficiencies of the Amharic Alphabet ... 43

4.4 Characteristics of the Amharic Language .. 43

4.4.1 Amharic Alphabet Orthography ... 43

4.4.2 Amharic Compound Word .. 44

4.4.3 Amharic Short form of Words .. 44

4.4.4 Words adapted from foreign languages .. 44

4.5 Morphology .. 44

4.6 Slang Words ... 44

4.7 Punctuation ... 45

4.8 Amharic Numbers .. 45

CHAPTER FIVE : DATA COLLECTION AND PREPROCESSING .. 47

5.1 Data collection.. 47

5.2 Preprocessing ... 47

CHAPTER SIX : DESIGN ... 53

6.1 Introduction .. 53

6.2 Lexical based classifier .. 53

6.2.1 Pre-processing ... 53

6.2.2 Sentiment Word Detection .. 53

6.2.3 Polarity Word count and valance shifter incorporation .. 54

6.2.4 Sentiment Classification ... 55

6.3 Machine Learning Component Design .. 55

6.3.1 Feature selection ... 55

6.3.2 Training and Testing Classifiers ... 56

6.4 Proposed Hybrid Approach .. 57

6.4.1 Architecture of Hybrid Approach for Amharic Book Review................................ 57

6.5 Evaluation Measures .. 59

CHAPTER SEVEN : EXPERIMENTS AND EVALUATION ... 62

7.1 Experimental Setup .. 62

7.2 Experimental Result ... 63

7.2.1 Lexical Experiment Result .. 63

7.2.2 Supervised Machine Learning .. 64

7.2.3 Combining Lexical and Machine .. 74

7.2.4 Summary of the Results .. 76

7.3 Findings of the Study ... 77

CHAPTER EIGHT : CONCLUSIONS AND RECOMMENDATIONS 78

8.1 Conclusions .. 78

8.2 Recommendations .. 79

References ... 80

APPENDICES .. 93

1

List of Figures

Fig.2.1: Support Vector Machine………………………………………………………………..19

Fig.5.1: Tokenization Algorithm………………………………………………………………...48

Fig.5.2: Normalization Algorithm……………………………………………………………….49

Fig.5.3: Stop Words Removal……………………………………………………………………50

Fig.5.4: Stemming ……………………………………………………………………………….51

Fig.5.5: Transliteration …………………………………………………………………………..52

Fig. 6.1: Architecture of Hybrid Approach for Amharic Book Review…………………………57

2

List of Tables

Table 2.1: Average F-score………………………………………………………………………24

Table 2.2: Naïve Bayes Results………………………………………………………………….25

Table 2.3: Maximum Entropy Results………...…………………………………………………25

Table 2.4: Hybrid Results………………………………………………………………………..25

Table 2.5: Summary of Experimental Result…………………………………………………….30

Table 2.6: Overview of Some Previous Work………………………………………………….32

Table 4.1: Ge‘ez Alphabet ..42

Table 4.2: Amharic Slang Words………………………………………………………………..45

Table 4.3: Amharic Numbers (Ge‘ez) with Arabic Equivalent...46

Table 5.1: Simplification of Phonetically Equivalent Syllables……...………………………….48

Table 6.1: Confusion Matrix……………………………………………………………………..60

Table 7.1: Result of Lexical Classifier…………………………………………………………..64

Table 7.2: Experimental Result of Naïve Bay with 750 Numbers of Features…………………..65

Table 7.3: Experimental Result of Naïve Bay with 1000 Numbers of Features…………………66

Table 7.4: Experimental Result of Naïve Bay with 1250 Numbers of Features…………………67

Table 7.5: Experimental Result of Naïve Bay with 1500 Numbers of Features…………………68

Table 7.6: Experimental Result of Logistic Regression with 750 numbers of features…………69

Table 7.7: Experimental Result of Logistic Regression with 1000 numbers of features..............70

Table 7.8: Experimental Result of Logistic Regression with 1250 numbers of features..............70

Table 7.9: Experimental Result of Logistic Regression with 1500 Numbers of Features.............71

Table 7.10: Experimental Result of SVM Classifier with 750 Numbers of Features……………71

Table 7.11: Experimental Result of SVM Classifier with 1000 Numbers of Features…………..72

Table 7.12: Experimental Result of SVM Classifier with 1250 Numbers of Features…………..72

Table 7.13: Experimental Result of SVM Classifier with 1500 Numbers of Features…………..73

Table 7.14: Machine Learning Using Naïve Bayes Trained By the Output of Lexical………….75

Table 7.15: Effect of Lexicon Incorporation on Machine Learning……………………………..75

Table 7.16: Comparison of Lexical Vs Machine Vs Hybrid Performance………………………76

3

List of Acronyms

NB Naïve Bayes

SVM Support Vector Machine

MAP Maximum a Posteriori

MaxEnt Maximum Entropy

CPU Central Processing Unit

TrainSet Training Dataset

DevSet Development Dataset

TestSets Testing Datasets

SMS Short Message Service

GI General Inquirer

NLTK Natural Language Processing Toolkit

SERA System for Ethiopic Representation in ASCII

MI Mutual Information Gain

4

Abstract

The emergence of Web technology generated a massive amount of raw data by enabling Internet

users to post their opinions, reviews, comments on the web. Processing this raw data to extract

useful information can be a very challenging task. Sentiment Analysis involves extracting,

understanding, classifying and presenting the emotions and opinions expressed by users. We

explored opinion mining as a text classification task and employed unigram as a feature set. We

have performed different experiments that can be grouped into three.

In the first group (lexical classifier), we developed an algorithm to classify reviews based on the

number of count of opinion words. The performance of this algorithm has been evaluated by

comparing the result of lexical classifier algorithm with the actual labels of the reviews. In the

second group of experiments, three popular feature selection methods Chi-Square, Mutual-

Information-Gain and Galavvotti-Sebastiani-Simi (GSS) coefficient have been compared for

performance in selecting a better subset of feature set. For these comparisons, three supervised

classifiers Nave Bayes, Logistic-Regression and SVM have been used. Experiments on these

three classifiers have been done using all three of the above feature selection methods with 750,

1000, 1250, and 1500 numbers of features. Here, It enabled us to know which combinations of

feature selection methods, classifier, and a number of features work best in our domain. In the

third group of experiments, we combine the lexical classifier with machine learning sequentially.

In this research work, hybrid sentiment classification has been done for classifying Amharic

book reviews into positive and negative. The experiments are conducted using 600 Amharic

book reviews collected from different sources like facebook, personal blogs, and manually

collected from individual book readers. For machine learning, the experiment indicates that the

Naïve Bayes algorithm, using Mutual Information Gain feature selection method, with 1500

number of features perform best with an accuracy of 93.33%. The experiment also indicates a

hybrid approach with accuracy (87%) outperform lexical approach with 74% accuracy but

not machine learning approach which performs with an accuracy of 93.33%.

Keywords: Opinion, Sentiment Analysis, Features, Lexicon-Based Classifier, Machine

Learning, Hybrid Classifier.

5

CHAPTER ONE

INTRODUCTION

1.1 Overview

Opinions are central to almost all human activities and are key influencers of our behaviors. Our

beliefs and perceptions of reality, and the choices we make, are, to a considerable degree,

conditioned upon how others see and evaluate the world (Liu, 2012). For this reason, when we

need to make a decision we often seek out the opinions of others. This is not only true for

individuals but also true for organizations. Individuals, organizations, and government

understand the influence of opinion on decision making and they were trying to use this for their

advantage.

Before the emergence of the Internet, there was a very little written text opinion available in the

market (Pawar, Jawale, & Kyatanavar, 2016) and opinions were collected and analyzed manually

(Khan, Baharudin, Khan, & Ullah, 2014), which is expensive and time-consuming (Younis,

2015). In that time, if an individual needed to make a decision, he/she typically asked for

opinions from friends and families. When an organization needed to find opinions of the general

public about its products and services, it conducted surveys and focus groups. With the rapid

expansion of e-Commence, more users are becoming comfortable with the Web and an

increasing number of people are writing reviews (W. Wang & Zhou, 2009). The number of

reviews can be in hundreds or even thousands for a popular product. This makes it difficult for a

potential customer to read them, or to make an informed decision on whether to purchase the

product. It also makes it difficult for the manufacturer of the product to keep track of customer

opinions. However, doing this manually is only possible to a certain extent and time-consuming

job. As an example, manufacturing organizations prefer information in a format that is easier to

use, so automating this process is very useful (Hu & Liu, 2004). This is where opinion mining

comes in to picture.

Sentiment analysis, also called opinion mining, is the field of study that analyzes people‘s

opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as

6

products, services, organizations, individuals, issues, events, topics, and their attributes (Liu,

2012). Even though Sentiment analysis has been there since the 1990s, the outbreak of computer-

based sentiment analysis only occurred with the availability of subjective texts on the Web

(Mäntylä, Graziotin, & Kuutila, 2018). Nowadays it has become one of the prominent research

areas over the past years in computer science, especially in Natural language processing.

1.2 Statements of the Problem

The presence of social media, blogs, forums, and e-commerce web sites encourages citizens to

share their opinion, emotions, and feelings publicly (Haseena, 2014). The increased popularity of

these sites resulted in the huge collection of people opinion on the web in an unstructured

manner (Haseena, 2014; Khan et al., 2014; Pawar et al., 2016). These very large volumes of

information are very difficult to process by individuals, leading to information overload and

affecting decision-making processes in organizations (S. Wang & Wang, 2008). This situation

creates a new area of research called opinion mining and sentiment analysis.

The sentiment analysis results are influenced by the differences in grammar and usage of

language which makes opinion mining language and domain dependent task (Bal et al., 2011).

Among these languages, English is the most studied language in the field of opinion mining

because of the availability of linguistic resources for analyzing opinions in English language

(Mhaske & Patil, 2016). As the internet is reaching to more and more people within the world,

there is a tremendous increase in the web content of other languages because people feel

comfortable with their native language (R. Sharma, Nigam, & Jain, 2014). According to Internet

World User by Language (2017), 26.5% of the internet users are English speaker from the top

language used in the web. The availability of data in a language other than English (R. Sharma et

al., 2014), and the increasing need of automatic opinion mining systems (Mhaske & Patil, 2016),

has motivated many researchers to study different languages. In addition to these, Ethiopia took

3.6 % of Internet users out of Africa‘s share and 0.4% out of a total population of internet users

in the world in 2017. The statistics also show that there was an average increase of 966,323 users

of the Internet in Ethiopia during the years 2000-2017. Due to this increase in Internet population

within the country and a large number of population that speaks the language in diasporas, the

number of web documents that are written in Amharic language and the Ethiopic script is

increasing. Opinionated Amharic documents are among these web documents that show

7

increment on the web, though sentiment analysis research on the Amharic language is at its

infant stage (Abreham, 2014; Philemon & Mulugeta, 2014). Collecting and analyzing opinions

manually is expensive and time-consuming (Khan et al., 2014; Younis, 2015) and since opinion

mining is language dependent task (Bal et al., 2011), we cannot use sentiment analysis works

done for other languages directly for the Amharic language. This is due to the difference in

grammar and other behavior of the language. For example, word order in Amharic is generally

subject-object-verb (SOV), with subordinate clauses preceding the main clause. Therefore, we need

sentiment analysis research works on Amharic. This study investigates the use of opinion mining

on Amharic book review.

The reason why we used book reviews domain is that it is relatively easy to collect book

reviews; this is because nowadays, there are different groups in social media like Facebook and

personal blogs that freely discuss on Amharic books and give comments.

The reason why we choose to work on book reviews domain is that;

 First, books are one of the most common products to be sold, reviewed, and their sell is

highly affected by reviews (Chevalier & Mayzlin, 2006). Senecal and Nantel (Senecal &

Nantel, 2004) conducted a study across multiple product categories and found that

consumers relied on recommendations for experiential products like movies, books, or

music significantly more than other types of products. According to another study by

Sunitha and Edwin (Sunitha & Edwin, 2014), based on the customer preference

towards online shopping, ‗books‘ has been ranked first. This is because most of the

customers are interested in buying books online because they can access a variety of

books by sitting before the computer.

 Secondly, as far as our knowledge, sentiment analysis on the book review domain has not

been done in the Amharic language.

8

1.3 Objective of the Study

1.3.1 General Objective

The general objective of this research work is to design and develop a hybrid sentiment

classification model for Amharic book reviews.

1.3.2 Specific Objectives

To realize the above mentioned general objective, the study aims to carry out the following

specific objectives:

 To analyze the general structure of Amharic statements related to opinions and

sentiments so as to identify negative and positive statements.

 To select appropriate algorithms, feature selection methods, and classification approaches

on Amharic book review.

 Design a model for sentiment mining from Amharic book review.

 To evaluate the model for sentence level opinion mining on Amharic book review.

1.4 Scope and Limitations

The scope of the research is to develop a sentence level opinion mining model for Amharic book

review. The system is designed to analyze 600 Amharic book reviews collected from social

media, personal blogs and manually collected from individual book readers and identify the

polarity into positive and negative. This includes preparation of book review data, selection of

appropriate algorithms, feature selection methods, and classification approaches on Amharic

book review.

The following are some of the limitations of our work:

 Human beings are a complex creature and they express their filling in different ways. In

this research work, the researcher does not cover complex expressions like humor,

sarcasm, irony and idiomatic expression.

 The research work focuses on the classification of sentiment in to positive or negative, it

doesn‘t cover sentiment analysis tasks like subjective or objective classification.

 And fake review identification (Opinion spam detection) not parts of this research work.

9

1.5 Significance of the Study

Weather in the field of politics, business, or other fields, knowing what other people think, about

some political ideas, services, product or other, is a major factor in making a reasonable and

correct decision. Therefore, the following are the significance of hybrid sentiment classification

for Amharic book review research work:

 Publishers spend a lot of money to know the reader‘s opinion about Books they

published. But if they use hybrid sentiment classification for an Amharic book review,

they can reduce their cost of finding what customers think about the books, and increase

their sell-by the indirect promotion of books through review from customers.

 Help publishers and writers in identifying faults on the book and what improvement can

be made on next print.

 It is difficult for readers to find information about books manually. But, by using hybrid

sentiment classification for an Amharic book review, readers can make a decision on

buying the book and save themselves from unnecessary cost and west of time.

 The review data and the results of the research can be used as an input to the

development of a full-fledged opinion mining system for Amharic book review.

 The system can be used to classify book reviews as positive or negative.

 The research will give insight about which approach lexical, machine learning or hybrid

approach gives good result in classifying Amharic book reviews in to positive or

negative.

1.6 Organization of the Thesis

This thesis report is organized into six chapters consisting of Introduction, Literature review,

related works, design, experiments and evaluation, and Conclusion and Recommendations.

The first chapter gives the general introduction of the thesis that contains an overview of the

study, statement of the problem, objectives of the study, scope, limitations, and significance of

the study. The second chapter is a literature review and in this chapter, opinion related

principles/theories have been discussed. In addition to this, related works have been reviewed. In

the third chapter, methodology and techniques have been discussed. The fourth chapter is about

the Amharic language. In the fifth chapter, data collection and preparation discussed. In the sixth

10

chapter, the design of a hybrid sentiment classification has been done. In the seventh chapter,

experiment and evaluation of results are presented. In the last chapter (chapter eight), conclusion

and recommendation of future work have been discussed.

11

CHAPTER TWO

LITERATURE REVIEW
2.1 Overview

The first section mainly discusses opinion followed by basic concepts related to sentiment

analysis, and then in third section features in sentiment analysis are discussed. In the fourth

section approaches of sentiment classification with their advantages and challenges are

discussed. In the last section, sentiment mining related researches done for a different language

such as English, Hindi, Arabic, and Amharic using different techniques and approaches are

reviewed.

2.2 Opinion

Nowadays people all over the world interconnected to each other through the internet and textual

information is one of the ways that people in social media prefer to pass information. This

information can be broadly categorized into facts and opinion (Ojokoh & Kayode, 2012). Facts

are an objective statement that can be proven true or false but opinions are subjective statements

or expressions of a person‘s feelings that cannot be proven. Humans are subjective creatures and

opinions are important. In every aspect of life people‘s decisions are affected by the opinion of

others, therefore there must be a way to handle and use these opinions to our advantage. Because

of the availability of the huge amount of opinion document and the range of application that

makes use of opinion to adjust marketing strategy, develop product quality, crisis management or

other, automatic sentiment analysis or opinion mining attract people these days.

An opinion is a person‘s belief, view, feeling, or judgment the specific object (kasthuri,

Jayasimman, & Jabaseeli, 2016; Liu, 2012). It is a subjective or value judgment, and it cannot be

proven. In the sentence, ―This camera sucks.‖ The word suck indicates negative sentiment on the

object camera (Liu, 2012). In our day to day life, we can see the effect of opinion in our decision,

the way we feel about ourselves and others. According to (Liu, 2012), others‘ opinions greatly

influence our decision and provide guidance for individuals, governments, and others. Therefore,

because of the importance of opinion, researchers and organizations focus on automatic

sentiment mining or opinion mining. In addition to this, opinion has three components, the

12

opinion holder, the object about which the opinion expressed and the opinion itself. Whenever

we want to identify opinion all the three components are important (Khan et al., 2014).

Opinion Holder or Opinion Source

Mainly opinions on certain objects are expressed by users (Pawar et al., 2016). Users may be an

individual person, group, and organization. It means that these users are authors of the opinions.

In the field of sentiment analysis, such users are known as the holder of an opinion. These

holders of opinion are also known as opinion sources. In the case of product reviews, forum

posting and blogs, opinion holders are usually the author of the post (Liu, 2012). To understand

it, consider the sentence, ―John expressed his disagreement on the treaty.‖ The opinion holder in

this sentence is ‗John‖ since he is the opinion source in this sentence as ‗John‘ is mentioned

explicitly in this sentence (Liu, 2012).

Object

It is mainly any entity which can be anything in the real world i.e. person, organization, event,

product topic, etc (Liu, 2012). Consider the phone as a general class. So a particular brand of the

phone can be considered as an object. While expressing the opinion, one can comment on the

object i.e. the phone. These opinions may be like ―I don‘t like this phone‖ (pawara, jawal, and

kyatanavar, 2016).

2.3 Sentiment Analysis

Sentiment analysis, also called opinion mining, is the field of study that analyzes people‘s

opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as

products, services, organizations, individuals, issues, events, topics, and their attributes (Liu,

2012). Even though there was research on sentiment earlier (Pang, Lee, & Vaithyanathan, 2002;

Satoshi, Kenji, Kenji, & Toshikazu, 2002; Turney, 2001; Wiebe, 2000), according to (D‘Andrea,

Ferri, Grifoni, & Guzzo, 2015) the term sentiment analysis first appeared in (Nasukawa & Yi,

2003).

Even though there may be slight difference on the overall steps that can be followed, most of the

time, whenever we want to analyze sentiment we follow five phases (D‘Andrea et al., 2015).

These phases are:

13

 Data collection: the first phase of sentiment classification is to collect data. Data might

be collected manually or automatically from personal blogs, social media, and other data

sources.

 Text preparation: the second phase of sentiment classification is text preparation. Text

preparation is the process of filtering the extracted data before analysis. In this phase, the

main thing to do is to identify and eliminate non-textual content and content that is

irrelevant to the area of study from the data.

 Sentiment detection: the third phase of sentiment classification is sentiment detection. In

this phase through carefully examination subjective and, objective sentences are

identified. Sentences with subjective expressions are retained and that which conveys

objective expressions are discarded.

 Sentiment classification: sentiment classification is the fourth phase. In this phase, each

subjective sentence detected is classified into groups-positive, negative, good, bad, like

dislike.

 Presentation of output: the last phase is the presentation of output. It means converting

unstructured text into meaningful information.

Having these phase of sentiment classification, based on the level of granularities sentiment

analysis has been investigated mainly at three levels; Document, Sentence, and Entity and

Aspect level (Liu, 2012). The document-level analysis identifies whether the overall opinion

expressed is positive or negative. According to (Liu, 2012), this level of analysis assumes that

the whole document expresses an opinion about the single entity and not applicable to the

document that contains the opinion about more than one entity. The second level of sentiment

classification is a sentence level which is concerned about, identifying which sentences express a

positive, negative or neutral opinion. It considers the sentence as a basic information unit. The

third level of sentiment classification is an Entity and Aspect level. Entity and Aspect level

classify opinion given by users about specific aspects of an entity. Aspect level performs finer-

grained analysis and Instead of looking at language constructs (documents, paragraphs,

sentences, clauses or phrases), aspect level directly looks at the opinion itself (Liu, 2012).

Document-level analysis and sentence level analysis are not good in identifying what opinion

holder feeling or opinion about specific future of entities.

14

2.4 Common Features in Sentiment Analysis

Converting a piece of text into a feature vector or other representation that makes its most salient

and important features available is an important part of data-driven approaches to text processing

(Pang & Lee, 2008). A set of documents is used as a training set to the classifier. These

documents are represented as vectors (Ghag & Shah, 2014). The following are the common

features used in sentiment analysis:

2.4.1 Term Presence and Frequency

It is common in information retrieval to represent a piece of text as a feature vector wherein the

entries correspond to individual terms (Pang & Lee, 2008). These features include uni-grams or

n-grams and their frequency or presence (Vohra & Teraiya, 2013).

Term frequencies have traditionally been important in standard IR, as the popularity of TF-IDF

(term frequency-inverse document frequency weighting shows; but in contrast, Pang et al. (Pang

et al., 2002) obtained better performance using presence rather than frequency (Pang & Lee,

2008).

Term Presence and Term Frequency are two popular techniques for Information Retrieval when

representing documents as vectors (Cambria, Schuller, Liu, Wang, & Havasi, 2013).

In Term Presence technique an element can take a binary value. This element is set to one if the

term is present in document otherwise set to zero if the term is not present in the document. In

the Term Frequency technique, an element in the document vector is a non-negative integer that

is set to count of the given term in a document (Ghag & Shah, 2014).

This finding may be indicative of an interesting difference between typical topic-based text

categorization and polarity classification: While a topic is more likely to be emphasized by

frequent occurrences of certain keywords, overall sentiment may not usually be highlighted

through repeated use of the same terms (Pang & Lee, 2008).

15

2.4.2 Part of Speech Information

POS is used to disambiguate sense which in turn is used to guide feature selection (Pang & Lee,

2008).In POS tagging each term in sentences will be assigned a label, which represents its

position/role in the grammatical context.

Among parts of speeches, adjectives are good indicators of sentiments. The fact that adjectives

are good predictors of a sentence being subjective does not, however, imply that other parts of

speech do not contribute to expressions of opinion or sentiment (Pang & Lee, 2008). For

example, with POS tags, we can identify adjectives and adverbs which are usually used as

sentiment indicators (Turney, 2001).In a study by Pang et al. (Pang & Lee, 2008) on movie-

review polarity classification, using only adjectives as features were found to perform much

worse than using the same number of most frequent unigrams. The researchers point out that,

nouns (e.g., ―gem‖) and verbs (e.g., ―love‖) can be strong indicators for the sentiment.

2.4.3 Negations

Negation is also an important feature to take into account since it has the potential of reversing a

sentiment (Pang & Lee, 2008).

Using a bag-of-words representation, the supervised classifier has to figure out by itself which

words in the dataset, or more precisely feature set, are polar and which are not (Wiegand,

Balahur, Roth, Klakow, & Montoyo, 2011).

The standard bag-of-words representation does not contain any explicit knowledge of polar

expressions. As a consequence of this simple level of representation, the reversal of the polarity

type of polar expressions as it is caused by a negation cannot be explicitly modeled (Wiegand et

al., 2011).

Since standard bag-of-words representation does not contain any explicit knowledge of polar

expressions, a simple bag of words is not enough to handle negation. There are different ways to

handle negation. The usual way to handle negation is to attaché ―NOT‖ to words occurring close

to negation terms. such as ―no‖ or ―don‘t,‖ so that in the sentence ―I don‘t like deadlines,‖ the

token ―like‖ is converted into the new token ―like-NOT (Pang & Lee, 2008).

16

 The other way to handle negation is to consider the usage of higher order n-grams. Imagine a

labeled training set of documents contains frequent bigrams, such as not appealing or less

entertaining. Then a feature set using higher order n-grams implicitly contains negation modeling

(Wiegand et al., 2011). This also partially explains the effectiveness of bigrams and trigrams for

this task as stated in (Ng, Dasgupta, & Arifin, 2006).

2.4.4 Opinion Words and Phrases

Opinion words and phrases are words and phrases that express positive or negative sentiments

(Vohra & Teraiya, 2013). The main approaches to identify the semantic orientation of an opinion

word are statistical-based or lexicon-based.

2.5 Feature Selection Methods

Feature selection is the process of selecting a subset of relevant features for use in model

construction (Parlar, Özel, & Song, 2018). It is effective in the reduction of large data by

removing irrelevant and noisy data and chooses a representative subset of all data to minimize

the complexity of the classification process in sentiment classification (Sammut & Webb, 2016).

Feature selection methods improve classification accuracy and decrease the running time of

learning algorithms and better model interpretability (Sammut & Webb, 2016). Here we select

possible feature selection methods:

Information Gain

Information gain represents the entropy reduction given a certain feature, that is, the number of

bits of information gained about the category by knowing the presence or absence of a term in a

document (Adel, Omar, & Al-Shabi, 2014):

IG (t) = - ∑

)*)) + (t)*∑

 |t)* |t)) +

 (̅)*∑

 | ̅)* | ̅))…………………………………………………..4.1

Where, () represents the likelihood of the occurrence of class; (t) represents the

likelihood of the occurrence of t; ()̅ represents the likelihood of the non occurrence of t.

Since IG is a filter technique; it can scale well with the high dimensionality without a vast decrease

in performance, and it is also applicable to several classifiers due to being classifier independent. So

17

it is useful in testing the effect of feature selection on the efficiency of more than one classifier

(Saeys, Inza, & Larrañaga, 2007).

Chi-Square

Chi-square measures the dependence between a feature and a class (Parlar et al., 2018). The Chi-

square statistics formula is related to information theoretic feature selection functions which try

to capture the intuition that the best terms for the class are the ones distributed

most differently in the sets of positive and negative examples of class . A higher score of Chi-

square implies that the related class is more dependent on the given feature (Adel et al., 2014). A

feature with a low score is less informative and should be removed (Parlar et al., 2018). Terms or

words will be selected as a feature if their Chi-Square value is higher (Adel et al., 2014). The

Chi-Square value will be calculated as follows (A. Sharma & Dey, 2012):

Chi-Square (,) = ⁄ …………….4.2

Where,

N = The total number of training sentence,

A = The number of sentences that contain the term t in class ci.

B = The number of sentences that contain the term t in other classes.

C = The number of sentences in class ci that do not contain the term t.

D = The number of sentences that do not contain the term t in other classes.

Simplified Chi-Square

Simplified Chi-Square also called Galavotti-Sebastiani-Simi (GSS) Coefficient is the simplified

version of Chi-Square in which The P and N factor and the denominator have

completely removed (Kandarp, 2009). The denominators have also removed; because the

denominator gives high correlation coefficient score to rare words and rare categories (Kandarp,

2009), therefore, the score for rare or low-frequency terms words is not reliable (Adel et al.,

2014):

……………………………………………………4.3

18

Where,

N = The total number of training sentence,

A = The number of sentences that contain the term t in class ci.

B = The number of sentences that contains the term t in other classes.

C = The number of sentences in class ci that do not contain the term t.

D = The number of sentences that do not contain the term t in other classes.

A. Mutual Information Gain

Mutual information (MI) of two random variables is a measure of the mutual dependence

between the two variables. Due to its computational efficiency and simple interpretation,

information gain is one of the most popular feature selection methods (Tang, Alelyani, & Liu,

n.d.). A weakness of MI is that the score is strongly influenced by the marginal probabilities of

terms (Matsumoto, Sproat, Wong, & Zhang, 2006), as can be seen in this equivalent form

(Bramer, 2009):

I (t, c) = - ……………………………4.4

In another term, for terms with equal conditional probability , rare terms will have a

higher score than common terms. The scores therefore are not comparable across terms of widely

differing frequency. Since MI is one of the popular features selection methods the researcher is

interested in evaluating its performance against other feature selection methods.

B. Combination of feature selection methods

When two or more feature selection methods combined, there is a chance to select better

features, since by combining we may compensate for the shortcoming of individual feature

selection methods. This is done by adding the weighted score of the top N selected feature, from

different feature selection methods, and the weight can be calculated by identifying the rank of

features in individual feature selection method and gives some weight based on their rank.

2.6 Approaches of Sentiment Classification

Whenever we want to classify sentiments or opinion into specific groups like positive or

negative, we can perform this task by one of the three classification methods namely lexical

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Statistical_dependence

19

approaches, machine learning approaches and hybrid approaches (D‘Andrea et al., 2015). These

three approaches will be discussed as follows:

2.6.1 Lexical classification approach

The lexicon-based approach involves calculating orientation for a document from the semantic

orientation of words or phrases in the document (Turney, 2001). According to (Palanisamy,

Yadav, & Elchuri, 2013), the lexicon-based approach is based on the assumption that the

contextual sentiment orientation is the sum of the sentiment orientation of each word or phrase.

In other word, in lexicon based sentiment analysis, an attempt made to predict the sentiment of

the sentence or document based on the overall sentiment of opinion words in the sentence or

document.

Even though, sentiment words are very important in sentiment analysis using them alone is not

enough due to the following issues (Liu, 2012):

1. Sentiment word in one domain may have opposite orientations on others. For example,

suck usually indicates negative sentiment, e.g., this book sucks, but it can also imply

positive sentiment, e.g., this vacuum cleaner really sucks.

2. A sentence containing sentiment words may not express any sentiment. e.g., Can you tell

me where can I find a good meal? The above sentence contains the word good but does

not express any sentiment.

3. The difficulty of sarcasm sentences.

4. Sentences without sentiment words can have sentiment. For example, the mobile phone I

bought last night has a battery that needs charging every 5 minutes. In the example

above, there is no sentiment word, but the sentence expresses sentiment.

Lexicon-based approaches have the advantage that labeled data and the procedure of learning is

not required.

However, there are a number of drawbacks to lexicon-based classification (Jacob, 2017). First,

while intuitively reasonable, lexicon-based classification lacks theoretical justification: it is not

clear what conditions are necessary for it to work. Second, the lexicons may be incomplete, even

for designers with strong substantive intuitions. Third, sentiment lexicons tend to assign a fixed

20

sentiment orientation and score to words, irrespective of how these words are used in a text, but

some words may be more strongly predictive than others. Fourth, lexicon based classification

ignores multi-word phenomena, such as negation (e.g., not so good) and discourse (e.g., the

movie would be watchable if it had better acting). Supervised classification systems, which are

trained on labeled examples, tend to outperform lexicon-based classifiers, even without

accounting for multi-word phenomena (Liu, 2015; Pang & Lee, 2008). Fifth, Lexical don‘t need

labeled data but is hard to create a unique lexical-based dictionary to be used for different

contexts. For example, slang used in Social Networks is rarely supported in lexical methods

(Xia, Jiliang, Huiji, & Huan, 2013).

Lexicon construction approaches

There are three approaches to construct a sentiment lexicon: manual construction, corpus-based

approach and dictionary-based approach (Liu, 2012).

Manual approach

The manual construction the sentiment lexicons are constructed by human labor and, it is a

difficult and time-consuming task. Given the time we have, it is difficult to prepare a huge

corpus and use corpus-based approach and, also the dictionary based approach has a major

disadvantage which is the inability to find opinion words with domain and context specific

orientations. Therefore, in our research work, we use a manual approach to collect lexicons of

seed words and, then, expand the number of lexica using a dictionary by search synonyms of the

seed words.

Dictionary-based approach

In dictionary-based approach, the idea is to first collect a small set of opinion words manually

with known orientations, and then the algorithm grows this set by searching in the WordNet

dictionary for their synonyms and antonyms (Rajput & Solanki, 2016). In general, these methods

assume that positive adjectives appear more frequently near a positive seed word and negative

adjectives appear more frequently near a negative seed word (Liu, 2012). The dictionary-based

approach has a major disadvantage which is the inability to find opinion words with domain and

context specific orientations (Rajput & Solanki, 2016).

21

Corpus-based approach

 The Corpus-based approach helps to solve the problem of finding opinion words with context-

specific orientations. Its methods depend on syntactic patterns or patterns that occur together

along with a seed list of opinion words to find other opinion words in a large corpus (Medhat,

Hassan, & Korashy, 2014; Rajput & Solanki, 2016). Using the corpus-based approach alone is

not as effective as the dictionary-based approach because it is hard to prepare a huge corpus to

cover all English words (Liu, 2012; Rajput & Solanki, 2016).

2.6.2 Machine learning approaches

Machine Learning approach is a field of artificial intelligence that trains the model from the

existing data in order to forecast future behaviors, outcomes, and trends with the new test data

(Narayan, Roy, & Dash, 2016). The main advantage of machine learning approaches is the

ability to adapt and create trained models for specific purposes and contexts (D‘Andrea et al.,

2015). This approach generally achieves higher accuracy than that of the unsupervised approach

for sentiment analysis; however, it requires building a gigantic corpus (dataset) and labeling it

manually by human experts. The process of manual annotation can be very difficult even for

native speakers due to sarcasm and cultural references. It can also be expensive and time-

consuming. Moreover, the model built may be a domain-biased. That is, it could give low

accuracy when is applied to such a different domain (Read & Carroll, 2009).

The machine learning methods are applicable to sentiment analysis ordinarily belongs to

supervised learning in trendy and textual classification strategies in particular (Singh & Agrawal,

2017).

Naive Bayes (NB)

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes‘

theorem with the ―naive‖ assumption of independence between every pair of features. In

assuming independence, the presence of a feature has no impact on the probability of another

feature also being a member of the document vector (Smith, 2015). Despite its simplicity and the

fact that its conditional independence assumption clearly does not hold in real-world situations,

Naive Bayes-based text categorization still tends to perform surprisingly well (Pang et al., 2002).

We get the model form by using Bayes Rule:

22

P = ⁄ …… (2.1)

Each sentence is represented as a feature vector and by conditional independence assumption

between features, we get (Abreham, 2014):

P =
∏

 ……………………. (2.2)

There are several variations in Naïve Bayes classifier (Gupte, Joshi, Gadgul, & Kadam, 2014):

 Multinomial Naïve Bayes – this is used when Multiple Occurrences of Word Matter a

lot in Text Classification problems. Such an example is when we try topic classification.

 Binarized Multinomial Naïve Bayes – this is used when frequencies of the words don‘t

pay a key role in our classification. Such an example is Sentiment analysis where it

doesn‘t matter how many times someone enters the word ‗bad‘ or ‗good‘ but rather only

the fact that he does.

 Bernoulli Naïve Bayes - this is used when in our problem the absence of a particular

word matters, For example, Bernoulli is commonly used in Spam or Adult Content

Detection with very good results.

Due to the intuitive motivation and speed of classification (Lewis, 1998), the Naıve Bayes (NB)

classification model is one of the more frequently used models in the sentiment classification

literature. When training, the NB classifier does not over-fit the training data, meaning a reliable

classification model should be generated given a suitable input (Andrew & Michael, 2001).

Support vector machines (SVMs)

SVMs are a set of new supervised learning methods used for binary classification, regression

and outlier‘s detection (Amarappa & Sathyanarayana, 2012). The basic concept of SVM is

that it is looking for the Optimal Separating Hyper-plane between the two classes by maximizing

the margin between the classes‘ closest points (see Figure 2.1) (Saud, 2015). The points are

located on the boundaries are called support vectors.

23

Fig. 2.1 support vector machine

When given a set of learning data, in which each example is marked to show which class this

example belongs to, then SVM learning algorithm builds a model that assigns the new example

to one of these classes. In general, the SVM model represents the training examples as points in

spaces that are mapped such that the training examples belonging to different classes are

separated by a gap as wide as possible. When a new example is given then based on which side

of the gap it falls in, the SVM predicts the class to which this example belongs to (ShehlaKulsum

& Vaidya, 2017).

The first advantage of SVM is effective in high dimensional spaces. It is effective in cases

where a number of dimensions are greater than the number of samples. The second

advantage is that it uses a subset of training points in the decision function (called support

vectors), so it is memory efficient. The third advantage is that Different Kernel function can

be specified for the decision function i.e. SVM is versatile (Amarappa & Sathyanarayana,

2012).

The disadvantage is that, if the number of features is much greater than the number of

samples, the method is likely to give poor performances (Amarappa & Sathyanarayana,

2012).

24

Maximum Entropy (MaxEnt)

It is a probabilistic classifier which has a place with the class of exponential models (Joshi,

Prajapati, Shaikh, & Vala, 2017). The maximum entropy principle is based on selecting the most

uniform distribution which is to be known by the one having maximum entropy (Patel, Saxena,

Verma, & Student, 2007). The model makes no assumptions about the independence of words.

This means we can add features like bigrams and phrases to MaxEnt without worrying about

feature overlapping (Gupte et al., 2014). Due to the minimum assumptions that the Maximum

Entropy classifier makes, we regularly use it when we don‘t know anything about the prior

distributions and when it is unsafe to make any such assumptions (Raghuwanshi & Pawar, 2017).

However, it is computationally more expensive (Mehra, Khandelwal, & Patel, 2002). The Max

Entropy requires more time to train compare to Naive Bayes, primarily due to the optimization

problem that needs to be solved in order to estimate the parameters of the model. Nevertheless,

after computing these parameters, the method provides robust results and it is competitive in

terms of CPU and memory consumption (Raghuwanshi & Pawar, 2017).

This classifier always tries to maximize the entropy of the system by estimating the conditional

distribution of the class label. The conditional distribution is defined as (Raghuwanshi & Pawar,

2017):

 () =

 exp (∑ * (X, y))……………………………………………………2.3

‘X‘ is the feature vector and ‘y‘ is the class label. Z(X) is the normalization factor and λi

is the weight coefficient. fi(X, y) is the feature function which is defined as(Raghuwanshi

& Pawar, 2017) :

 (X, y) = { 1, X= and y =

0, otherwise

} …………………………………………….2.4

25

Logistic regression (LR)

Logistic regression sometimes called the logistic model or logit model analyzes the relationship

between multiple independent variables and a categorical dependent variable and estimates the

probability of occurrence of an event by fitting data to a logistic curve. There are two models of

logistic regression, binary logistic regression, and multinomial logistic regression. Binary logistic

regression is typically used when the dependent variable is dichotomous and the independent

variables are either continuous or categorical. When the dependent variable is not dichotomous

and is comprised of more than two categories, a multinomial logistic regression can be employed

(Park, 2013).

The logistic model is popular because the logistic function, on which the logistic regression

model is based, provides estimates in the range 0 to 1 and appealing S-shaped description of the

combined effect of several risk factors on the risk for an event (Kleinbaum & Klein, 2002).

Using logistic regression for multiple predictors (numerical and categorical), the probability of

the occurrence of the interested outcome can be calculated as follows (Park, 2013):

p=P(Y=interested outcome/ = …)

 p=

……………………………………………….2.5

Where p is the probability of interested outcome and x1,.., xk are the explanatory variable. The

parameters of the logistic regression are α and β.

Advantages of Logistic Regression (Teja, Sai, Kumar, & Manikandan, 2018):

 It is much more robust to correlated features.

 If two features f1 and f2 are perfectly correlated, regression will simply assign half the

weight to w1 and a half to w2.

 It is discriminative

 It works well on large datasets when compared with Naïve Bayes.

26

K-Nearest Neighbor Classifier (K-NN)

Nearest neighbor classifiers are based on learning by analogy. The training samples are described

by n-dimensional numeric attributes. Each sample represents a point in an n-dimensional space.

In this way, all of the training samples are stored in the n-dimensional pattern space. When given

an unknown sample, a k-nearest neighbor classifier searches the pattern space for the k training

samples that are closest to the unknown sample. The unknown sample is assigned the most

common class among its k nearest neighbors (Phyu, 2009).

K-NN is a nonparametric method used for classification or regression. K-NN is powerful

because it does not assume anything about the data, other than a distance measure can be

calculated consistently between two instances. As such, it is called non-parametric as it does not

assume a functional form (Dey, Chakraborty, Bose, & Tiwari, 2016).

But, nearest neighbor classifiers are instance-based or lazy learners in that they store all of the

training samples and do not build a classifier until a new (unlabeled) sample needs to be

classified. Therefore, it is slower at classification since all computation is delayed to that time.

Lazy learners can incur expensive computational costs when the number of potential neighbors

(i.e., stored training samples) with which to compare a given unlabeled sample is great. Nearest

neighbor classifiers assign equal weight to each attribute. This may cause confusion when there

are many irrelevant attributes in the data (Phyu, 2009).

Decision trees

Decision trees are trees that classify instances by sorting them based on feature values

(Gullapelly & Shanmukhi, 2017).In this tree, the internal node represents a test on the attribute,

each branch of the tree represents the outcome of the test and the leaf node represents a particular

class label means the last decision after all computations (Kaur & Jindal, 2016). It categorizes a

document by starting at the tree root and moving successfully downward via the branches (whose

conditions are satisfied by the document) until a leaf node is reached. The document is then

classified in the category that labels the leaf node (Chauhan, 2015).

Decision trees are the most widely used classifier (Manne, 2011) and consist of a set of rules

which are applied in a sequential way and finally yield a decision (Manne, 2011). Their

27

robustness to noisy data and capability to learn disjunctive expressions seem suitable for

document classification(Manne, 2011).

One of the most useful characteristics of decision trees is their comprehensibility. People can

easily understand why a decision tree classifies an instance as belonging to a specific class. Since

a decision tree constitutes a hierarchy of tests, an unknown feature value during classification is

usually dealt with by passing the example down all branches of the node where the unknown

feature value was detected, and each branch outputs a class distribution (Kotsiantis, 2007).

2.6.3 Hybrid approaches

Given the advantages and the disadvantages of both machine learning and lexicon based

approaches, different researchers tried to combine them together so that they can take advantage

from the benefits of each approach (Amira, 2013). The hybrid approach, the combination of both

the machine learning and the lexicon based approaches has the potential to improve the

sentiment classification performance (D‘Andrea et al., 2015).

The main advantages of hybrid approaches are the lexicon/learning symbiosis, the detection and

measurement of sentiment at the concept level and the lesser sensitivity to changes in the topic

domain. While the main limitation is that reviews are with a lot of noise (irrelevant words for the

subject of the review) are often assigned a neutral score because the method fails to detect any

sentiment (D‘Andrea et al., 2015).

2.7 Related Works

In this section, sentiment mining related researches done for different language opinionated

documents such as English (Appel, Chiclana, Carter, & Fujita, 2016; Pedro, Balage, & Thiago,

2013), Arabic (Amira, 2013), French(Hamdan, Bellot, & Bechet, 2016), (Hussaini, Padmaja, &

Sameen, 2018) and Amharic (Abreham, 2014; Gebremeskel, 2010; Tulu, 2013) using different

techniques and approaches are reviewed.

2.7.1 Sentiment Mining from Opinionated English Texts

Pedro, Balage, and Thiago (Pedro et al., 2013) develop a system that adopts a hybrid

classification process that uses three classification approaches rule-based, lexicon-based, and

machine learning approaches. The purpose is to better understand the use of a hybrid system in

28

Twitter text and to verify the performance of this approach in an open evaluation contest. The

researcher in this work suggests a pipeline architecture that extracts the best characteristics of

each classifier. In this pipeline architecture, each classifier may assign a sentiment class, if it

achieves a particular confidence threshold, otherwise, it will pass to the next classifier.

A training dataset, with 6,686 messages, a development dataset, with 1,654 messages, and two

test datasets, with 3,813 Twitter Test test data and 2,094 SMS based test data messages are used.

With this data different experiment has been done and the hybrid system achieved an F-score of

56.31% in the Twitter message-level subtask, which is better than rule-based, lexicon based or

machine learning alone. Sentiment Analysis in Twitter compares the systems by the average F-

score for positive and negative classes. As shown in the table below

Table 2.1: Average F-score

The reason why their system improves the classification process because it takes advantage of

the multiple approaches. For example, the rule-based classifier is the most reliable classifier. It

achieves good results when the text is matched by a high-confidence rule. However, due to the

freedom of language, rules may not match 100% of the unseen examples; consequently, it has a

low recall rate. Lexicon-based classifiers, for example, are very confident in the process to

determine if a text is polar or neutral. Finally, machine learning is known to be highly domain

adaptive and to be able to find deep correlations (Taboada, Brooke, Tofiloski, Voll, & Stede,

2011).

Appel et al. (2016), proposed an approach that uses a hybrid approach to Sentiment Analysis

encompassing the use of Semantic Rules, Fuzzy Sets, and an enriched Sentiment Lexicon,

improved with the support of SentiWordNet is described. The proposed hybrid method is applied

to three different data-sets and the results achieved are compared to those obtained using Naïve

Bayes and Maximum Entropy techniques. It is demonstrated that the presented hybrid approach

classifier Twitter TestSet SMS TestSet

Rule-based 0.1437 0.0665

Lexicon-Based 0.4487 0.4282

Machine learning 0.4999 0.4029

Hybrid Approach 0.5631 0.5012

29

is more accurate and precise than both Naïve Bayes and Maximum Entropy techniques when the

later are utilized in isolation. The result obtained has shown that their hybrid method performs

well than the other approaches.

Table 2.2 Naïve Bayes Table 2.3 Maximum Entropy Table 2.4 Hybrid

Accuracy 0.67

Precision 0.63

Recall 0.85

F1-score 0.72

Accuracy 0.68

Precision 0.63

Recall 0.86

F1-score 0.73

Accuracy 0.76

Precision 0.73

Recall 0.83

F1-score 0.77

The creation of an improved Sentiment Lexicon was decisive in obtaining good experimental

results and SentiWordNet became an important component of their proposed solution and

certainly enriched dramatically the quality of their Lexicon.

Sentiment mining from opinionated Arabic language Amira (Amira, 2013) combined semantic

orientation and machine learning. In this research work, her aim was to improve the performance

measures of Egyptian dialect sentence-level sentiment analysis by proposing a hybrid approach

which combines both the machine learning approach using support vector machines and the semantic

orientation approach. Two methodologies were proposed, one for each approach, which was then

joined, creating the hybrid proposed approach. The corpus used contains more than 20,000 Egyptian

dialect tweets collected from Twitter, from which 4800 manually annotated tweets are used (1600

positive tweets, 1600 negative tweets, and 1600 neutral tweets). Several experiments have been

performed to; 1) compare the results of each approach individually with regards to her case which is

dealing with the Egyptian dialect before and after preprocessing; 2) compare the performance of

merging both approaches together generating the hybrid approach against the performance of each

approach separately; and 3) evaluate the effectiveness of considering negation on the performance of

the hybrid approach. The results obtained show significant improvements in terms of accuracy,

precision, recall, and F-measure, indicating that the proposed hybrid approach is effective in

sentence-level sentiment classification. Also, the results are very promising which encourages

continuing in this line of research.

28

2.7.2 Sentiment Mining from Opinionated French Language

Hamdan et al. (2016) work on Sentiment Analysis in Scholarly Book Reviews in the French

language. Their objective is to extract the opinion expressed towards a book in all its reviews.

They chose aspect level of sentiment analysis. Therefore, given a collection of book reviews,

they aim at finding out the aspects of the book and the sentiment expressed towards each aspect.

The aspects are determined by asking domain experts to extract the aspects of books found in

book reviews of social and human sciences. They have listed aspects like Book presentation,

Problematic, Scientific context, Scientific method, Author‘s arguments, Book organization, and

Judgment about the book. Different features are combined in order to be presented to supervise

classifiers which extract the opinion target expressions and detect their polarities in scholarly

book reviews. For creating an annotated corpus of French book reviews, 200 book reviews in the

French language have been selected with the help of domain experts.

Different experiments have been done for opinion target extraction and determine whether the

polarity of each opinion target is positive, negative or neutral. In the experiments for opinion

target extraction, Conditional Random Fields (CRF) suite tool is used for target extraction with

the L-BFGS algorithm. Part of speech tag to each term (Pos), the type of the word (uppercase,

digit, symbol, and combination), the shape of each character in the word (capital letter, small

letter, digit, punctuation, and other symbol), prefixes and suffixes, are used for target extraction.

They found 61.53% when using all the above features together. From the experiment, we

understand that the word and POS features seem to be enough to produce a good result, 61.02%.

In the experiments for Sentiment Polarity determination, they train Logistic regression classifier

on the training dataset using N-grams and Z score as a feature with the three polarities (positive,

negative, and neutral) as labels. In these experiments in addition to books review, restaurant and

laptop reviews also considered. The best result is given when using terms and Z score (or

standard score) features with Z threshold of -0.5. The accuracy is 79% which seems fair enough

when comparing with the results produced in restaurant reviews (about 75.5%). Where Z-score

(or standard score) represents how many standard deviations a given measurement deviates from

the mean.

29

2.7.3 Sentiment Mining from Opinionated Hindi Language

Hussaini et al (Hussaini et al., 2018), apply a score-based approach for sentiment classification

of book reviews in the Hindi language. Opinion words were extracted from individual sentences

using parts tagger, incorporated within the Hindi shallow parser. They consider adjectives,

adverbs, nouns and verbs for extraction. Their approach uses subjectivity lexicons for retrieving

polarity scores of the extracted words. The overall positive and negative scores were calculated

for each sentence, the higher value between the two determining the polarity of the sentence.

A dataset of 700 sentences pertaining to book reviews was considered for this work. These

sentences were first annotated by three Hindi-speaking annotators. The mutual agreement

between them was calculated and the kappa value was found to be 79.4%. The results obtained

from the system were tested against these human annotations. An accuracy of 86.3% was

achieved working with H-SWN, after applying word-sense disambiguation (WSD) and handling

morphological variations. An accuracy of 87.4% was achieved working with HSL.

2.7.4 Sentiment Analysis for Amharic Language

Selama Gebremeskel (Gebremeskel, 2010), proposed a sentiment mining model for determining

the sentiments expressed in opinionated Amharic texts or reviews. They Used Lexicon based

approach and the proposed model has the following components: preprocessing, sentiment words

detection, weight assignment and propagation, polarity classification, polarity strength

representation, and sentiment lexica. The system designed based on the proposed model detects

positive and negative sentiment terms including contextual valence shifters such as negations and

the lexica of Amharic sentiment terms are used to identify and assign initial polarity value to the

sentiment terms detected in order to determine the polarity classification of the opinionated text.

Based on the weights of the sentiment values, the reviews are classified into predefined

categories: positive, negative or neutral. Finally, the polarity strength of the reviews is rated. A

prototype system is developed to validate the proposed model and the algorithms designed. Tests

on the prototype are done using movie and newspaper reviews where the result obtained with

these test data is very much encouraging. Experiment, using contextual valence shifter, terms

such as negations give better results.

30

 The sentiment lexica are built manually from different sources and after having lexicons, the

review document is preprocessed and relevant term in the review is checked whether it is a

sentiment word or not, by scanning the whole lexicon for every term. If the term exists in the

dictionary, then the term is a polarity word (positive or negative). The total polarity weight of a

review is calculated by adding the polarity weight of the individual sentiment terms in the review

if the summation of polarity is greater than zero, then the review is categorized into predefined

category positive. Similarly, if the summation of polarity is less than zero then the review is

categorized into a predefined category negative. Otherwise, if the weight of all the individual

terms is equal to zero, the review is categorized into the neutral category.

 As we can show in the table below, the researcher gets a better result using both general lexica,

specific lexicons and considering contextual valance shifter terms. Summary of the experimental

result of Gebremeskel (Gebremeskel, 2010) is as shown in the table below:

Table 2.5: Summary of experimental result

Selama Gebremeskel (2010) uses lexicon approach alone. Therefore, sentiment lexicons assign a

fixed sentiment orientation and score to words, irrespective of how these words are used in a

text, but some words may be more strongly predictive than others. These can affect the

performance, and if we combine machine learning with lexicon based classifier, there is a

possibility of improving the performance. Machine learning can give us the ability to learn from

training data, how much a word lean towards positive or negative, instead of assigning fixed

orientation. In our research work, we combine machine learning and lexicon classifiers and

create a hybrid approach. Therefore, first, a review classified as positive or negative based on

system Class Precision Recall F-measure

General purpose Amharic

sentiment terms(Basic system)

Positive 0.929 0.823 0.867

Negative 0.6 0.573 0.589

Basic + Domain lexicon Positive 0.937 0.943 0.939

Negative 0.62 0.78 0.69

Both lexica + contextual valance

shifter terms

Positive 0.943 0.949 0.945

Negative 0.666 0.842 0.743

31

fixed sentiment orientation and a score of words (lexical classifier). If it can not be classified, the

review passed to machine learning, which assigns sentiment orientation and a score of words

after learning through training, instead of just use fixed sentiment orientation like a lexical

classifier.

Tulu (Tulu, 2013) work on feature-level opinion mining model for the Amharic language by

employing manually crafted rules and lexicon. The proposed model consists of five major

components that can extract features, determine opinion words regarding identified features with

their semantic orientation, aggregate multiple opinions and generate a structured summary.

Two experiments have been conducted for features extraction and opinion words determination

by using 484 reviews from three different domains. The first experiment indicated that an

average precision of 95.2% and recall of 26.1% were achieved in the features extraction and an

average precision of 78.1% and recall of 66.8% were achieved in the determination of opinion

words. The precision of the second experiment in features extraction gets lower by 15.4%

whereas the precision of opinion words determination gets higher by 1.9% and the recall of both

features extraction and opinion words determination gets higher by 7.8% and 25.9% respectively

when compared to the first experiment. Thus, their experimental results demonstrate the

effectiveness of the techniques they have applied.

Abreham (Abreham, 2014), develop an Opinion Mining model for classifying the Amharic

opinionated text into positive and negative. Two simple feature sets are employed (all unigram

and the most informative bag-of-words of the review) and Information Gain feature selection

method used to calculate most informative words from the document. For classification, three

supervised classifiers implemented from the Natural Language Toolkit (the Naïve Bayes,

Decision Tree, and Maximum Entropy classifiers).

The datasets for conducting the experiment are manually collected from Ethiopia Broadcasting

Corporation in Addis Ababa. The rest of the dataset is collected from diretube.com and

habesha.com sites. A total amount of 616 reviews were collected for experiments.

Different experiments have been done and the Experiment indicates that Information Gain

feature selection methods perform the best through all algorithms (Naïve Bayes, Decision Tree,

32

and Maximum Entropy). Based on their relative performance of classification, NB with 90.9%

accuracy outperforms Decision Tree with 83.1% and Maximum Entropy with 89.6%. The result

obtained is encouraging.

2.7.5 Summary

But both machines learning and lexical have their own advantage and disadvantage. Machine

learning has the ability to adapt and create a trained model for specific purpose and context but,

disadvantages of low applicability to new data because it is necessary availability of labeled data

that could be costly. Lexicon based advantages wider term coverage but, their disadvantages are,

Finite number of words in the lexicons and the assignation of a fixed sentiment orientation and

score to words.

Table 2.6: Overview of some previous work

To gain the advantages and avoid disadvantages of machine learning many researchers in

English, Arabic, and other languages, have done research by combining lexicon based and

machine learning approaches. This kind of combination (hybrid approaches) become the focus of

researchers.

Author Language Domain Labeling Approach accuracy

(Filho & Pardo, 2013) English Twitter manual rule-based,
lexicon-based
and machine
learning (svm)

61.85%

(Amira, 2013) Arabic Twitter manual (SVM,NB, and

ME), and

semantic

orientation

75.4%

(Appel et al., 2016) English movie manual NLP-techniques,

semantic rules

and fuzzy sets

76%

33

But sentiment analysis is language dependent, and the work done by one language is not directly

applicable to another language (Bal et al., 2011). This is due to differences in grammar and other

behavior of the language. For example, word order in Amharic is generally subject-object-verb

(SOV), with subordinate clauses preceding the main clause. Noun phrases are also generally

headed final with modifiers, including relative clauses, preceding the noun. In addition to that,

Amharic language has a complex inflectional morphology, particularly in the verbal system,

employing not only prefixes and suffixes but also internal modification of the typical Semitic

consonantal root-and-pattern type (Keith & Sara, 2010).

But, as far as my knowledge is concerned, sentiment classification researches on Amharic

language focus only on lexical, machine learning like or feature based sentiment analysis.

Therefore, the researcher is interested in exploring the performance of Hybrid classification

approach in this research work.

Even in machine learning classification, almost all researches in Amharic language try to explore

only the performance of sentiment classification algorithms, but not on between feature selection

methods. But machine learning algorithms performance in addition to the quality of data used;

partially depend on the kind of feature selection method used. Therefore, in my opinion, there is

a need to compare the performance of different feature selection methods like Chi-square,

Mutual Information gain, simplified Chi-Square and other popular feature selection method

on Amharic language.

In addition to the above two tasks (exploring the performance of Hybrid Approach and popular

feature selection methods), the performance of some machine learning algorithms like Logistic

Regression, SVM, and Naïve Bayes has been explored.

Challenges of sentiment analysis for Amharic language

There are different factors that make sentiment analysis in Amharic. The first factor is that, for

Amharic language, there is no standardized corpus (both for review data and lexicons) for

opinion mining. Secondly, People usually use positive words in negative reviews, but the word is

followed by valance shifters (negation) words like aydel_em or ―አይዯሇም‖, in this research work

we attempt to handle negation using rules developed for a lexical component of the hybrid

34

classifier. Also, the use of Amharic slang words makes sentiment classification challenging. To

reduce this effect, we incorporated slang words that have sentiment. The other factor is that

sometimes people use objective text to express their opinion but the classifier did not identify

those facts from opinions.

35

CHAPTER THREE

METHODOLOGY

The following wide-spread methodologies have been employed to design and develop a hybrid

sentiment classification for Amharic book review.

3.1 Data Collection Methodology

In this research work, we use Qualitative Data Collection Method in collecting Amharic book

review data. Even though most of Amharic book review data have been collected manually from

different online sources, one Open-ended qualitative questionnaire designed for the purpose of

analysis, and classification. This simple questioner has been adapted from Gebremeskel

(Gebremeskel, 2010) and slightly modified to fit with the domain we are working. The opinion

of selected readers, who at least read one of the selected Amharic books, have been collected

using this questionnaire and opinion holders fill their positive and negative opinion about

selected books in a space provided.

These reviews are qualitative data, which means that these data are unstructured and usually

textual. But these qualitative data are not in a form to be manipulated and analyzed by a

computer. Therefore, qualitative data transformed into quantitative data, which involves turning

the data from words into numbers (Bernard, 1996), thereby unleashing the full power of

quantitative analytics on the qualitative data.

3.2 Data Sources

In this research work, two types of data are collected. These data consist of 1370 lexicons and

600 book review. From 1300 lexicon used in this research work, we collect 870 lexicon or

opinion words by translating from English source (Liu, Hu, & Cheng, 2005) and the rest, 500,

lexicons are adapted from Gebremeskel (Gebremeskel, 2010). The 600 reviews (dataset) for

conducting the experiment are manually collected from different sources such as Facebook,

personal blogs, book review sites and also, through a questionnaire distributed for randomly

selected book readers. With the limited time we have, we can collect only 500 reviews manually.

Therefore, it was necessary to collect additional reviews using Open-ended qualitative

questionnaire distributed for book readers. The questionnaire distributed for 150 book readers,

36

but only 101 people respond positively, fill the questionnaire and returned. We use 100 of these

reviews collected using questionnaire which is filled correctly. 500 reviews collected manually

and 100 reviews collected using questionnaire. Make up total review used in the research work

600. These reviews are stored in a text file and, any time, if we want to incorporate new data, we

simply append on a text file that stored these reviews.

The amount of reviews used in our research work is small. However, data extraction for Amharic

was difficult due to lack of Amharic web content and it took a significant proportion of the time.

In other research works like (Aggarwal & Gupta, 2017) in English, (Mittal, Agarwal, Chouhan,

Bania, & Pareek, 2013) in Hindi, and (Abreham, 2014; Gebremeskel, 2010; Tulu, 2013) in

Amharic language use a similar amount of dataset.

3.3 Tools

A number of tools have been used to design and develop a hybrid sentiment classification. These

tools include NLTK, SERA, Hornmorpho, and python as a programming language:

Python is a simple yet powerful programming language with excellent functionality for

processing linguistic data (Bird, Klein, & Loper, 2009). In this study, preprocessing activities

like stop word removal, transliteration, and stemming are done using python programming,

version 3.5. In addition to preprocessing activities, tools like NLTK and HORNMORPHO are

implemented using python programming. The reason why we chose python is that; Python is a

programming language with clear and readable syntax. The way Python's syntax is organized

imposes some order to programmers as a result; experts and beginners can easily understand the

code.

NLTK is the natural language toolkit, a comprehensive python library for natural language

processing and text analytics. Although Python already has most of the functionality needed to

perform simple NLP tasks, it‘s still not powerful enough for most standard NLP tasks (Madnani,

2007). This is where the Natural Language Toolkit (NLTK) comes. NLTK defines an

infrastructure that can be used to build NLP programs in Python (Bird et al., 2009). Since NLTK

provides basic standard modules for performing classification tasks and have extensive

37

documentation for reference at (Ojokoh & Kayode, 2012), we chose to work with NLTK. All

classification tasks have been done using NLTK in python programming.

In this research work, we use NLTK, but NLTK does not support Ge‘ez characters. To represent

Ge‘ez character using its equivalent English characters, we use a convention called SERA.

SERA is a convention for the transcription of Ethiopic script into the seven bit American

Standard for computer information interchange (ASCII) (Firdyiwek & Yaqob, 1997).

HORNMORPHO is a system for morphological processing of Amharic, Oromo, and Tigrigna.

According to (Gasser, 2012), HORNMORPHO is a Python program that analyzes Amharic,

Oromo, and Tigrinya words into their constituent morphemes (meaningful parts) and generates

words, given root or stem and a representation of the word‘s grammatical structure.

In this research work, the researcher uses HORNMORPHO for two purposes. The first purpose

we use HORNMORPHO is to convert every word to their base forms to avoid data sparseness.

The second purpose we use HORNMORPHO is to convert an input word in Ge‘ez characters to

a phonetic representation of the word. The phonetic representations conform to the Romanization

conventions of the SERA system.

3.4 Feature Selection Methods

Feature selection methods reduce the original feature set by removing irrelevant features for text

sentiment classification to improve classification accuracy and decrease the running time of

learning algorithms (A. Sharma & Dey, 2012). Before using machine learning methods in text

categorization, it is essential to choose which features are the most suited for this task. Feature

selection can be done using different feature selection methods. We select Chi-Square, Mutual

Information, and GSS coefficient, as feature selection methods.

The reason we select to work with these three feature selection methods is that first because they

have a reputation to have good performance in English language and we are interested to know

the performance of these algorithms in Amharic language. According to Oystein (Oystein, 2009)

among feature selection methods, Chi-Square and Mutual Information perform best also, the

Chi-Square variant GSS coefficient was also among the top performers. The second reason is

that, in addition to performing well, they have contrasting and different behavior. Chi-Square and

38

Mutual Information have a tendency to gave a high score for common features that have a high

frequency of occurrence in the corpus. In another hand, the GSS coefficient gives a high score

for rare words. Therefore by considering these feature selection methods, we can easily see the

importance of common words and rare words on the performance of machine learning. The

performance of these three feature selection methods has been compared against each other. For

comparing these three algorithms we use three machine learning algorithms namely NAÏVE

BAYES, SVM, and LOGISTIC REGRESSION.

3.5 Algorithms

Three machine learning algorithms were employed for classifying reviews as positive and

negative such as Naïve Bayes, SVM, and Logistic Regression. Testing with more than one

classification algorithms provides comparison clues for determining algorithm with the best

performance for Amharic opinionated text in the domain and many research works in opinion

mining achieved high performance using them. For example, in research works like (Ashari,

Paryudi, & Min, 2013; Pang et al., 2002) SVM and Naïve Bayes outperform other algorithms

like MaximumEntropy and K-Nearest Neighbors. In another research (Hao & Priestley, 2016)

Logistic Regression outperforms K-Nearest Neighbors and Random Forest classifier algorithm.

Before deciding to use these three algorithms, we checked their performance against the other

two popular algorithms K-Nearest Neighbors and Random Forest classifier algorithm. K-Nearest

Neighbors and Random Forest classifier algorithm performs with an accuracy of 59.4% and

60.1% respectively, which is very low compared to the performance achieved by Naïve Bayes

(93.3%), SVM (88%) and Logistic Regression (86%).

Naive Bayes

Naive Bayes is a supervised classification method developed using Bayes‘ Theorem of

conditional probability with a Naive assumption that every pair of feature is mutually

independent (Das, Behera, & Tech, 2017). Bayesian classifiers are often used for classification

because they require far less computing power than other methods (Abreham, 2014). Also, Naive

Bayes need only a small amount of training data. Beside, NB classifiers have considerably

outperformed even highly advanced classification techniques (Das et al., 2017). Therefore, we

choose Naïve Bayes to be one of the algorithms for our experiments.

39

SVM

SVM is a supervised classification algorithm, proposed by Vapnik in the 1960s have recently

attracted major attention of researchers (Das et al., 2017). The main idea of SVM is to construct

the hyperplane in a high dimensional space which can be used for classification (Kaur & Jindal,

2016). One remarkable property of SVMs is that their ability to learn can be independent of the

dimensionality of the feature space (Joachims, 1998). That means SVM is effective in high

dimensional spaces (Muhammad & Yan, 2015). Since SVM uses a subset of training points in

the decision function (called support vectors), so it is also memory efficient (Muhammad & Yan,

2015). SVM classifier method is outstanding from other with its effectiveness (Yaming & Xin,

1999) and according to Vohra and Teraiya (Vohra & Teraiya, 2013), most of the researchers

reported that Support Vector Machines (SVM) has high accuracy than other algorithms. Because

of its effectiveness in high dimensional spaces and performance, we select SVM to be one of the

candidate algorithms in this research work.

Logistic Regression

Logistic regression is a statistical method for analyzing a dataset in which there are one or more

independent variables that determine an outcome (Hao & Priestley, 2016). In addition to logistic

function, since it is logistic regression is efficient to train, does not require too many

computational resources, highly interpretable, and it doesn‘t require any tuning logistic

regression is the most widely used model in biomedicine (Dreiseitl & Ohno-Machado, 2002). In

the research (Hao & Priestley, 2016; Teja et al., 2018), Logistic Regression outperforms other

algorithms like K-Nearest Neighbors, SVM, and Naïve Bayes. Despite its popularity and

efficiency, as far as the researcher knowledge concern, the performance of Logistic Regression

against the two baseline algorithms, Naïve Bayes and SVM is not known in Amharic language.

Therefore, we are interested to explore the performance of these three algorithms.

3.6 Numbers of Features

Even though different researchers use different numbers of features, the range typically

considered for text classification is between 500 to 3000 numbers of features (Parlar et al.,

2018). In this research work, for each feature selection method, we tried four feature sizes at 750,

1000, 1250, and 1500. We chose to show results for 750 features because it is low enough so the

40

classification is well possible and for the numbers of features, less than 750 the accuracy is too

small. We stop at 1500, because, for the number of features greater than 1500, the accuracy of

classifiers starts to drop and the maximum accuracy we found is at this point.

41

CHAPTER FOUR

AMHARIC LANGUAGE

4.1 Overview

Amharic is the working language of the government of Ethiopia and some of the federal states

(Martha, 2010), with 25,873,820 (Eberhard, David, Simons, & Fennig, 2019). It is also the native

language of several million Ethiopian immigrants, especially in North American and Israel

(Gelbukh, 2018).

Amharic has been the language of government and the ruling group in Ethiopia since the end of

the thirteenth century. Despite its long history, Amharic really only became the written language

of Ethiopia from the second half of the nineteenth century onwards, when Emperor Tewodros II

actively encouraged its use in the government bureaucracy. Prior to that, though, there are some

examples of writing Amharic going back some six hundred years. The language of literacy in

Ethiopia was Ge‘ez (Appleyard, 2015).

Amharic belongs to the Semitic language family (Leslau, 1995) and it is the second most spoken

Semitic language after Arabic (Solomon & Menzel, 2007). The Amharic language is related to

Hebrew, Arabic, and Syrian (Martha & Menzel, 2009), but unlike Arabic, Hebrew or Syrian, the

language is written from left to right (Leslau, 1995). Amharic exhibits typical Semitic behavior,

in particular, the pattern of inflectional and derivational morphology, along with some

characteristics Ethiopian Semitic features, such as subject–object–verb (SOV) word order, which

are generally thought to have resulted from long contact with Cushitic languages (Gelbukh,

2018).

Amharic is a syllabic language which uses a script which inherited from the Ge‗ez

alphabet(Isenberg, 1842; Leslau, 1995). Geez is an ancient South Semitic language which now

serves only as liturgical language of the Ethiopian Orthodox Tewahedo Church (MARKOS,

2010). Amharic has five dialectical variations (Addis Ababa, Gojjam, Gonder, Wollo, and Menz)

spoken in different regions of the country (Rosenhouse & Kowner, 2008; Solomon & Menzel,

2007). Of the five, the Addis Ababa dialect has emerged as the accepted standard since its

42

introduction as the medium of instruction and press during the reign of Emperor Menelik II

(Goldenberg, 2013; Rosenhouse & Kowner, 2008).

4.2 The Amharic Characters (Fidel)

Amharic has 33 basic characters with each having 7 forms for each consonant-vowel

combination (MARKOS, 2010). Out of 33 basic characters, 26 are from Ge‘ez (Isenberg, 1842).

These 26 characters are shown in figure 3.1 below (Scelta, 2001):

Table 4.1 Ge‘ez Alphabet

But besides the 26 Ge‘ez Characters, the Amharic language has 7 peculiar Orders of Letters,

Which serve to express sounds not existing in former (Isenberg, 1842).These 7 Characters

Which serve to express sounds not existing in Ge‘ez are ሸ [xe] , ጨ [Ce], ቸ [ce], ጀ [je], ኘ [Ne],

ኸ [Ke] and ዠ [Ze] .

ሀ ሁ ሂ ሃ ሄ ህ ሆ
ሇ ለ ሉ ሊ ላ ሌ ል
ሐ ሑ ሒ ሓ ሔ ሕ ሖ
መ ሙ ሚ ማ ሜ ም ሞ
ሠ ሡ ሢ ሣ ሤ ሥ ሦ
ረ ሩ ሪ ራ ሬ ር ሮ
ሰ ሱ ሲ ሳ ሴ ስ ሶ
ቀ ቁ ቂ ቃ ቄ ቅ ቆ
በ ቡ ቢ ባ ቤ ብ ቦ
ተ ቱ ቲ ታ ቴ ት ቶ
ኀ ኁ ኂ ኃ ኄ ኅ ኆ
ነ ኑ ኒ ና ኔ ን ኖ
አ ኡ ኢ ኣ ኤ እ ኦ
ከ ኩ ኪ ካ ኬ ክ ኮ
ወ ዉ ዊ ዋ ዌ ው ዎ
ዏ ዐ ዑ ዒ ዓ ዔ ዕ
ዖ ዘ ዙ ዚ ዛ ዜ
የ ዩ ዪ ያ ዬ ይ ዮ
ዯ ደ ዱ ዲ ዳ ዴ ድ
ገ ጉ ጊ ጋ ጌ ግ ጎ
ጠ ጡ ጢ ጣ ጤ ጥ ጦ
ጰ ጱ ጲ ጳ ጴ ጵ ጶ
ጸ ጹ ጺ ጻ ጼ ጽ ጾ
ፀ ፁ ፂ ፃ ፄ ፅ ፆ
ፇ ፈ ፉ ፊ ፋ ፌ ፍ
ፐ ፑ ፒ ፓ ፔ ፕ ፖ

43

4.3 Deficiencies of the Amharic Alphabet

The deficiencies of the Amharic alphabet are (Leslau, 1995):

1. Lack of a special symbol for germination. Thus a word such as አሇ may be read either ale

‗he said‘ or ‗alle‘ ‗there is‘; ገና may be read gena ‗still‘ or ‗genna‘ Christmas‘. In writing

of western scholars, germination is marked by two dots placed above the letter.

2. The 6
th

 order designates both a constant followed by the vowel e and a constant without a

vowel. Unless the word or the principles underlying the syllabic structure are known, one

does not know how to pronounce it properly. Thus a word such as ይንገር, whose actual

pronunciation is ‗yengar‘, maybe read mistakenly ‗yenegar‘, or ‗yenneggaar‘.

4.4 Characteristics of the Amharic Language

4.4.1 Amharic Alphabet Orthography

On the whole, no real problems exist in Amharic orthography, as there is, more or less, a one-to-

one correspondence between the sounds and the graphic symbols. Since, however, a few sounds

are expressed by more than one symbol; some confusion occasionally arises in the spelling.

Sounds that are represented by more than one symbol are: s (ሰ፥ ሠ), s (ጸ፥ፀ), h (ሀ፥ሐ፥ኅ፥ኸ), and the

vowels carry (አ፥ዏ). Moreover, ሀ፥ሐ፥ኅ፥አ፥ዏ written in the 1st order are pronounced as ሃ፥ሓ፥ኃ፥ኣ፥ዒ,

that is, with the vowel a. Thus, the word ‗seyyum‘, proper name, maybe spelled ሥዩም or ስዩም

(Leslau, 1995). Although these different ‗fidels‘ give each word different meaning in Ge‘ez, in

Amharic language they have been used interchangeably (Mindaye, Redwan, & Atnafu, 2010).

Amharic orthography reflects the spoken phonetic features to a large extent. The rule generally

followed is ―if a word sounds right when reading aloud then it was rightly written‖. Amharic

spelling has rules, even though, it is not strict. There are acceptable levels of precision, a phono-

orthographical radius that renderings may fall within to be considered recognizable and

acceptable. Some phonetically spelling variations are more acceptable than others. Wider degree

of spelling variance considered acceptable at the basic level (a working medium for all informal

exchanges) and At the Advance level of writing, the canonical forms of words must be used and

words can no longer be written merely as they would be spoken (Yacob, 2004).

44

4.4.2 Amharic Compound Word

The Amharic writing system uses multitudes of ways to denote compound words and there is no

agreed upon, spelling standard for compounds (Gelbukh, 2018). For example, the word school

can be represented in Amharic like ―ትምህርት-ቤት‖, ―ትምህርት ቤት‖ and ―ትምህርትቤት‖. This kind of

non-uniform representation of the same word is not suitable for sentiment analysis; therefore, we

must form uniformity by choosing only one of the representations.

4.4.3 Amharic Short form of Words

For suitability or other reason, people like to write words in short form. But the way how to write

a short form of a word or phrase is not uniform. In Amharic language, people use dot operator

―.‖ Or forward slash ―/‖ to make a short form of a word or phrase and this create confusion in

sentiment mining. Let us see this with an example, the capital city of Ethiopia, Addis Ababa can

be written in Amharic like ―አ.አ‖ or ―አ/አ‖. Therefore we must deal with this kind of issues in this

research work.

4.4.4 Words adapted from foreign languages

Non-uniform representation is also the problem we may face in opinion mining in Amharic

language. For example, the word director represents in different ways, sometimes as ―ዱሬክተር‖ or

―ዲይሬክተር‖. To reduce confusion, Mersehaizen (Mersehaizen W/Mariam, 1934) suggest using a

uniform way of representing words adapted from a foreign language.

4.5 Morphology

Amharic is a morphologically rich language where up to 120 words can be conflated to a single

stem (Mindaye et al., 2010). Amharic has a complex inflectional morphology, particularly in the

verbal system, employing not only prefixes and suffixes but also internal modification of the

typical Semitic consonantal root-and-pattern type. In general, the morphology of Amharic has

been less influenced by the Cushitic substratum than, for instance, syntax or the lexicon. The

inflectional morphology of noun, on the other hand, is relatively simple (Keith & Sara, 2010).

4.6 Slang Words

Nowadays it is common to use Amharic slang words in social media. These slang words make

challenging the detection of opinionated expressions. For example, in the word ‗aynefam‘ or

45

―አይነፊም‖ have similar meaning with English phrase not good. Dealing with Amharic slang

words will help in sentiment analysis. To handle this kind of slang words, some slang words are

added to our lexicon.

Table 4.2 Amharic slang words

Amharic Slang Phonetic Meaning in common Amharic Phonetic

ዛገት zIget አሰሌቺ asel_Ici

አሊስ al_as ምቀኛ mIqeNa

የማይባትት yemaybatt የማይገባው yem_aygebaw

ፊርጣ farTa ፊራ fara

መንጩ menCu መቀማት meqem_at

ገጀረቸ gejerece አምቢ አሇቸ 'ambi 'alece

አርካ arka ጉራ gur_a

ቦከማ bokema ሰረቀ ser_eqe

ሸመጠጠ xemeT_eTe ዋሸ wax_e

ጨማቂ Cemaqi ወረኛ wereNa

ነቀሇ neq_ele ተናዯዯ tenad_ede

ቦርኮ borko ዛርክርክ zIrkIrk

ነቄ neqE አዋቂ awaqi

አሰፈ asef_u ወረኛ wereNa

ይሸክካሌ yIxekkal ይዯብራሌ yIdebral

ዴንች dIn_Ic_ ሀሰተኛ has_eteN_a

4.7 Punctuation

Punctuation in Amharic language consisting of word-divider or hulet-netib (፡), end of the

sentence indicator or arat-netib (::), drib serez (፤), netela serez (፣), and other symbols inherited

from the Latin language like (?), exclamation mark (!), quotes (―‖) and parenthesis (Mesay,

2003).

4.8 Amharic Numbers

The original Amharic character set has no symbol for representing zero, Negative numbers,

decimal points, and mathematical operators for performing a mathematical operation (Mesay,

46

2003). Amharic numbers that are borrowed from Ge‘ez are not suitable for mathematical

operations (Mersehaizen W/Mariam, 1934). Consequently, Arabic numerals are used for the

representation of numbers and Latin based scripts for operators (Mesay, 2003).

Table 4.3 Amharic numbers (Ge‘ez) with Arabic equivalent (Isenberg, 1842)

Amharic

numrals
፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲ ፻ ፲፻ ፼ ፲፼

Arabic

numrals
1 2 3 4 5 6 7 8 9 10 100 1000 10000 100000

47

CHAPTER FIVE

DATA COLLECTION AND PREPROCESSING

5.1 Data collection

Building the list of Sentiment Words

A very basic and simple idea to build a classifier for unannotated data is to use a lexicon of

words. A lexicon is a dictionary of words, each word associated with a score showing its

polarity. For our work, we gathered 1370 sentiment words out of which, 570 of them are

positive sentiment word and 800 of them are negative sentiment words. Out of the 1370

sentiment words 870 of them are collected by translating from English lexicons compiled by Liu

(Liu et al., 2005) and then increase their numbers by looking for synonyms from Amharic to

Amharic dictionaries. And the rest, 500 lexicons were adapted from Gebremeskel (Gebremeskel,

2010).

Book review data collection

Amharic is one of the languages that have scarcity in labeled reviews, especially in a domain like

a book review. As a solution for this, we first collect manually 600 unlabeled book reviews from

sources like ―facebook‖, ‖ethiopaizare.com‖,‖cyberethiopia.com‖, and manually collect from

book readers using questionnaire. After collecting these 600 reviews, we have removed

unnecessary symbols like ‗#‘, and ‗@‘. We also removed subjective sentences or side talks.

5.2 Preprocessing

The majority of the text produced by social websites is considered to have

an unstructured or noisy nature (Amira, 2013). The reason for this can be a lack of

standardization, spelling mistakes, missing punctuations, nonstandard words, and repetitions. We

perform four activities in preprocessing our data. These four activities are tokenization,

normalization, stemming and transliteration, and stop word removal.

Tokenization

Given a review, tokenization is the task of chopping it up into pieces, called tokens, perhaps at

the same time throwing away certain characters, such as punctuation and numbers. In English,

word tokens are delimited by a blank space. But in Amharic language, punctuation marks like

48

word-divider or (ሁሇት ነጥብ) (፡), end of the sentence indicator or (አራት ነጥብ) (::), semicolon or

(ዴርብ ሰረዛ) (፤), comma or (ነጠሊ ሰረዛ) (፣), and other symbols inherited from the Latin language

like question mark or (የጥያቄ ምሌክት) (?), and exclamation mark or (ቃሇ አጋኖ) (!) can be used as

word separators.

Open the file

 While not end of file do

 For each character in the file

 If the character is „ ', „፡’, ‘::‘, ‘፤‘, ‘፣‘, ‘?‘, and ‘!‘

 Split at that point

 End if

 End for

End while

Fig.5.1 Tokenization algorithm `

Normalization

The normalizing process puts the text in a consistent form, thus converting all the various forms

of a word to a common form. Amharic language alphabet contains letters with the same sound

but different shapes called homophones. Homophone has been represented with only one

symbol, for example, homophones ―ሀ‖,‖ሐ‖,‖ሃ‖,‖ኃ‖,‖ኀ ‖ are represented only by the symbol ―ሀ‖.

Table 4.1 shows the list of homophone in our sentiment classification model (Yacob, 2004).

Table 5.1 Simplification of Phonetically Equivalent Syllables

Phonemic Equivalents Simplification

ሀ, ሃ, ሐ, ሓ, ኀ, ኃ, ኻ
and their family

ሀ
and it's family

ሰ, ሠ

and their family

ሰ
and it's family

አ, ኣ, ዏ, ዒ

and their family

አ

and it's family

ጸ, ፀ

and their family

ጸ

and it's family

49

The next step is to handle abbreviations. Punctuation marks like dot operator ―.‖, or forward

slash ―/‖ is used interchangeably to form abbreviation. Accepted standards for many

abbreviations and acronyms do not yet exist. Instead of just removing dot operator and forward

slash, for common abbreviations like ―አ.አ‖ or ―አ/አ‖ has been replaced with ―አዱስ አበባ‖.

While not end of file do

For each character in the file

If the character is ሐ, ኀ, ሃ, ሓ or their family then

Changed to ሀ

Else if it is ሠ or their family then

Changed to ሰ

Else if it is ፀ or their family then

Changed it to ጸ

Else if it is, ኣ, ዏ, ዒ or their family then

Changed it to አ

Else if it is ቍ then

Changed it to ቁ

Else if it is ቇ then

Changed it to ቆ

Else if it is ኯ then

Changed it to ኮ

Else if it is ጎ then

Changed it to ጏ

 Else if it is “/” then

 Changed it to“.”

 Else if it is “-” then

 Changed it to “ ”

End if

End for

 End while

Fig.5.2 Normalization algorithm

50

Stop words removal

Stop words are most common words found in any natural language which carries very little or no

significant semantic context in a sentence (Lemaire, Salperwyck, & Bondu, 2015) and so that the

process is not over-influenced by very frequent words (Ceska & Fox, 2009).

Open file-1(corpus)

Open file-2(stop-word)

While not the end of file file-1

For each term in the file-1

If the term is in file-2(stop-word) then

Remove the term

End if

End for

End while

Fig.5.3 Stop words removal

Stemming and Transliteration Using Horn-Morpho

In this step, Amharic book review has been transliterated and change to stem. Machine learning

algorithms NLTK do not work with Amharic language and we shall change Amharic symbols to

English Equivalent representative in Horn-Morpho. Horn-Morpho, use SERA (System for

Ethiopic Representation in ASCII) to represent Amharic characters with English character. The

input to Horn-Morpho is a file that contains Amharic book reviews and the output is also file but

in ASCII representation.

Amharic is a morphologically rich language where up to 120 words can be conflated to a single

stem this clearly shows that stemming has a profound effect on the retrieval process of the

language documents and (Mindaye et al., 2010). After transliteration complete, we use the output

of transliteration, by Horn-Morphon as input to stemming process, Stemming also is done by

Horn-Morphon. After Horn-Morphon completes stemming, the output will further be changed to

a form suitable for the next process. In this process, special attention is given to the words like

‗ayIm_ec_Im‘ or ―አይመችም‖, because it has another form ‗temec_e‘ or ―ተመቸ‖ with a positive

orientation which is opposite to original words ‗ayIm_ec_Im‘ or ―አይመችም‖, with negative

sentiment orientation. Therefore, we represent two words containing the stem or root and

51

negative, as ―temec_e nEgativ‖ so that it will keep its original sentiment orientation. In Amharic,

there are a lot of words of this type, therefore we have to be careful when we stem.

After installing Horn-Morpho you have to import it like, import l3, and then, pass the file to

Horn- Morphine like, l3.anal_file ('am', 'file-1.txt', file-2.txt'), the output from Horn-Morpho note

in a format suitable for processing, it contains detain analysis result that we do not want in

addition, it contains English word, punctuations, and numbers. Therefore we have to remove

unnecessary elements, keeping only the stem and its label indicating the word is negative. The

following section shows its process.

BEGIN Store reviews into file-1.txt

 Give file-1.txt to Horn-Morpho as input and save the output as file-2.txt

 Open file-2.txt

While not end of file-2.txt Do

 For each character in file-2.txt

Else the character is Amharic punctuation-marks or digits then

 Remove character

 End if

 End for

 For each word in a file-2

 If the word is equal to the English word „negative‟ then

Replace the English word „negative‟ with Amharic word

„ኔጋቲቭ’

 End if

End for

 For each character in file-2.txt

Else the character is Amharic English character then

 Remove character

 End if

End for

 End while

Fig.5.4 Stemming

52

For transliteration or to produce phonetic representations of the Amharic words in a file, use the

function phon_file, and pass it like l3.phon_file (‗am‘, input_file, output_file). The reason for

transliteration is that classification algorithms in NLTK do not work with Amharic alphabets.

Give file-2.txt to Horn-Morpho as input and save the output as phonetic.txt

 Open phonetic.txt

While not end of phonetic.txt Do

 For each character in phonetic.txt

Else the character is Amharic punctuation-marks or digit or non-

English character then

 Remove character

 End if

 End for

End while

Fig.5.5 Translitration

53

CHAPTER SIX

DESIGN

6.1 Introduction

In this chapter data preparation and design of a hybrid sentiment classification model for

Amharic book reviews will be discussed. This will involve combining lexical based classifier

with machine-learning classifier in a sequential manner (lexical and then machine learning).

This chapter is organized as follows: section 6.2 discusses lexicon based classifier, section 6.3

then describes the Machine learning classifiers, section 6.4 clarifies how these two

methodologies are combined together, and finally, section 6.5 lists the evaluation measures

followed in order to evaluate our proposed approaches.

6.2 Lexical based classifier

6.2.1 Pre-processing

In this research work, the first sub-component of the system is preprocessing. Data acquired from

various sources often need to be preprocessed before analysis. We have done preprocessing

activities like tokenization, normalization, steaming and transliteration on 600 review data and

1370 lexicons.

6.2.2 Sentiment Word Detection

In this process, every word in review checks if it exists in sentiment word collected. Count the

number of positive and negative sentiment words in each review and the same time incorporate

the effect of valance shifters.

Sentiment Words

Sentiment words are words that express an opinion like ‗gIrum‘ or ―ግሩም‖ which means

marvelous and this kind of sentiment words are collected and put into two separate files

containing positive and negative sentiment words.

54

Valance Shifters (negations and intensifiers)

As the name indicates, valance shifters are words that change the strength or orientation of

opinion word. The first kind (negations) have the effect of changing the orientation from

negative to positive and positive to negative. Amharic words like ‗aydel_em‘ or ―አይዯሇም‖ belong

to this group. For example, the sentence ‗asdes_ac meShaf ‗ or ―አስዯሳች መጽሐፌ‖ roughly means

the book is interesting, but if it is followed by the word ‗aydel_em‘ or ―አይዯሇም‖ like in the

following sentence ‗asdes_ac meShaf aydel_em― or ―አስዯሳች መጽሐፌ አይዯሇም‖ the polarity

change from positive to negative. The other group of valance shifters, intensifiers, changes only

the strength of sentiment-bearing word and words like ‗beTam‘ or ―በጣም‖ and ‗Ij_Ig‘ or ―እጅግ‖

belongs to this group.

6.2.3 Polarity Word count and valance shifter incorporation

In this step, the 570 positive and 800 negative sentiment words collected are put into two

separate files. These opinion words transliterated, stemmed and used in lexicon based

classification. To determine the weight of a review, each word in review has been check if it is

sentiment word or valance shifter, and the following rules are used:

Rule 1: if a word in the review found in positive lexicon file and not followed by negation

 Positive_count=Positive_count+1

Rule 2: if a word in the review found in positive lexicon file and followed by negations

 Negative_count=Negative_count+1

Rule 3: if a word in the review found in negative lexicon file and not followed by negation

 Negative_count=Negative_count+1

Rule 4: if a word in the review found in negative lexicon file and followed by negations

 Positive_count=Positive_count+1

Rule 5: if a word in the review found in negative lexicon file, followed by none opinion word,

and then followed by Negation.

 Positive_count=Positive_count+1

Rule 6: if a word in the review found in positive lexicon file, followed by none opinion word,

and then followed by Negation.

55

 Negative_count=Negative_count+1

Rule 7: if a word in the review found in positive lexicon file and proceeded by intensifiers

 Positive_count=Positive_count+2

Rule 8: if a word in the review found in negative lexicon file and proceeded by intensifiers

 Negative_count = Negative_count +2

Rule 9: if a sentence contains the word ‗bihonIm‘ or ―ቢሆንም‖ disregard all previous sentiment

and only take the sentiment of the one after ‗bihonIm‘ or ―ቢሆንም‖.

6.2.4 Sentiment Classification

Here we will decide whether the polarity of each review, in such a way that:

 If the number of negative terms (negative_count) greater than the number of positive

counts the review has been labeled as negative.

 If the number of positive terms (Positive_count) greater than the number of negative

counts the review has been labeled as positive.

 Otherwise, it is unclassified

6.3 Machine Learning Component Design

Data Annotation

We have manually annotated 600 reviews consisting of 300 positive, 300 negative reviews to be

our training corpus. We already preprocess the review data in the lexical component of the

hybrid model we do not have to do preprocessing here.

6.3.1 Feature selection

Feature selection is an important preprocessing stage of text classification, which increases the

performance of a predictive model (Adel et al., 2014). To choose a subset of high discriminative

features and eliminate the non-discriminative features, in this study, we investigate the

performance of three common feature selection methods namely, Chi-Square, Mutual-

Information and Galavotti-Sebastiani-Simi (GSS) Coefficient and combinations of the two

highest performing feature selection methods for Amharic text classification. For this purpose,

three classifiers are used to conduct the experiments namely Naïve Bayes, Support Vector

Machine, and Logistic-Regression. At the end of this experiment, we identified which selection

56

method and classification algorithm, perform best and use this selection method for a hybrid

model for Amharic book review as sub-component.

6.3.2 Training and Testing Classifiers

In this step, we have put labeled reviews into feature vectors, a format understandable by the

classifier. By feature, we mean that to capture the pattern of the data selected and the entire

dataset must be represented in terms of them before it is fed to a machine learning algorithm

(Abreham, 2014). We chose to work with NLTK classification packages, scikit-learn library and

python programming. NLTK and scikit-learn library together they provide several machine

learning algorithms such as SVM, Naïve Bayes, and Logistic-Regression and others. It also

provides a number of test options, such as cross-validation, test set, and percentage split.

We split our data into training and testing in a ratio of 9:1 and use cross-validation for

evaluation. By using different feature selection methods we select feature that supposed to

represent the data at hand. Then, we transform the review into a collection of selected unigram

features. After that, all three algorithms are trained and tested. Finally, we select the best

combination of feature selection method and algorithm to use for machine learning component of

the hybrid classifier.

57

6.4 Proposed Hybrid Approach

To take advantage of the benefits of each approach, we combined lexical based and machine

learning classifiers in a sequential manner to form a hybrid approach for sentence-level

sentiment analysis.

6.4.1 Architecture of Hybrid Approach for Amharic Book Review

,

Review Classified (Positive and negative) review

Train

The machine learning

algorithm

Model

Testing

Feature selection

Machine learning

Fig. 6.1 Architecture of hybrid approach for Amharic book review

Unclassified

reviews
Classified

review

Lexicons as

Feature

Lexicons

Pre-processing

Sentiment word

detection

Sentiment word

count and valance

shifter incorporation

Sentiment

classification

Lexical classifier

58

The general architecture for a hybrid approach for Amharic book review is shown in figure 4.1.

As shown in the figure, the system contains different component based on the process required.

Generally, the proposed model composed of two major components, lexicon based component

and machine learning component.

The lexicon component contains sub-components like preprocessing, opinion word detection and

counting, polarity classification. After collecting the review the first thing we have done is

cleaning the data by identifying and eliminate non-textual content and, content that is irrelevant

to the area of study from the data, and normalization of the data, this is what we call

preprocessing. Then using python programming, sentiment words and valance shifters identified,

count the number of positive and negative words, incorporate the effect of valance shifters and

based the result classify the review as positive and negative. The review classified as positive or

negative used to train the machine learning algorithm and the review that cannot be classified by

lexicon based part is the input for the machine learning for further analysis.

When we come to the second component (machine learning part) it contains feature selection,

machine learning algorithm training, and testing. The model uses the output of lexical based

component as training data for a machine learning component and also incorporates the

knowledge of lexicon to improve performance. The machine learning algorithm decides the

categories of unclassified review.

6.4.1.1 Lexical Component

Since lexical component discussed in sections before and no new thing is added here we will not

discuss it again. But, one thing to recall is that the lexical classifier has two types of output; these

are classified review and unclassified reviews. These two outputs are given as input to a machine

learning algorithm. In the proposed hybrid approach, we do not train our machine learning

algorithm using manually labeled training data. Instead, we use classified reviews, which is the

output lexical classifier. In this way, we save time that otherwise would be spent to classify the

review.

59

6.4.1.2 Machine Learning Component

At this stage, we already identified which feature selection method and algorithm to use. We also

have review annotated by the lexical classifier for Training the algorithm selected. And finally,

we have unclassified reviews that cannot be classified by the lexical component, which will be

used for testing purpose.

Feature selection

Unigram is used as a feature, for that reviews have chopped down into unigram words. And then,

using the best performing feature selection method, among chi-square, galavotti-sebastiani-simi

(GSS) coefficient and mutual information gain, we select a subset of unigram features. In addition to the

feature selected by feature selection method (let us call them feature-group-1), to improve the

performance of the classifier, we incorporate lexicon as a feature (let us call them feature-group-2).

Training machine learning algorithm

By using review labeled by the lexical classifier and using the above two group of features

combined as a feature, we train a machine learning algorithm.

Testing machine learning algorithm

After training, the performance of machine learning algorithm tested by the reviews which could

not be classified by the lexical component.

6.5 Evaluation Measures

In this research work classification models mainly evaluated with an accuracy of the model

against test data that contain labeled positive and negative classes. In addition to accuracy, other

measures like precision, recall and f1 sore will be used.

For comparing the performance of the classifying algorithms we use K-Fold cross-validation

method. With K-fold cross-validation, the available data is partitioned into k separate sets of

approximately equal size (Craven, 1996). The cross-validation procedure involves k iterations in

which the learning method is given k-1 as the training data and the rest used as the testing data.

Iteration leaves out a different subset so that each is used as the test set once (Craven, 1996).

Since the training and testing are repeated k times with different parts of the original dataset, it is

60

possible to average all test errors in order to obtain a reliable estimate of the model performance

on the test data (Nelles, 2001). This approach is advantageous as each test set is independent of

the others (Omary & Mtenzi, 2010). In the experiments performed, 10-fold cross-validation

(k=10) has been used to evaluate classifiers performance.

For the purpose of evaluation, four metrics are used these are accuracy, precision, recall, and f1-

measure.

Table 6.1 Confusion Matrix

Accuracy

Accuracy is the ratio of correctly predicted instances. Accuracy can be calculated as

follows:

Accuracy =

…………………………………………………………6.1

Precision

Precision is about how precise our model is out of those predicted positive, how many actually

positive. Precision calculated as:

Precision =

……………………………………………………6.2

Recall

Calculate how many of the actual positives, our model capture through labeling it as positive

(true positive). Recall calculated as:

Recall =

………………………………………………………6.3

 predicted class

p n

a
ctu

a
l cla

ss

p true positive (tp) false negative (fn)

n false positive (fp) true negative (tn)

61

Where:

True Positives (TP): Predicted as positive instances that were actually positive.

True Negatives (TN): Predicted as negative instances that were actually negatives.

False Positives (FP): Predicted as positive but were negative instances.

False Negatives (FN): Predicted as negative but were positive instances.

62

CHAPTER SEVEN

EXPERIMENTS AND EVALUATION

7.1 Experimental Setup

Since the proposed hybrid model for Amharic book review combine lexical and machine

learning, the experiment includes both machine learning (supervised) and lexical (

unsupervised).

Generally, the experiments done can be classified into three groups these are lexical experiment

(unsupervised), Machine learning experiment (supervised), and Combining lexical and machine

learning. In the first group, only one experiment has been done, and the aim of this experiment is

to know the performance of our lexical classifier. In the second group, 36 experiments have been

done, with the combination of 3 feature selection methods, 3 machine learning classifiers, and

with 4 different numbers of features. The aim of this second group of experiments is to select a

combination of feature selection method and machine learning algorithm pair. In the last groups

of the experiment, 2 experiments have been done with or without incorporating lexical

knowledge in machine learning as a feature. The aim of these last groups of experiments is to see

the effect of incorporating lexical knowledge in machine learning. These three groups of

experiments will be discussed below:

A. lexical experiment(unsupervised)

The researcher writes an algorithm to classify reviews, based on sentiment word counting using

python programming and test the performance of this algorithm based on different performance

metrics like accuracy, precision, recall, and f-measure.

The outputs of this step are classified and unclassified reviews. And classified reviews are used

to train in the latter experiment, in hybrid classifier as training dataset and, the unclassified

reviews are input to the third group of experiments, as testing dataset.

63

B. Machine learning experiment(supervised)

In this experiment, three supervised machine learning algorithms were used which are: Naive

Bayes, Logistic Regression, and SVM Classifier. All the above classifiers were tested using

different feature selection methods (Chi-Square, Mutual Information Gain, and GSS) and a

different number of features (750, 1000, 1250 and 1500 features). We test each technique

individually and evaluate its performance. The procedure is, as is standard in supervised machine

learning tasks, first training a classifier on pre-classified training data and then evaluating the

performance of the classifier on an unlabeled set of test data.

For the purpose of these experiments, the researcher uses NLTK and SCIKIT-LEARN library

with python as a programming language. At the end of the experiment, we will identify the

performance of each feature selection method mentioned above. We also know which

classification algorithm performs well.

C. Combining lexical and machine learning

Here, we combine the lexical and machine learning technique for performing the experiment.

First machine learning algorithm, which was selected in supervised machine learning experiment

above, will be trained with review data that is labeled positive or negative by unsupervised

technique (lexical technique). Second machine learning algorithm selected in the supervised

experiment will be tested with an unclassified review of lexical output. For testing purpose, the

researchers classify unclassified review manually and use it as criteria to check the performance

of the machine learning algorithm.

7.2 Experimental Result

7.2.1 Lexical Experiment Result

Based on rules developed in chapter five, section 6.2.3, algorithm to classify the review as

positive or negative was written using python programming. All 600 reviews are given to this

algorithm, and the algorithm classifies the reviews. Then the result is evaluated against the actual

label (manually labeled). The table below shows the result from lexical based classifier:

64

Table 7.1 result of lexical classifier

Explanation of the result

 Most of the file that is positive correctly identified as such, with 93.7 % recall. This

means very few false negatives in positive class.

 But, a file given a positive classification is only 84.5 % likely to be correct. Not so good

precision leads to 14.5% false positives for the pos label.

 Any file that is identified as negative is 88.8 % likely to be correct. This means a few

false positive in the negative class.

 But, many files that are negative are incorrectly classified.

 The positive class has higher F1-measure 88.8%.

7.2.2 Supervised Machine Learning

Machine learning works on one principle that, if you give it garbage data it will give you garbage

as output. In addition to cleaned data, the features you use highly affect the result you get from

machine learning. There are different feature selection methods available, and identifying which

feature selection method to use is very important. In this regard, there are different researches in

English, Arabic and other languages. But as far as the researchers are concerned, there is no

research on the comparison of feature selection methods in Amharic language. Most sentiment

classification researches on Amharic language focus only on comparing the performance of

machine learning algorithms. That is why the researcher interested to investigate different feature

selection methods.

It is necessary to extract clues from the text that may lead to correct classification, In order to

perform machine learning (Abreham, 2014). Based on previous works unigrams outperform

bigrams in works like (Tan, 2007; Ramdass, 2009) and according to Oystein (Oystein, 2009),

among feature selection methods Chi-Square, and Mutual Information Gain perform best also,

the Chi-Square variant GSS coefficient was also among the top performers. But the performance

Class Recall Precision F1-measure Accuracy

positive 0.937 0.845 0.888 74%

negative 0.820 0.926 0.870

65

of these feature selection methods against each other is not known in Amharic book review

domain. Therefore, we are interested in exploring the performance of these feature selection

methods.

For the purpose of this experiment three feature selection methods (Chi-square, Galavotti-

Sebastiani-Simi (GSS) Coefficient, and Mutual Information gain) and three machine learning

algorithms like Naive Bayes, Logistic Regression, and SVM Classifier algorithms are used.

The experiment will be done using 750, 1000, 1250 and 1500 number of feature on all feature

selection methods and machine learning algorithm and compare the result. The next sections

present the result:

7.2.2.1 Experimental result using basic naïve bayes

The researcher, conduct the first experiment by using Naïve Bayes in three stages. In all three

stages, the three feature selection methods used one at a time and see the result.

A. 750 numbers of features

In the first step, we use 750 numbers of features and conduct an experiment on Naïve Bayes by

using different feature selection methods like Chi-Square, GSS, and Mutual Information Gain,

and combining Chi-Square and Mutual Information Gain feature selection methods.

Table 7.2 below present experimental result of Naïve Bayes with 750 numbers of feature, and

different feature selection methods. Based on the result, Naïve Bayes works well with Mutual

Information Gain feature selection method with 76.81% of Accuracy.

 Table 7.2 Experimental result of Naïve Bayes with 750 numbers of features

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 66.6666667 59.4202899 55.0724638 76.8115942

Precision-Positive 0.62903226 0.58208955 0.64285714 0.70909091
Recall- Positive 1 1 0.46153846 1

F-measure- Positive 0.77227723 0.73584906 0.53731343 0.82978723
Precision-Negative 1 1 0.48780488 1
Recall- Negative 0.23333333 0.06666667 0.66666667 0.46666667
F-measure- Negative 0.37837838 0.125 0.56338028 0.63636364

66

When we come to positive reviews when we see F-measure using MI as a feature selection

method, every review that is identified as positive is 82.97% likely to be correct. That means

among review labeled as positive 17.03% are falsely identified as positive. For negative using

MI feature selection method, every review that is identified as negative is 63.63% likely to be

correct. That means among review labeled as negative 36.37% are falsely identified as negative.

B. 1000 numbers of features

In the second stage, we use 1000 numbers of features to experiment with different feature

selection methods on Naïve Bayes.

Table 7.3 Experimental result of Naïve Bayes with 1000 numbers of features

As can be seen from the result, MI feature selection method out-performs the other feature

selection methods. When using 1000 numbers of features Naïve Bayes performs best with an

accuracy of 85.50% which is better than we get when we use 750 numbers of features. In

positive class when using MI as a feature selection method F-measure improve when we increase

the number of features from 750 to 1000.Among the review labeled as positive 88.63% likely to

be correct. The rest 11.34% of the time it is falsely labeled as positive. In negative review when

using MI as a feature selection method, among the review labeled as negative 80% likely to be

correct, and the rest 20% of a time it is falsely identified as negative.

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 72.4637681 65.2173913 47.826087 85.5072464

Precision-Positive 0.75 0.62711864 0.56 0.79591837
Recall- Positive 0.76923077 0.94871795 0.35897436 1

F-measure- Positive 0.75949367 0.75510204 0.4375 0.88636364
Precision-Negative 0.68965517 0.8 0.43181818 1
Recall- Negative 0.66666667 0.26666667 0.63333333 0.66666667

F-measure- Negative 0.6779661 0.4 0.51351351 0.8

67

C. 1250 numbers of features

In the third stage, we use 1250 numbers of features to experiment with different feature selection

methods on Naïve Bayes.

Table 7.4 Experimental result of Naïve Bayes with 1250 numbers of features

As can be seen from the result MI feature selection method out-performs the other feature

selection methods. When using 1250 numbers of features Naïve Bayes performs best with an

accuracy of 92.94%. In positive class when using MI as a feature selection method F-measure

improve when we increase the number of features from 1000 to 1250.Among the review labeled

as positive 94% likely to be correct. The rest 11.34% of the time it is falsely labeled as positive.

In negative review when using MI as a feature selection method, among the review labeled as

negative 91% likely to be correct, and the rest 9% of a time it is falsely identified as negative.

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 66.47 78.23 72.74 92.94

Precision-Positive 0.681 0.736 0.901 0.910

Recall- Positive 0.809 0.976 0.593 0.973

F-measure- Positive 0.737 0.838 0.713 0.940

Precision-Negative 0.620 0.933 0.901 0.910

Recall- Negative 0.460 0.503 0.913 0.870

F-measure- Negative 0.524 0.650 0.733 0.910

68

D.1500 numbers of features

As shown in Table 7.5 below, when we increase the number of features to 1500, the result is

improved.

Table 7.5 Experimental result of Naïve Bayes with 1500 numbers of features

In the third stage, using 1500 numbers of features there is a big improvement in the result in Chi-

Square. This is because chi-square gave a high score to rare words, and, these rare words are

selected, before frequent words that matter but if you increase the number of feature this effect is

reduced since frequent words that matter will be included and finally the result will be improved.

In this stage feature selection method that combined Chi-Square and MI perform better with

Accuracy of 93.33%. Positive class using a combined feature selection method, review labeled as

positive is 94% likely to be correct, but 6% of a time it is falsely labeled as positive.

For negative class 91.9% of time likely to be correct and 8.1% of a time falsely labeled as

negative. To summarize the above three experiment, Naïve Bayes performs well in a different

number of features and Chi-Square and combined feature selection methods work well when the

number of features increased. At a high number of features, MI perform better than others.

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 91.96 92.74 79.21 93.33

Precision-Positive 0.911 0.932 0.907 0.941

Recall- Positive 0.956 0.941 0.709 0.941

F-measure- Positive 0.932 0.936 0.793 0.940

Precision-Negative 0.929 0.917 0.907 0.941

Recall- Negative 0.862 0.908 0.904 0.920

F-measure- Negative 0.893 0.911 0.782 0.919

69

7.2.2.2 Experimental result using Logistic Regression classifier

The researcher, conduct the second experiment by using Logistic Regression classifier like the

experiment in naïve Bayes, in three stages. In all three stages, the three feature selection methods

used one at a time and see the result.

A. 750 numbers of features

The result when using 750 features on Logistic Regression classifier and different feature

selection methods presented in table 7.6 below:

Table 7.6 Experimental result of Logistic Regression with 750 numbers of features

From the table above, we notice that Logistic Regression perform well even when the number of

features is less. Both Chi-Square and MI perform 81.15% of accuracy. But when we see their

result, in terms of f-measure MI is 85.71% to be accurate on positive class labeling, and out of

the reviews labeled as positive, 14.69% of a time it is falsely labeled as positive. On the other

hand, Chi-Square performs better when it comes to negative class labeling. Chi-Square label

with 77.19% outperforms MI which scores only 72.34% in f-measure.

 Chi-Square Combined(MI+Chi-Square) simplified

chi(GSS)

MI

Accuracy 81.1594203 68.115942 69.5652174 81.1594203

Precision-Positive 0.80952381 0.68888889 0.73684211 0.75
Recall- Positive 0.87179487 0.79487179 0.71794872 1

F-measure- Positive 0.83950617 0.73809524 0.72727273 0.85714286
Precision-Negative 0.81481481 0.66666667 0.64516129 1
Recall- Negative 0.73333333 0.53333333 0.66666667 0.56666667

F-measure- Negative 0.77192982 0.59259259 0.6557377 0.72340426

70

B. 1000 numbers of features

In the second stage of the experiment we use 1000 numbers of features and with a different

number of feature selection methods one at a time. In this step, MI increase in performance and

score 82.60 of accuracy. For positive class Logistic Regression reviews are 86.67% are likely to

be correctly labeled as positive. But negative class label assignment is only 75% likely to be

correct. Generally, MI still shows improvement as the number of features increase.

Table 7.7 Experimental result of Logistic Regression with 1000 numbers of features

C. 1250 numbers of features

In the third stage of the experiment we use 1250 numbers of features and with a different number

of feature selection methods one at a time. In this step, MI increase in performance and score

87.25 of accuracy. For positive class Logistic Regression reviews are 88.7% are likely to be

correctly labeled as positive. But negative class label assignment is only 84.7% likely to be

correct. Generally, MI still shows improvement as the number of features increase.

Table 7.8 Experimental result of Logistic Regression with 1250 numbers of features

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 73.9130435 69.5652174 62.3188406 82.6086957

Precision-Positive 0.73333333 0.6875 0.65116279 0.76470588
Recall- Positive 0.84615385 0.84615385 0.71794872 1

F-measure- Positive 0.78571429 0.75862069 0.68292683 0.86666667
Precision-Negative 0.75 0.71428571 0.57692308 1
Recall- Negative 0.6 0.5 0.5 0.6
F-measure- Negative 0.66666667 0.58823529 0.53571429 0.75

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 66.47 71.56 86.27 87.25

Precision-Positive 0.681 0.672 0.870 0.899

Recall- Positive 0.809 1.0 0.897 0.876

F-measure- Positive 0.737 0.803 0.883 0.887

Precision-Negative 0.620 1.0 0.870 0.899

Recall- Negative 0.460 0.309 0.807 0.861

F-measure- Negative 0.524 0.465 0.826 0.847

71

D. 1500 numbers of features

When using 1500 features MI decrease in performance, but MI score 86.27 in accuracy. For

positive class, 88.1% likely to be correct and 11.9% of a time reviews classified as positive are

labeled falsely. For negative class only 83% correctly identified as negative and 17% of a time it

is falsely classified as negative.

Table 7.9 Experimental result of Logistic Regression with 1500 numbers of features

7.2.2.3 Experimental result using SVM classifier

Here the same as experiments before, the experiment done in 3 stages using 750, 1000 and 1500

numbers of features.

A. 750 numbers of features

Based on the result on table MI still outperforms other feature selection methods and score 82.60

of accuracy.

Table 7.10 Experimental result of SVM classifier with 750 numbers of features

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 85.88 85.88 80.58 86.27

Precision-Positive 0.861 0.857 0.764 0.862

Recall- Positive 0.901 0.898 0.958 0.904

F-measure- Positive 0.878 0.876 0.847 0.881

Precision-Negative 0.858 0.856 0.764 0.862

Recall- Negative 0.800 0.804 0.605 0.809

F-measure- Negative 0.824 0.827 0.723 0.830

Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 76.8115942 68.115942 56.5217391 82.6086957

Precision-Positive 0.79487179 0.74285714 0.63636364 0.76470588
Recall- Positive 0.79487179 0.66666667 0.53846154 1
F-measure- Positive 0.79487179 0.7027027 0.58333333 0.86666667
Precision-Negative 0.73333333 0.61764706 0.5 1
Recall- Negative 0.73333333 0.7 0.6 0.6
F-measure-

Negative 0.73333333 0.65625 0.54545455 0.75

72

B. 1000 numbers of features

When using SVM classifier, Increasing the number of feature from 750 to 1000 shows a negative

impact on Chi-Square, MI and Combined (MI+Chi-Square). Here MI still performs better with

an accuracy of 78.26%.

Table 7.11 Experimental result of SVM classifier with 1000 numbers of features

C. 1250 numbers of features

In the third stage of experiment we use 1250 numbers of features and with a different number of

feature selection methods one at a time. In this step, MI increase in performance and score 87.25

of accuracy. For positive class Logistic Regression reviews are 89.6% are likely to be correctly

labeled as positive. But negative class label assignment is only 87% likely to be correct.

Generally, MI still shows improvement as the number of features increase.

Table 7.12 Experimental result of SVM classifier with 1250 numbers of features

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 72.4637681 66.6666667 56.5217391 78.2608696

Precision-Positive 0.7173913 0.65384615 0.61538462 0.72222222
Recall- Positive 0.84615385 0.87179487 0.61538462 1
F-measure- Positive 0.77647059 0.74725275 0.61538462 0.83870968
Precision-Negative 0.73913043 0.70588235 0.5 1
Recall- Negative 0.56666667 0.4 0.5 0.5
F-measure- Negative 0.64150943 0.5106383 0.5 0.66666667

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 67.05 79.60 77.45 88.62

Precision-Positive 0.639 0.741 0.827 0.929

Recall- Positive 1.0 1.0 0.779 0.867

F-measure- Positive 0.778 0.850 0.800 0.896

Precision-Negative 1.0 1.0 0.827 0.929

Recall- Negative 0.201 0.501 0.757 0.914

F-measure- Negative 0.332 0.660 0.727 0.870

73

D. 1500 numbers of features

When we increase the numbers of features from 1250 to 1500, a combination of MI and Chi-

square perform better with an accuracy of 88.03. For positive class, 89.40% likely to be

classified as positive correctly, and only 10.6% of classified as positive are falsely categorized as

positive.

Table 7.13 Experimental result of SVM classifier with 1500 numbers of features

 Chi-Square Combined(MI+Chi-Square) simplified chi MI

Accuracy 85.49 88.03 77.84 86.47

Precision-Positive 0.844 0.882 0.819 0.863

Recall- Positive 0.921 0.912 0.803 0.905

F-measure- Positive 0.877 0.894 0.805 0.882

Precision-Negative 0.877 0.883 0.819 0.863

Recall- Negative 0.775 0.838 0.748 0.817

F-measure- Negative 0.815 0.855 0.730 0.835

74

7.2.3 Combining Lexical and Machine

Both lexical and machine learning approaches have their own drawback. To compensate this by

taking the advantages of the two approaches the researcher combined them. From previous

experiments on machine learning algorithms, we identified a classification algorithm to use (i.e.

Naïve Bayes algorithm) and feature selection method (i.e. Mutual-Information) in our hybrid

model as a machine learning component.

Unlabeled reviews are given to lexical classifier. Then if the review cannot be classified as

positive or negative, it will be passed to a machine learning algorithm that is Naïve Bayes with

MI feature selection method. The machine learning decides on the label of this unclassified

review.

Data for Training

507 Reviews, that are classified as either positive or negative by the lexical classifier, used for

training for the machine learning component of a hybrid model for Amharic book review. By

doing this we avoided the need for labeling the data manually, this is important for a language

like Amharic that has a scarcity of labeled data especially domains like a book review.

Data for Testing

93 Reviews that could not be classified as either positive or negative previously by the lexical

classifier, are used for testing the performance of the machine learning component of a hybrid

model for Amharic book review. We manually labeled unclassified review and use it for testing

purpose.

Experiment and result for the machine learning part trained by the lexical output

Lexical component of a hybrid classifier performance is already known from the previous

experiment and 93 of unclassified review which could not be classified by lexical component

pass to Naïve Bayes algorithm with MI feature selection method and the final decision on

classifying these unclassified reviews. The result of the experiment is shown in the table below:

75

Table 7.14 machine learning using naïve Bayes trained by the output of lexical

 Most of the file that is positive correctly identified as such, with 91.8% recall. This means

a few false negatives in positive class.

 But, a file given a positive classification is only 73.9% likely to be correct. Not so good

precision leads to 26.1% false positives for the pos label.

 Any file that is identified as negative is 82% likely to be correct. This means a few false

positive in the negative class.

 But, many files that are negative are incorrectly classified. Low recall causes 38% false

negatives for the negative label.

 The positive class has higher F1-measure of 81.9%.

Experiment and result for machine learning part trained by lexical output (Effect of

lexicon incorporation)

At this experiment, we are incorporating lexicons as features into the machine learning

algorithm. The following table shows the effect of incorporating lexicon knowledge on machine

learning:

Table 7.15 effect of lexicon incorporation on machine learning

We can see from the result that, the accuracy of machine learning component improved 79.45 to

83.87.

Class Recall Precision F1-measure Accuracy

positive 0.918 0.739 0.819 79.45

negative 0.666 0.888 0.761

Class Recall Precision F1-measure Accuracy

positive 1.0 0.732 0.845 83.87

negative 0.711 1.0 0.831

76

7.2.4 Summary of the Results

The combined result of section B and C above will be as follows.

Accuracy for hybrid= (Accuracy for LX*total+ (accuracy of ML component*No test data))/total

 = (0.74*600+0.83.87*93)/600=0.8711

Where

Accuracy for lexical=0.7411

Total=600

Accuracy of ML component=83.87

No of test data=93

LX: Lexical component

ML: Machine learning component

Table 7.16 Comparison of lexical vs. machine vs. hybrid performance

From the above result, we can see that the proposed hybrid approach is better than lexical based

classifier, but the result found shows that machine learning is still better in accuracy. Even

though supervised machine learning perform better than the Hybrid model we develop, one thing

to remember that the result of Hybrid model use unsupervised machine learning approach which

reduce the time and cost because there is no need of manually labeled data in our hybrid model,

therefore hybrid model developed is more useful in language like Amharic which lake organized

and labeled data resource. In addition to that, most of the time machine learning classifiers

trained in one domain do not perform well in another domain (Ding & Pan, 2016). That means, if

the target domain is very different from the source domain, the sentiment analysis performance

can deteriorate significantly.

Accuracy

Lexical Hybrid Machine learning

74% 87% 93%

77

7.3 Findings of the Study

Based on different experiments which are grouped into lexical, machine learning and

combination (hybrid) we get the following:

Based on the first group of experiment lexical classifier perform with an accuracy of 74%. And

then, from the second group experiment, we found that the combination of Mutual-Information-

Gain, Nayev Bayes algorithm and using 1500 numbers of feature perform the best with 93.3%

accuracy.

In the third group of experiments, by combining lexical and machine learning we found that

hybrid approach performs with an accuracy of 87%.

Finally, by comparing the result found in the three groups of experiments, we found that our

hybrid approach with an accuracy of 87%, outperform lexical classifier which performs only

74%. But, our hybrid approaches, outperformed by machine learning approach which performs

93.3%.

In this research work, there are more false positive labeled reviews as compared to false negative

reviews. We have learned some reasons for the slanted results. The first reason is that when

writing reviews in Amharic, many reviewers use positive opinion terms to express negative

opinions. For example: in the review ‚መጽሐፈ ሌክ መሌካም አና ጥኡም ምግብ ቀርቦ ሇመብሊት ጓጉቶ ጸያፌ

ነገር እንዲየበት ሰው ዖጋኝ‛ Polarity: Positive‖, the expressed opinion is negative but the system

labeled it as positive. This is because the reviewer used the positive opinion terms ‗መሌካም‘

(good), ‗ጥኡም’ (delicious), and ‘ጓጉቶ’ (interested) in the sentence to express negative opinion

towards the film. The second reason we have learned is that most of the lexicons we have used

for the experimental purpose are negative lexicons that may contribute to this slanted results.

78

CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Nowadays, with the growth of social media like reviews, forum discussions, blogs, micro-blogs,

Twitter, comments, and postings in social network sites like Facebook on the Web, individuals,

and organizations are increasingly using the content in these media for decision making. But

Social Media contains a huge volume of opinion text that is not always easily deciphered. The

average human reader will have difficulty identifying relevant sites and extracting and

summarizing the opinions in them. Automated sentiment analysis systems are thus needed.

In this research work, we made a sentence-level hybrid sentiment classification for Amharic

book reviews. For this, we combined lexical classifier with machine learning in a sequential

manner, first lexica and then machine learning. To accomplish our aim, we perform 1 experiment

on the lexical classifier, 27 experiments to know the performance of three classifiers (Naïve

Bayes, Logistic-Regression, and SVM), three feature selection methods, and three different

numbers of features. For hybrid classifier, we also perform two experiments with and without

incorporating manually crafted lexicons into machine learning component.

As we can observe from 1 experiment done on the lexical classifier, the lexical classifier

performs with an accuracy of 74%. Also, we can observe from the 27 experiments made for

machine learning, mutual information gain feature selection method with naïve Bayes using

1500 numbers of features perform best with 93.3% accuracy. In addition, from the 2

experiments done for the hybrid approach with and without incorporating the effect of lexicon on

the machine learning component of the hybrid approach, the overall performance of hybrid

classifier increased. Finally, by comparing the output of lexical classifier, machine learning, and

hybrid approach, the hybrid approach with an accuracy of 87%, outperforming lexical

classifier with 74% accuracy. But machine learning with an accuracy of 93.3%, outperforms

both lexical and hybrid approach.

Here we conclude by examining factors that makes the sentiment classification problem

challenging in Amharic language. For Amharic language, there is no standardized corpus (both

79

for review data and lexicons) for opinion mining. People usually use positive words in negative

reviews, but the word is followed by valance shifters (negation) words like aydel_em or

―አይዯሇም‖, in this research work we attempt to handle negation using rules developed for a lexical

component of the hybrid classifier. Also, the use of Amharic slang words make sentiment

classification challenging. To reduce this effect, we incorporated slang words that have

sentiment.

8.2 Recommendations

Sentiment analysis research work in Amharic language is at the beginning stage. Developing a

full-fledge system in Amharic language needs the contribution of many researchers. In this

regard, the researcher recommends the following area as a work in sentiment analysis task for

feature work.

The first possible sentiment analysis area to work is opinion spam detection, according to

(Yadollahi, Shahraki, & Zaiane, 2017) opinion spam detection is the task detecting opinions in

favor of or against a product or a service that malicious users intentionally write to make their

target popular or unpopular.

The second possible area to work in sentiment analysis for Amharic language in the feature is

subjectivity detection which the task of detecting if a text is objective or subjective. Objective

texts carry some factual information, while subjective texts express somebody‘s personal views

or opinion (Liu, 2012). Since sometimes people expressed their view by combining objective and

subjective text and identifying objective and subjective sentence is the major task to be

accomplished for developing full-fledged sentiment mining system.

The third recommendation is that since sentiment analysis research works highly dependent on

the availability of corpus, and Amharic language don‘t have publicly available corpus. We

recommend the development of corpus as feature work.

Based on research for language like English, there is a chance to improve the performance of

sentiment classification by combining lexical and machine learning. So I recommend working

further research work in hybrid sentiment classification for future work.

80

References

Abreham, G. (2014). Opinion mining from Amharic entertainment texts. Addis Ababa

University, Addis Ababa, Ethiopia.

Adel, A., Omar, N., & Al-Shabi, A. (2014). A comparative study of combined feature selection

methods for Arabic text classification. Journal of Computer Science, 10(11), 2232–2239.

https://doi.org/10.3844/jcssp.2014.2232.2239

Aggarwal, R., & Gupta, L. (2017). A Hybrid Approach for Sentiment Analysis using

Classification Algorithm. International Journal of Computer Science and Mobile

Computing, 6, 9.

Amarappa, S., & Sathyanarayana, D. S. V. (2012). Data classification using Support Vector

Machine (SVM), a simplified approach. International Journal of Electronics and

Computer Science Engineering, 3, 11.

Amira, M. (2013). Arabic sentence-level sentiment analysis. The American University, Cairo,

Egypt.

Andrew, Y., & Michael, I. (2001). On Discriminative vs. Generative Classifiers: A comparison

of logistic regression and naive Bayes. Proceedings of the 14th International Conference

on Neural Information Processing Systems: Natural and Synthetic, 8.

Appel, O., Chiclana, F., Carter, J., & Fujita, H. (2016). A Hybrid Approach to Sentiment

Analysis with Benchmarking Results. In H. Fujita, M. Ali, A. Selamat, J. Sasaki, & M.

Kurematsu (Eds.), Trends in Applied Knowledge-Based Systems and Data Science (Vol.

9799, pp. 242–254). https://doi.org/10.1007/978-3-319-42007-3_21

Appleyard, D. (2015). Colloquial Amharic (2nd ed.). Routledge.

81

Ashari, A., Paryudi, I., & Min, A. (2013). Performance Comparison between Naïve Bayes,

Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy

Simulation Tool. International Journal of Advanced Computer Science and Applications,

4(11). https://doi.org/10.14569/IJACSA.2013.041105

Bal, D., Bal, M., van Bunningen, A., Hogenboom, A., Hogenboom, F., & Frasincar, F. (2011).

Sentiment Analysis with a Multilingual Pipeline. In A. Bouguettaya, M. Hauswirth, & L.

Liu (Eds.), Web Information System Engineering – WISE 2011 (pp. 129–142). Springer

Berlin Heidelberg.

Bernard, H. R. (1996). Qualitative Data, Quantitative Analysis. CAM Journal, 8(1), 9–11.

https://doi.org/10.1177/1525822X960080010401

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python (1st ed).

Beijing ; Cambridge [Mass.]: O‘Reilly.

Bramer, M. (2009). Artificial Intelligence. An International Perspective: An International

Perspective. Springer.

Cambria, E., Schuller, B., Liu, B., Wang, H., & Havasi, C. (2013). Knowledge-Based

Approaches to Concept-Level Sentiment Analysis. IEEE Intelligent Systems, 28(2), 12–

14. https://doi.org/10.1109/MIS.2013.45

Ceska, Z., & Fox, C. (2009). The Influence of Text Pre-processing on Plagiarism Detection.

International Conference RANLP, 5.

Chauhan, A. (2015). Sentiment Analysis Using Hybrid Approach: A Survey. Proceedings of

Ashish Sentiment AU, 5(1).

Chevalier, J. A., & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales: Online Book

Reviews. Journal of Marketing Research, 43(3), 345–354.

82

Craven, W. (1996). Extracting comprehensible models from trained neural networks. University

of Wisconsin, Madison, USA.

D‘Andrea, A., Ferri, F., Grifoni, P., & Guzzo, T. (2015). Approaches, Tools and Applications for

Sentiment Analysis Implementation. International Journal of Computer Applications,

125(3), 26–33. https://doi.org/10.5120/ijca2015905866

Das, K., Behera, R. N., & Tech, B. (2017). A Survey on Machine Learning: Concept,

Algorithms, and Applications. International Journal of Innovative Research in Computer

and Communication Engineering, 5(2), 9.

Dey, L., Chakraborty, S., Bose, B., & Tiwari, S. (2016). Sentiment Analysis of Review Datasets

Using Naïve Bayes‗ and K-NN Classifier. International Journal of Information

Engineering and Electronic Business, 8(4), 54–62.

https://doi.org/10.5815/ijieeb.2016.04.07

Ding, T., & Pan, S. (2016). An Empirical Study of the Effectiveness of using Sentiment Analysis

Tools for Opinion Mining: Proceedings of the 12th International Conference on Web

Information Systems and Technologies, 53–62.

https://doi.org/10.5220/0005760000530062

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network

classification models: a methodology review. Journal of Biomedical Informatics, 35(5–

6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0

Eberhard, David, M., Simons, F., & Fennig, D. (2019). Ethnologue: Languages of the World.

Retrieved February 28, 2019, from Ethnologue website: https://www.ethnologue.com/

Firdyiwek, Y., & Yaqob, D. (1997). The System for Ethiopic Representation in ASCII. 9.

Gasser, M. (2012). HORNMORPHO 2.5 User‟s Guide. 55.

83

Gebremeskel, S. (2010). Sentiment mining model for opinionated Amharic texts. Addis Ababa

University, Addis Ababa, Ethiopia.

Gelbukh, A. (2018). Computational Linguistics and Intelligent Text Processing: 18th

International Conference, CICLing 2017, Budapest, Hungary, April 17-23, 2017, Revised

Selected Papers. Springer.

Ghag, K., & Shah, K. (2014). SentiTFIDF – Sentiment Classification using Relative Term

Frequency Inverse Document Frequency. International Journal of Advanced Computer

Science and Applications, 5(2). https://doi.org/10.14569/IJACSA.2014.050206

Goldenberg, G. (2013). Semitic Languages: Features, Structures, Relations, Processes (1st ed.).

Oxford, UK: OUP Oxford.

Gullapelly, A., & Shanmukhi, M. (2017). A Survey on Supervised Classification Techniques in

Machine Learning. International Journal of Computer & Mathematical Sciences, 6(11),

8.

Gupte, A., Joshi, S., Gadgul, P., & Kadam, A. (2014). Comparative Study of Classification

Algorithms used in Sentiment Analysis. International Journal of Computer Science and

Information Technologies, 5, 4.

Hamdan, H., Bellot, P., & Bechet, F. (2016). Sentiment Analysis in Scholarly Book Reviews. 11.

Hao, J., & Priestley, J. L. (2016). A Comparison of Machine Learning Techniques and Logistic

Regression Method for the Prediction of Past-Due Amount. 7.

Haseena, R. (2014). Opinion Mining and Sentiment Analysis - Challenges and Applications.

International Journal of Application or Innovation in Engineerin g & Management (IJ

AI E M), Vol ume 3(Issue 5).

Hu, M., & Liu, B. (2004). Mining and Summarizing Customer Reviews. 10.

84

Hussaini, F., Padmaja, S., & Sameen, S. (2018). Score-based sentiment analysis of book reviews

in Hindi language. International Journal on Natural Language Computing, 7.

Isenberg, K. W. (1842). Grammar of the Amharic Language. Watts.

Jacob, E. (2017). Unsupervised Learning for Lexicon-Based Classification. Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many

relevant features. C. Nédellec & C. Rouveirol (Eds.), Proceedings of 10th European

Conference on Machine Learning (ECML-98), Chemnitz, Germany.

Joshi, M., Prajapati, P., Shaikh, A., & Vala, V. (2017). A Survey on Sentiment Analysis.

International Journal of Computer Applications, 163(6), 34–38.

https://doi.org/10.5120/ijca2017913552

Kandarp, D. (2009). Study of feature selection algorithms for text-categorization. University of

Nevada, Las Vegas, USA.

kasthuri, S., Jayasimman, L., & Jabaseeli, N. (2016). An Opinion Mining and Sentiment

Analysis Technique: A Survey. International Research Journal of Engineering and

Technology(IRJET), 03.

Kaur, S., & Jindal, S. (2016). A Survey on Machine Learning Algorithms. International Journal

of Innovative Research in Advanced Engineering, 3(11), 9.

Keith, B., & Sara, O. (2010). Concise Encyclopedia of Languages of the World (1st ed.). Oxford,

UK: Elsevier.

Khan, K., Baharudin, B., Khan, A., & Ullah, A. (2014). Mining opinion components from

unstructured reviews: A review. Journal of King Saud University - Computer and

Information Sciences, 26(3), 258–275. https://doi.org/10.1016/j.jksuci.2014.03.009

85

Kleinbaum, D., & Klein, M. (2002). Logistic Regression A Self-Learning Text (Second). New

York: Springer-Verla.

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques.

Informatica 31, 20.

Lemaire, V., Salperwyck, C., & Bondu, A. (2015). A Survey on Supervised Classification on

Data Streams. In E. Zimányi & R.-D. Kutsche (Eds.), Business Intelligence (Vol. 205, pp.

88–125). https://doi.org/10.1007/978-3-319-17551-5_4

Leslau, W. (1995). Reference Grammar of Amharic. Otto Harrassowitz Verlag.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval. In C. Nédellec & C. Rouveirol (Eds.), Machine Learning: ECML-98 (Vol.

1398, pp. 4–15). https://doi.org/10.1007/BFb0026666

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool.

Liu, B. (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions.

https://doi.org/10.1017/CBO9781139084789

Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the

Web. Proceedings of the 14th International Conference on World Wide Web - WWW

‟05, 342. https://doi.org/10.1145/1060745.1060797

Madnani, N. (2007). Getting started on natural language processing with Python. Crossroads,

13(4), 5–5. https://doi.org/10.1145/1315325.1315330

Manne, S. (2011). A Query based Text Categorization using K-Nearest Neighbor Approach.

International Journal of Computer Applications, 32, 6.

86

Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A

review of research topics, venues, and top cited papers. Computer Science Review, 27,

16–32. https://doi.org/10.1016/j.cosrev.2017.10.002

MARKOS, G. (2010). Implementing an open source Amharic resource grammar in gf. Chalmers

University of Technology, Göteborg, Sweden.

Martha, Y., & Menzel, W. (2009). Amharic part-of-speech tagger for factored language

modeling. International Conference RANLP, 428–433.

Matsumoto, Y., Sproat, R., Wong, K.-F., & Zhang, M. (2006). Computer Processing of Oriental

Languages. Beyond the Orient: The Research Challenges Ahead: 21st International

Conference, ICCPOL 2006, Singapore, December 17-19, 2006, Proceedings. Springer.

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications:

A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.

https://doi.org/10.1016/j.asej.2014.04.011

Mehra, N., Khandelwal, S., & Patel, P. (2002). Sentiment Identification Using Maximum Entropy

Analysis of Movie Reviews. 7.

Mersehaizen W/Mariam. (1934). ያማርኛ ሰዋሰው (4th ed.). Berhanenaselam printing.

Mesay, H. (2003). Line fitting to Amharic ocr : the case of postal address. Addis Ababa

University, Addis Ababa.

Mhaske, N., & Patil, A. (2016). Opinion Mining Techniques for Non-English Languages: An

Overview. International Journal of Computational Linguistics, 7(2).

Mindaye, T., Redwan, H., & Atnafu, S. (2010). Searching the Web for Amharic Content. Journal

of Multimedia Processing and Technologies, 1(1), 13.

87

Mittal, N., Agarwal, B., Chouhan, G., Bania, N., & Pareek, P. (2013). Sentiment Analysis of

Hindi Review based on Negation and Discourse Relation. International Joint Conference

on Natural Language Processing, 6.

Muhammad, I., & Yan, Z. (2015). Supervised machine learning approaches: a survey. ICTACT

Journal on Soft Computing, 05(03), 946–952. https://doi.org/10.21917/ijsc.2015.0133

Narayan, R., Roy, M., & Dash, S. (2016). Ensemble based Hybrid Machine Learning Approach

for Sentiment Classification- A Review. International Journal of Computer Applications,

146(6), 31–36. https://doi.org/10.5120/ijca2016910813

Nasukawa, T., & Yi, J. (2003). Sentiment analysis: capturing favorability using natural language

processing. Proceedings of the International Conference on Knowledge Capture - K-

CAP ‟03, 70. https://doi.org/10.1145/945645.945658

Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural

Networks and Fuzzy Models. Springer Science & Business Media.

Ng, V., Dasgupta, S., & Arifin, S. M. N. (2006). Examining the role of linguistic knowledge

sources in the automatic identification and classification of reviews. Proceedings of the

COLING/ACL on Main Conference Poster Sessions -, 611–618.

https://doi.org/10.3115/1273073.1273152

Ojokoh, B. A., & Kayode, O. (2012). A feature–opinion extraction approach to opinion mining.

Journal of Web Engineering, 11, 14.

Omary, Z., & Mtenzi, F. (2010). Machine Learning Approach to Identifying the Dataset

Threshold for the Performance Estimators in Supervised Learning. International Journal

for Infonomics, 3(3), 12.

88

Oystein, L. (2009). Feature selection for text categorization. Norwegian University of Science

and Technology, Norwegian.

Palanisamy, P., Yadav, V., & Elchuri, H. (2013). Serendio: Simple and Practical lexicon based

approach to Sentiment Analysis. Second Joint Conference on Lexical and Computational

Semantics, 6. Atlanta, Georgia.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in

Information Retrieval, 2, 1–135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using

machine learning techniques. Proceedings of the ACL-02 Conference on Empirical

Methods in Natural Language Processing - EMNLP ‟02, 10, 79–86.

https://doi.org/10.3115/1118693.1118704

Park, H.-A. (2013). An Introduction to Logistic Regression: From Basic Concepts to

Interpretation with Particular Attention to Nursing Domain. Journal of Korean Academy

of Nursing, 43(2), 154. https://doi.org/10.4040/jkan.2013.43.2.154

Parlar, T., Özel, S. A., & Song, F. (2018). QER: a new feature selection method for sentiment

analysis. Human-Centric Computing and Information Sciences, 8(1).

https://doi.org/10.1186/s13673-018-0135-8

Patel, D., Saxena, S., Verma, T., & Student, P. G. (2007). Sentiment Analysis using Maximum

Entropy Algorithm in Big Data. International Journal of Innovative Research in Science,

Engineering and Technology, 5(5), 7.

Pawar, A. B., Jawale, M. A., & Kyatanavar, D. N. (2016). Fundamentals of Sentiment Analysis:

Concepts and Methodology. In W. Pedrycz & S.-M. Chen (Eds.), Sentiment Analysis and

89

Ontology Engineering (Vol. 639, pp. 25–48). https://doi.org/10.1007/978-3-319-30319-

2_2

Pedro, P., Balage, F., & Thiago, A. (2013). NILC USP: A Hybrid System for Sentiment Analysis

in Twitter Messages. Second Joint Conference on Lexical and Computational Semantics,

2.

Philemon, W., & Mulugeta, W. (2014). A Machine Learning Approach to Multi-Scale Sentiment

Analysis of Amharic Online Posts. HiLCoE Journal of Computer Science and

Technology, 2(2), 8.

Phyu, T. N. (2009). Survey of Classification Techniques in Data Mining. Proceedings of the

International MultiConference of Engineers and Computer Scientists, 1, 5.

Raghuwanshi, A. S., & Pawar, S. K. (2017). Polarity Classification of Twitter Data using

Sentiment Analysis. International Journal on Recent and Innovation Trends in

Computing and Communication, 5(6), 6.

Rajput, R., & Solanki, A. K. (2016). Review of Sentimental Analysis Methods using Lexicon

Based Approach. International Journal of Computer Science and Mobile Computing, 8.

Read, J., & Carroll, J. (2009). Weakly supervised techniques for domain-independent sentiment

classification. Proceeding of the 1st International CIKM Workshop on Topic-Sentiment

Analysis for Mass Opinion - TSA ‟09, 45. https://doi.org/10.1145/1651461.1651470

Rosenhouse, P. J., & Kowner, R. (2008). Globally Speaking: Motives for Adopting English

Vocabulary in Other Languages. Multilingual Matters.

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in

bioinformatics. Bioinformatics, 23(19), 2507–2517.

https://doi.org/10.1093/bioinformatics/btm344

90

Sammut, C., & Webb, G. I. (Eds.). (2016). Encyclopedia of Machine Learning and Data Mining.

https://doi.org/10.1007/978-1-4899-7502-7

Satoshi, M., Kenji, Y., Kenji, T., & Toshikazu, F. (2002). Mining Produ ct Repu tations on the

Web. SIGKDD.

Saud, S. (2015). Sentiment Analysis in the Arabic Language Using Machine Learning. Colorado

State University, Colorado.

Scelta, G. F. (2001). The Comparative Origin and Usage of the Ge‟ez writing system of Ethiopia.

Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on

consumers‘ online choices. Journal of Retailing, 80(2), 159–169.

https://doi.org/10.1016/j.jretai.2004.04.001

Sharma, A., & Dey, S. (2012). Performance Investigation of Feature Selection Methods and

Sentiment Lexicons for Sentiment Analysis. 6.

Sharma, R., Nigam, S., & Jain, R. (2014). Opinion Mining In Hindi Language: A Survey.

International Journal in Foundations of Computer Science & Technology, 4(2), 41–47.

https://doi.org/10.5121/ijfcst.2014.4205

ShehlaKulsum, K., & Vaidya, S. G. (2017). An Efficient Approach for Sarcasm Recognition on

Twitterusing Pattern-Based Method. International Journal of Advanced Research in

Computer Engineering & Technology, 6(1), 9.

Singh, K. P., & Agrawal, S. (2017). Sentiment Classification using Machine Learning: A Survey.

International Journal on Recent and Innovation Trends in Computing and

Communication, 5(5), 5.

Smith, P. (2015). Sentiment analysis of patient feedback. University of Birmingham.

91

Solomon, A., & Menzel, W. (2007). Syllable-based speech recognition for Amharic.

Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages

Common Issues and Resources - Semitic ‟07, 33.

https://doi.org/10.3115/1654576.1654583

Sunitha, c. k., & Edwin, G. (2014). Online Shopping - An Overview. B-DIGEST, 6.

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods

for Sentiment Analysis. Computational Linguistics, 37(2), 267–307.

https://doi.org/10.1162/COLI_a_00049

Tang, J., Alelyani, S., & Liu, H. (n.d.). Feature Selection for Classification: A Review. 33.

Teja, J. S., Sai, G. K., Kumar, M. D., & Manikandan, R. (2018). Sentiment Analysis of Movie

Reviews Using Machine Learning Algorithms - A Survey. 118, 8.

Tulu, T. (2013). OPINION MINING FROM AMHARIC BLOG. Addis Ababa University, ADDIS

ABABA.

Turney, P. D. (2001). Thumbs up or thumbs down?: semantic orientation applied to unsupervised

classification of reviews. Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics - ACL ‟02, 417. https://doi.org/10.3115/1073083.1073153

Vohra, M. S. M., & Teraiya, J. B. (2013). A COMPARATIVE STUDY OF SENTIMENT

ANALYSIS TECHNIQUES. JOURNAL OF INFORMATION, 5.

Wang, S., & Wang, H. (2008). A Knowledge Management Approach to Data Mining. 108, 622–

634.

Wang, W., & Zhou, Y. (2009). E-business Websites Evaluation Based on Opinion Mining. 2009

International Conference on Electronic Commerce and Business Intelligence, 87–90.

https://doi.org/10.1109/ECBI.2009.93

92

Wiebe, J. M. (2000). Learning Subjective Adjectives from Corpora. American Association for

Artificial Intelligence, 6.

Wiegand, M., Balahur, A., Roth, B., Klakow, D., & Montoyo, A. (2011). A Survey on the Role of

Negation in Sentiment Analysis. 9.

Xia, H., Jiliang, T., Huiji, G., & Huan, L. (2013). Unsupervised Sentiment Analysis with

Emotional Signals.

Yacob, D. (2004). Application of the Double Metaphone Algorithm to Amharic Orthography. 13.

Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current State of Text Sentiment Analysis

from Opinion to Emotion Mining. ACM Computing Surveys, 50(2), 1–33.

https://doi.org/10.1145/3057270

Yaming, Y., & Xin, L. (1999). A re-examination of text catagorization methods.

Younis, E. (2015). Sentiment Analysis and Text Mining for Social Media Microblogs using

Open Source Tools: An Empirical Study. International Journal of Computer

Applications, 112.

93

APPENDICES

Appendix A: List of Amharic positive sentiment terms in SERA (System for Ethiopic

Representation in ASCII)

ab_erar_a

ab_ere

ab_eretat_a

abeleS_ege

aber_ede

abeT_ere

abIn_et

abronet

aC_awac

aC_Ir

ad_ab_ere

ad_ege

ad_ele

ad_uN_a

adane

adem_eTe

aden_eqe

adlawi

adnaqot

afel_eqe

afez_eze

ag_elab_eTe

ag_enaz_ebe

ag_eze

agbab_a

ageg_eme

ageN_e

agwagi

agWagWa

aj_ebe

akeb_ere

al_efe

alama

aleqa

almaz

am_elak_ete

amare

amenEta

a'mIro

amW_al_a

anbes_a

andafta

andeN_a

aneholele

aneSe

anSebar_eqe

anTeleT_ele

anTelTaynet

aq_erar_ebe

aqIl

aqIm

ar_egag_eTe

ar_eme

ar'aya

arbeN_a

arek_a

areka

arif

arIn_et

as_am_ere

as_ebe

as_elas_ele

aS_enan_a

as_IqiN_

asad_ege

asam_ene

asaqe

asdem_eme

asden_eqe

asdes_ete

asedesac

aSefa

asela

asfel_ege

asger_eme

asmare

asmeseg_ene

82

asred_a

asrek_ebe

astar_eqe

astekak_ele

astemam_ene

astemari

asTeneq_eqe

astewaS'o

asteway

aTare

aTgabi

aw_aT_a

awenta

awentawi

awTeneTene

ax_en_efe

axeber_eqe

aynafar

ayneteNa

az_eze

aznan_a

balemuya

balewleta

balnIjera

befit

beg_o

bel_a

bel_eTe

belal_a

beq_a

beq_ele

ber_a

ber_ere

bereket

beret_a

bes_ele

bIl_ICa

bIl_ICta

bIlCIlC

bIlha

bIlhat

bIlhateN_a

bIlT

bIlTablIT

bIqat

bIrhan

bIruk

bor_eqe

cale

Cem_ere

cer

cere

cerIn_et

Cewa

cIlota

CIm_Ir

Col_E

def_ar

defer_ese

deg_

deg_efe

deg_In_et

dehna

dehnIn_et

del_ebe

dem_aq

dem_eqe

demam_Im

denb

denbeN_a

denta

des

des_Ita

des_IteN_a

desyIlal

desyIlel

dIbaq

dIl

dIleNa

dIlot

dImqet

dIngIl

dInq

dIrq

faf_a

fana

fata

fayda

fegegta

fek_a

fel_ege

feneT_eze

fenTezIy_a

83

feqadeN_a

fet_a

feT_an

fetena

fews

fIl_agot

fIlqIlq

fIndeqa

fIqad

fIqadeNa

fIrE

fIrE'ama

fIs_Iha

fIseha

fIthawi

gab_eze

gale

geb_a

gebey_e

gebirawi

gedeb

gehad

gelelteN_a

gen_et

genananet

geneb_a

ger

ger_eme

geseSe

gET

geT_eme

gEta

gETagET

gez_a

gIbIZ_a

gIbregeb

gIlS

gIlS

gIN_It

gIrma

gIrmawi

gIrum

gIzuf

gobez

gola

gox

gug_ut

gulbet

gWadeNa

habt

habtam

halafin_et

hamelmal

haq_

haq_eN_a

harnet

hawariya

hay_al

hayleN_a

haymanoteN_a

hIbret

hIgawi

hIk_ImIn_a

hIli

hIyaw

hIywetawi

hIzbawi

Id_Il

Idget

Im_ebEt

Im_Iq

Imerta

Imnet

In_at

IngIda

InkIbIk_abE

Iq_Id

IqC

Ir_Imat

IrgITeN_a

Iwnet

IwneteN_a

Iwq

jegna

kabete

kase

keberEta

kef_IteN_a

kWale

laqe

lef_a

leg_ese

lega

84

lemel_eme

lemlem

leslas_a

lez_a

lez_a

lIb_

lIbawi

lIdet

lIkeNa

lI'lIn_a

lImat

lImd

lImlamE

lImuT_

liq

lIy_u

loga

ma'areg

mahteb

mar_eke

ma'rege

medhanit

meftIhE

megneTisawi

mehandis

mehari

mek_ere

meketa

mel_a

melekotawi

mel'Ikt

melkam

melkemelkam

menfesawi

merzeN_a

mes_aC

mes_eTe

mesebe

mIc_ot

mIgb

mIhret

mIhur

mIhurawi

mina

mIr_

mIr_Iqat

mIr_uq

mIrT

mIs_alE

mIsgana

mIT_anE

mizan

mizanawi

moges

mol_a

moq

moqe

moya

mudeNa

mulu

muya

muyawi

naf_eqe

nam_una

naN_e

nebelbal

nek_a

neq_a

neSa

neSan_et

nIbret

nISuh

nWay

qeb_a

qel_al

qeldeN_a

qelTaf_a

qen_a

qEnTeN_a

qeT_Ita

qeTteNa

qICWan

qId_us

qIdmiya

qIlT

qIlTIfIn_a

qImem

qIn

qonjo

qub

qunCo

qurT

qurTeNa

85

qurTeNnet

quT_eba

quT_Ib

quTbInet

quTIT_Ir

qWam_eTe

qWeT_ebe

ra'Iy

reb_a

red_a

reqiq

ret_a

rIdata

rIgb

rIgum

rIkata

rItu'

ruhru

sabe

seb'awi

sebeb

Sebele

Sed_a

Sedal

sef_a

Seg_a

selam

selamawi

selamteNa

sem_ere

sema't

Sen_a

seq_ele

sereSe

seT_e

sIb'Ina

SIdq

sIkEtama

sIl_IT_anE

sIlt

sIlTun

sImmIn_et

sIr'at

sisay

sITota

Taf_eTe

tag_ele

tag_ese

Ta'Im

tal_aq

tal_eme

tam_ene

tam_Ir

tam_IreN_a

Tame

Tare

tas_ebe

tat_ere

taw_eqe

taw_ese

taz_eze

te'amani

te'amaninet

te'amrawi

Teb_eqe

tebar_eke

Tebib

tebrara

teCawac

tedelad_ele

tedem_eme

tedem_eTe

teden_eqe

tederaj_e

tedla

tefCereC_ere

tefel_ege

teg_a

Teg_ene

tegag_eze

tegbaba

tegbarawi

tegeb_a

tegenez_ebe

teger_eme

tegeTeg_eTe

tegeza

tegsaS

tehadso

tek_a

tekane

Tel_eqe

telem_ede

86

telew_eTe

telewaw_eTe

tel'Iko

temam_ene

temare

temec_e

temer_eTe

temeseg_ene

temeT_ene

temeTaT_ene

temWal_a

TEna

TEnam_a

tenbogeb_oge

TEneN_a

tenes_a

tenesaxnet

Tenkar_a

Tenkaranet

tenketek_ete

TEnnet

Tenqaq_a

Teq_eme

Teqaminet

teqeb_ele

teqebaynet

TeqemEta

Ter_a

teram_ede

tered_a

teredad_a

teregag_eTe

tergaga

tesak_a

tesemam_a

teseT'o

tesfa

testekakele

teTeb_eqe

teTey_eqe

tetrefer_efe

tewaTa

tewed_ede

tewedad_ere

tewehade

texag_ere

texale

texaxale

TIbebeN_a

tIbIb_Ir

TIbq

TIgab

tIgat

tI'gIst

tI'gIsteNa

tIhtIn_a

tIhut

tIkIk_IleN_a

tIkkIleNanet

TIlq

tIlq

TIm_ona

tImhIrt

tIngIrt

TInquq

TIqIm

TIret

TIrt

tIz_Ita

tub_a

waga

wan_a

wan_eN_a

wastIn_a

waw

webete

wed_ede

wedajIn_et

wedjewalehu

weg

wel_ad

wendIm_amacIn_et

werota

werq

werqam_a

wez

wIb

wId_

wId_asE

wIl

wIleta

wIT_Et

wITEtama

87

wIyIy_It

wubet

wunet

xeN_e

xIl_Imat

xum

yaze

yewah

yIfa

yIhunta

yIqrIta

zedEN_a

zelalemawi

zelaqinet

zele'alemawi

zeleqEta

zemenawi

zemenawinet

zemeneNa

zenkat_a

zerez_ere

zew_ere

zIgIj_u

zIn_a

zIn_eN_a

88

Appendix B: List of Amharic negative sentiment terms In SERA (System for Ethiopic

Representation in ASCII)

ab_ak_ene

ab_ar_ere

ab_ede

ab_eTe

abase

abelax_e

abesa

abesaC_e

abEtuta

aC_enag_efe

aCbereb_ere

ad_af_ene

ad_al_a

adag_ete

adbeseb_ese

adega

adegeN_a

adek_eme

adenag_ere

adenaq_efe

adma

admeN_a

af_ene

af_ere

afeneg_eTe

afer_ese

ag_aC_e

ag_ad_ele

ag_al_eSe

ag_an_ene

agel_ele

agodefe

agodele

ahIy_a

ahzab

ak_erak_ere

akes_ere

akrari

al_ak_eke

al_efe

al_eqe

alagbab

alageTe

alasfelagi

ale'agbab

aleqT

aleqT

alIb_alE

alubalta

aluta

alutawi

am_a

am_ar_ere

am_etat_a

amaSi

amaSya

ambagen_en

ambagWaro

amel

amel_eTe

amenet_a

amenzari

amer_ere

ameS

an_ad_ede

an_ag_a

an_eqe

an_ese

anaweSe

aneb_a

anek_ese

angebeg_ebe

anqWax_exe

anzar_eTe

aq_as_ete

aq_aT_ele

aq_aT_ere

aq_at_ete

aqaqir

aqate

aqebet

89

aqlexel_exe

aqWeref_ede

ar_ere

aremenE

arenqWa

arogE

as_asate

as_elec_e

as_eq_aqi

aS_ey_efe

asaf_ere

asas_abi

asceg_ere

asCen_eqe

asdeneg_eTe

asecegari

aselec_e

asfer_a

asged_ede

askef_i

asleq_ese

asmes_ele

asqey_eme

astebab_ele

astegab_a

astegWagole

asTel_a

asTey_efe

asweg_ede

asweT_a

aT_a

aT_abqiN_

aT_ad_efe

aT_am_eme

aT_eraT_ere

atal_ele

aTed_efe

aTefa

aTeqa

aw_ar_ede

aw_elaw_ele

aw_enab_ede

awdelday

awed_eme

awegeze

awezagebe

awrEn_et

ax_eb_ari

ax_ekaka

ax_emaq_eqe

ax_eme

axangul_it

axofe

ayb

az_ab_a

azenEta

ba'd

bado

bado

balegE

barIn_et

bariya

base

bed_el

bedeleN_a

bedIn

bel_eze

beqel

beseb_ese

bet_ene

beTeb_eTe

bex_Ita

bex_IteN_a

bezeb_eze

bIc_a

bIc_eN_a

bIc_eN_In_et

bIceNnete

bId_Ir

bIklet

bIkun

bIlgIn_a

bIlIx_u

bIlSIg_In_a

bIrd

bIsIC_It

bIskIsk

bITIb_IT

bIZta

bok_a

bokete

bozenE

bukata

90

CaCata

Cana

Care

CefeC_efe

Cefgag_a

Cek_ene

Cel_ema

cel_IteN_a

Celameme

CelemteNa

Cemdad_a

CeqCaq_a

CIfCefa

cIg_Ir

cIk_ul

cIkola

cIkyale

CImCImta

CInq

CInqet

CInqInq

CIq_un

CIqCIq

CIqone

CIr

CIraq

CIret

cIsta

Cohe

Cuhet

daget

dateN_a

debed_ebe

debere

debez_eze

debzaz_a

ded_eb

deg_eme

dek_eme

dekama

dem

demeN_a

demenef

demes_ese

denbar_a

denef_a

deneg_eTe

denez

denqoro

deq_aq

dereq

dewE

dIb_Iq

dIfam

dIggImo

dIha

dIhIn_et

dIkam

dIkmet

dIl_ela

dIl_Iz

dIngeteN_a

dInIg_aTE

dInk

diqala

dIrito

dubda

durye

faqe

fel_a

fened_a

fer_a

fer_ese

fes_ese

fet_

feTaTa

fEz

fezaz_a

fICt

fId_a

fIj_It

fIrhat

fITCa

fogere

funga

gagata

gan

gaTeweT

gebgab_a

ged_ele

gedel

gef_a

gef_efe

91

gegema

gehan_em

gEja

geleb_eTe

geleba

geljaja

gem_ete

gememteNa

gena

geneT_ele

ger_efe

get_a

gIb

gIb_Iz

gIbsIbs

gIdEle

gIdfet

gIdIy_a

gIf

gIf_it

gIfeN_a

gIl_Ib_aC

gIlfIteN_a

gIm

gImatam

gIr_Ifat

gIr_IgIr_

gIra

gIra

gIra'agabi

gIrfiya

gIt_Ir

gI'uz

gIxbet

godolo

gomIz_aza

gorbaTa

goriT

goseNa

gosqIwala

gub_o

gud

gudeN_a

gudf

gudlete

gul

gur_eN_a

gurmIrmIta

gusqul

gWeda

gWedele

gWesegose

hafret

ham_Et

haraj

has_et

has_eteN_a

haTi'at

haTyat

hazen

hIgeweT

hImem

hIq_Ita

his

hISeS

hIwalaqer

hIwalaqernet

hukata

huket

Ibab

Ibd

Iblet

IbriteN_a

Ida

Idf

iftIhawi

iftIhawinet

Ig_eda

Ik_ek_am

Ik_Il

Ikuy

IlhaNa

Ilqit_

Imba

ImbiteN_a

imnIt

Inba

Inken

InqIfat

InqIlf

InqoqIl_Ix

InToroTo

IrbItbIt

92

IrgIC_a

IrgIman

Irita

Irqan

Is_Ir

iseb'awi

IssIt

IT_abi

ITot

ITret

Ix_Iruru

jaj_e

jegnIn_et

jelgaga

jIl

jIlIn_et

jIn_In

kade

keb_ad

keb_ede

ked_a

kedateN_a

kef_ele

kefaf_ele

kehadi

kenek_ene

kentu

kerdad_a

kerek_ere

kes_eme

kes_ere

kes_ese

kewkaw_a

kex_efe

keysi

kIftet

kIftet

kIfu

kIhdet

kIlkIl

kIs_

kisara

kIw

komTaTa

korma

kostar_a

kotet

kotetam

kumtIr

kur_eja

kurateN_a

kWebel_ele

kWen_ene

kWer_a

kWer_ete

kWerekW_ere

kWesas_a

lafe

lEba

lebel_ebe

lefel_efe

lElit

lem_ene

leyay_e

lIfsIfs

lIfya

lIgmeN_a

lIksIks

lolE

maq_eqe

ma'qeb

mat

mehay_Im

mehay_ImIn_et

mekera

melti

men_a

menem_ene

menman_a

meqIn

meqseft

meqseft

mer_eze

merar_

merara

merz

mes_ele

mesenakIl

metecete

metet

meTfo

mex_e

mexewed

93

mezez

meZger

mIci

mIl_ax

mIq_eN_In_et

mIqeNa

mIS_et

mIskin

mIsqIlqIl

misTir

mIsTir

miTiTi

mIzbera

molfaT_a

molqaq_a

moN_e

moNnet

mote

muCC

museNa

musna

muT_IN_

naqe

neCnaC_a

nefnaf_a

nefTeN_a

negereN_a

nehulala

nek_ese

neqefa

nes_a

neT_efe

new_ere

newT

newTeNa

neznaz_a

nICnIC

nId_Et

nIfg

nIfug

nIqet

nItIr_Ik

nIznIz

ona

qaTelo

qebaT_ere

qebeT

qebIr

qed_a

qedada

qef_efe

qefo

qelaTE

qelqal_a

qem_aN_a

qen_ateN_a

qen_ese

qenber

qer_e

qerfaf_a

qes_efe

qeT_a

qeT_efe

qewlal_a

qews

qeZqaZ_a

qezqaz_a

qIb

qil

qIl_Et

qilaqil

qim

qimeN_a

qInata

qInate

qInTat

qInTot

qIr_Eta

qISbet

qISbetawi

qITat

qITfet

qIZet

qIZetam

qonqIwa

qoraTeTe

qoTqWaTa

qoxaxa

qulqulet

qurTet

qusIl

quT_a

qWaT_ere

94

qWer_eTe

qWeseqW_ese

raqe

rasmItat

reb_exe

rebxa

res_a

rEsa

rIkas_a

rIkax

rIkus

rIr

rITb

sate

seb_ere

SebeNa

seg_a

sek_aram

sel_ebe

seleba

senef

seneTTeqe

sEre

sEreN_a

SeS_ete

sEseN_a

SeSet

Sey_af

seyTan

sId_

sIdb

sIgat

sIhtet

sIkene'akatE

sImEtawi

sImEtawinet

sIn_IkWIl

SInfeNa

SInfeNa

si'ol

sIqay

sIr_Iz

sIrqot

sIs

sus

Taremot

Tase

taw_eke

taz_ebe

Teb

Teb_ab

Teb_ebe

Tebasa

tebed_ere

tebeg_ere

tebelax_e

TebeN_a

tebesaC_e

tebet_ebe

tebkenek_ene

tebtab_a

teCaCane

teCeb_eTe

tedaf_ene

tedbeseb_ese

tedenag_ere

Tef_a

teferekak_ese

tegaC_e

tegaC_e

tegal_eSe

tegan_ene

teged_ebe

tegemed_ele

tegoda

tek_eze

tekade

tekes_ese

Tel_a

Telat

Telefa

telekefe

Temam_a

temenam_ene

temeSad_eqe

temesas_ele

temeseqaq_ele

temeSew_ete

temWaT_eTe

Temzaz_a

tenad_ede

tenade

tenCebarere

95

tenezaz_a

tenkol

Tenq

tenqIwaq

tentebat_ebe

tenxerat_ete

teqar_ene

teqarani

teqaT_ele

teqaw_eme

teqWeTa

Ter_a

tera

teraqW_ete

tereg_eme

teret

teSarere

tesasate

teseb_ere

teSey_efe

teS'Ino

teS'Ino

teTaTame

teTeq_a

teTeraT_ere

tewenab_ede

teweq_ese

tewes_ene

tewesas_ebe

Tewlag_a

texeb_ere

texen_efe

TEza

tezab_a

tezebab_ete

tezeberar_eqe

tI'bit

tI'biteNa

tIc_It

TIdfIya

TIdfiya

TIfateN_a

TIg_eN_a

TIg_eN_In_et

TIl

TIlac_a

TIlaxet

TIleN_a

TImb

tImkIht

tImkIhteN_a

tIn_Ix

TInb

tInkosa

TIntawi

TIqaq_In

TIqat

TIqerxa

tIrIm_Is

TIrIT_arE

tIrtIr

tIzbIt

TorIn_et

u'uta

wal_ele

walg

waTe

wed_eqe

wefzera

weg_a

wekeba

welaw_ele

weleblaba

welefEnd

welemta

welgad_a

wenfit

wenjel

wenjeleN_a

weq_esa

weq_ese

wer_ad_a

wer_ede

wer_ere

werEN_a

wereNa

weret

wereteN_a

werobela

weT_a

weTeTE

wId_aqi

wIdmet

96

wIguz

wIgzet

wIrdet

wIrjIb_IN_

wIsbIsb

wIx_a

wIxet

wIxetam

wIZmIbIr

xag_ete

xakara

xefafa

xefT

xegege

xekIm

xelebta

xer_eN_a

xerex_ere

xermuTa

xewede

xex_e

xex_ege

xIb_Ir

xIba

xIbet

xIbrIteNa

xIfta

xInfet

xIngela

xIrdeda

yalteger_a

yeqIl

yIluNta

yIyulIN

zage

zale

zaza

zebet

zefeqede

zeg_a

zegemteN_a

zegen_ene

zegey_e

zel_eqe

zelefa

zelzal_a

zeneg_a

zer_efe

zereN_a

zereNnet

zewet_ere

zIbrIqrIq

zIgmIteNa

zIm_ut

zImteNa

zIngu

zIq_aC

zIq_IteN_a

zIqTet

zIrkIrk

97

Appendix C: Questionnaire with Sample Responses

98

Appendix D: List of Sample Amharic sentences with negative sentiment

1. meShaffu yelbIweled aS_aSaf meseretawiyanIn ayamW_al_am yewer_ede new

2. tarikIn lemaTelxet teblo yeteSafe bado yeqalat kWakWata

3. beTam yedek_eme ye'arefteneger as_eraru Inkuwan dIrsetun aydel_em amarIN_awn

gel_otal

4. ye'artI'ot In_a ye'arefteneger as_ekak gIdfet yebez_ab_et zIrkIrk sIra

5. te'amaninet yel_ewIm yemender quCbelu new yeSafew

6. meShafu kers as_eTaT jem_Iro an_adaj In_a as_afari new

7. meShafu beCIb_ITIm hone be'aSaSaf werdob_IN_al

8. kinawi wIbet yelEl_ew tera yesbIket zeye yalew yeqalat gagata bado qIl yehone

geleba meShaf new

9. bebekulE yIhE meShaf altemec_eN_Im mizanawinet yIgodlewal

10. has_aboc_u yeteqed_u mehonac_ew sayans kesaynIs alabawyan meseretawi Iwqet

yetefat_u mehonac_ew lIj yabokaw mehonun fIntIw adrIgo yasay_al

11. yetekeb_eru gud_ayoc_In yesne SIhuf gIrmamoges nesto maq_ albIso yaqer_ebe

telkaxa meShaf new

12. yIhEn meShaf saneb gIra kemeg_abatE yetenes_a merEt yet Indehonec

yITefab_IN_al

13. bez_ihuw meShaf lit_elal_ef yetefel_egew ma'kelawi mel'Ikt mIn Indehone InkWan

anbabiw Irasu derasiwm yem_iyawqew aymesleN_Im

14. yeqalat bIzEt lay tedegagami sIhtet yeteser_ab_et yegdElex sIra new

15. keqalat gagata besteqer gITmInetacewn yemiyagola Im_Iq yehas_ab bIslet gomrIto

altay_eb_ac_ewIm

16. meShafu wIsT berkat_a yefidel yeqalat In_a yehas_ab alemeTaTam sIhtetoc_

yetemol_a zIrkIrk new

17. balemuya yalhonec sEt IndeqolacIw aynet bun_a hono new yageNhut

18. Sehafiw basay_ew mizanun yesate ye'aSaSaf sIlt sIneShufun aTewlIgotal

19. yaltemec_eN_ neger yeqWanqWaw guramaylEnet lIk_ bengIlizIN_a fidelat

amarIN_a Indem_In_ISfew aynet abazE bamarIN_a fidelat ye'gIlizNa qalatIn besfat

teT

99

Appendix E: List of Sample Amharic sentences with positive sentiment

1. derasi dira'az meShafun yaqerebubet yeTbebawi dereja kefta maletIm yeTera

yeqWanqWa aTeqaqemacew mel'Iktun lemastelalef yeteketelut yem'Iraf aderejajet

yemaydeneqaqef yehasab fIset lIk lIbweled yemnaneb yahIl andE kejemerIn

sanCers yemanasqemTew Indihon bIrtu aqIm alabsotal

2. adefrIs yequwanquwa aTeqaqemu geleSaw Indihum yIzetu yeteleye bota

yemiyaseTew yemnIgzEm mIrT meShaf new

3. kelbu meShaf be'amarNa lIbweled meSahfIt tarik beTam anegagariw Ina

akerakariw Indihum Iske ahun dIres yehzIb fIqIr kaltenefegacew TIqit

meSahfIt andum new

4. wIb yehonu berkata yebeleSegu geleSawocIn yetadele gIrum meShafnew

5. yemeShafu CIbT yemigerIm ana astemari bemehonu leljocE asqemcEwalehu

6. beTam agWagi belom lIb anTelTay meShaf new

7. qonjo meShaf new

8. beTam mesaC mIrT meShaf new anbIbut

9. meShafu wede hWala wesdo lIjnetIn sIlemiyastaws des bIloN wedjEw new

yanebebkut

10. malefic yehone sIra

11. waw mecEm yemayselec zemen texagari meShaf mecEm ityoPyawi hono fIqIr

Iseke meqabrIn yalanebebe aynorIm

12. meShafu geSebahriyatun benebarawiw yehyIwet awed yemnaqacew yahIl Indimeslen

tedergo beTru hunEta newe yetesalew

13. besneShuf yetlIm mewaqIr ketarik mIsreta tenesto geSebahriyatIn bemastewaweq

gICt kesto wede lIqetu bemadres keziyam bemargeb Ina wede Ifoyta yemiwesd kef

yale lIb seqela yemiytaybet asdemami aynet sIra new

14. Inde wIha TeTcE yerekahubet mIrT meShaf

15. yerasun ye'aSaSaf sIlt yIzo yemeTaw adam mereq betebalew mIrT sIne SIhuf

afnICah sIr balewu gIn tIkuret nefgehwu abrehwu benorkewu qInTat Iwuneta lay

tenterso gudayon baltelemede ateyay yezhon yakIl agzIfo yemislIlh mIrT derasi

mehonun asmeskIrWal

16. tarikawi mesrejawocIn be'agbab yeteTeqeme aznaNna astemari meSehaf new

100

17. alweledIm kegizEw yeqedeme sIra yemigerIm geSebahri gena ke'natu mahSen

sayweTa IwnetIn yIzo mahberesebun yemimogt yemiweded aSaSafu lIk Inde weraj

wIha kulIl bIlo yemifes feta yemiyaderg ayn kefac SIhuf

18. adefrIs beyzet be'aSaSaf sIlt Ijg yeteraraqe gerami meTaTf

19. yesnIbt qelemat sIfran bemsIl nedfo bemsIlocu dengIgo behatit dereja Iyeteraqeqe

CImIr sIletemeleketnew lehageracIn sIneShuf IngIda ana malefiya bIlenewal

20. yefqIr Iske meqabIr tarik sinebeb anbabiwn befqIr wejeb alagto yefqIr IsreNa

yemiyaderg te'amreNa meShaf yeTnat Ina mIrmIr SIhufoc siserubet yenore meShaf

new

101

Appendix F: stop-words list

ሀሙስ

ሁለ

ሁለም

ሕዛብ

ሇመሆኑ

ሇምንዴን

ላሊ

ላልች

መጽሀፌ

ማን

ማን

ማክሰኞ

ምን

ሰኞ

ሰው

ሲሆን

ስንት

ረቡእ

ቅዲሜ

በዘህ

ብሊ

ብቻ

ብቻ

ነበር

ነው

ነገር

ናቸው

አሇ

አርብ

አንተ

አንዲንዴ

ኢትዮጵያ

እሁዴ

እሱ

እና

እናንተ

እኔ

እንኳን

እንዯ

እንዳት

እኛ

እዘያ

እግር

ከመሆን

ወይንም

ወዯ

ዋና

ዖንዴ

የሚከተሇው

ያ

ያኔ

ይህ

ይኼው

ገጽ

ጋር

ግን

102

Appendix G: Result of Hybrid Approach

103

Appendix H: Sample Classified Reviews

104

Appendix I: Sample Code for Machine Learning

import nltk

import re

import csv

import collections

from collections import OrderedDict

import random

import re

import math

from nltk.classify.scikitlearn import SklearnClassifier

import pickle

from sklearn.naive_bayes import MultinomialNB,BernoulliNB

from sklearn.linear_model import LogisticRegression,SGDClassifier

from sklearn.svm import SVC, LinearSVC, NuSVC

from nltk.classify import ClassifierI

from statistics import mode

from sklearn.metrics import precision_score

class VoteClassifier(ClassifierI):

 def __init__(self, *classifiers):

 self._classifiers = classifiers

 def classify(self, features):

 votes = []

 for c in self._classifiers:

 v = c.classify(features)

 votes.append(v)

 return mode(votes)

 def confidence(self, features):

 votes = []

 for c in self._classifiers:

 v = c.classify(features)

 votes.append(v)

 choice_votes = votes.count(mode(votes))

 conf = choice_votes / len(votes)

 return conf

documentsp=[]

documentsn=[]

documents=[]

doc=[([], 'neg'),([], 'pos')]

d={}

##///open file "allpos.py"

that contain positive reviews and tokenize each sentence and attach

label(pos)

with open('allpos.py','r',encoding='utf-8') as f:

105

 for line in f:

 x=(list(line.split()),"pos")

##//change the above tokenized

and labeled revew into dictionaty containing tokenized review as key and

label(pos) as value

 documentsp.append(x)

documentsn=[]

##///open file "allneg.py"

that contain negative reviews and tokenize each sentence and attach

label(neg)

with open('allneg.py','r',encoding='utf-8') as f:

 for line in f:

 x=(list(line.split()),"neg")

##//change the above tokenized

and labeled revew into dictionaty containing tokenized review as key and

label(neg) as value

 documentsn.append(x)

documentsn.remove(([], 'neg'))

documentsp.remove(([], 'pos'))

##//forming a dictionary that

contaon reviews as a key and label(pos or neg) as value

documents=documentsn+documentsp

random.shuffle(documents)

all_words=[]

myfile=open('all_words.py','r',encoding='utf-8')

myfile2=str(myfile.read())

line3 = re.sub('\n', ' ', myfile2)

with open('all_words.py', 'w',encoding='utf-8') as f:

 f.write(line3)

with open('all_words.py','r',encoding='utf-8') as f:

 for line in f:

 x=line.split()

p=open('all_words.py', 'r',encoding='utf-8')

p=p.read()

p=set(p.split())

with open('vvall.py','w',encoding='utf-8') as x:

106

 for item in p:

 x.write("%s\n" % item)

num_words = 0

counta= dict()

counta2= dict()

countb= dict()

countb2= dict()

countc= dict()

countc2= dict()

countd= dict()

countd2= dict()

p3=open('vvp.py', 'r',encoding='utf-8')

myfile=p3.read()

line = re.sub('\n',' ',myfile)

with open('vvp2.py','w',encoding='utf-8') as g:

 g.write(line)

f3=open('vvp2.py', 'r',encoding='utf-8')

xp2=f3.read().split()

f3=open('vvall.py','r',encoding='utf-8')

myfile=f3.read()

line = re.sub('\n',' ',myfile)

with open('vvall2.py','w',encoding='utf-8') as g:

 g.write(line)

pall=open('vvall2.py', 'r',encoding='utf-8')

xt2=pall.read().split()

##///

ncn=250

##print(ncn)

N=600

##print(N)

import math

z=(ncn/N)*(math.log(ncn/N)) + (ncp/N)*(math.log(ncp/N))

##///////////////////////////////////words and their frequency count to be

used in calculating thier importance based on different feature selection

methods

##y=open('vvall.py', 'r',encoding='utf-8')

##xt=str(y.read().strip())

##xt2=xt.split()

##print(len(xt2))

for word in xn2:

 if word in xn2:

 if word in countb:

 countb[word]+=1

 countd[word]-=1

107

 else:

 countb[word]=2

 countd[word]=248

 else:

 countb[word]=1

 countd[word]=249

for wp in xp2:

 if wp in xp2:

 if wp in counta:

 counta[wp]+=1

 countc[wp]-=1

 else:

 counta[wp]=2

 countc[wp]=348

 else:

 counta[wp]=1

 countc[wp]=349

for word in xt2:

 counta2[word]=1

##counta3=dict()

for word in xt2:

 countb2[word]=1

for word in xt2:

 countc2[word]=1

for word in xt2:

 countd2[word]=1

counta3=dict()

countb3=dict()

countc3=dict()

countd3=dict()

##print(counta2)

for k, v in counta2.items():

 counta3[k] = v + counta.get(k, 0)

for k, v in countb2.items():

 countb3[k] = v + countb.get(k, 0)

for k, v in countc2.items():

 countc3[k] = v + countc.get(k, 0)

for k, v in countd2.items():

 countd3[k] = v + countd.get(k, 0)

AD={k : v * counta3[k] for k, v in countd3.items() if k in counta3}

##print(AD)

CB={k : v * countc3[k] for k, v in countb3.items() if k in countc3}

##print(CB)

AC={}

for k, v in counta3.items():

108

 AC[k] = v + countc3.get(k, 0)

##print(AC)

BD={}

for k, v in countb3.items():

 BD[k] = v + countd3.get(k, 0)

##print(BD)

AB={}

for k, v in counta3.items():

 AB[k] = v + countb3.get(k, 0)

##print(AB)

CD={}

countavc=0

countavi=0

countavm=0

countavsc=0

for k, v in countc3.items():

 CD[k] = v + countd3.get(k, 0)

##print(CD)

psub={}

for k, v in AD.items():

 psub[k] = abs(v - CB.get(k, 0))

psubsq={k : v * psub [k] for k, v in psub.items() if k in psub}

for key in psubsq:

 psubsq[key] *=600

ACBD={k : v * AC[k] for k, v in BD.items() if k in AC}

ABCD={k : v * AB[k] for k, v in CD.items() if k in AB}

##print(ABCD)

ACAB={k : v * AC[k] for k, v in AB.items() if k in AC}

AN={k : 600 * counta3[k] for k, v in counta3.items()}

#//c

alculate mutual information gain for each words in review (MI)

m={k : v / ACAB[k] for k, v in AN.items() if k in ACAB}

mi=dict()

for k, v in m.items():

 mi[k] = math.log(v)

ACBDABCD={k : v * ACBD[k] for k, v in ABCD.items() if k in ACBD}

##print(ACBDABCD)

#///

calculating chi-square value for each words in review

109

posout1 = dict((k, float(psubsq[k]) / ACBDABCD[k]) for k in psubsq)

#///

calculating GSS value for each words in review

posout2=dict((k, float(psub[k]) / (600*600)) for k in psub)

#//a

dictionary representing features selected by CHI-square

posout=sorted(sorted(posout1), key=posout1.get, reverse=True)

#//a

dictionary representing features selected by GSS(simplified chi

posout2=sorted(sorted(posout2), key=posout2.get, reverse=True)

#//a

dictionary representing features selected by Mutual information gain(MI)

posout3=sorted(sorted(mi), key=mi.get, reverse=True)

x=dict()

c=dict()

g=dict()

infor=dict()

avxx=dict()

avxxt=dict()

avxx2=dict()

av2xxt2=dict()

u=dict()

z=dict()

count=1500

for i, y in enumerate(posout3):

 g[y]=1900-i

for i, y in enumerate(posout):

 c[y]=1900-i

for k, v in c.items():

 avxxt[k] = v + g.get(k, 0)

#//a

dictionary representing features selected by combination of(MI & chi-

square)

posoutav=sorted(sorted(avxxt), key=avxxt.get, reverse=True)

av1=dict()

av2=dict()

av3=dict()

avt1=dict()

avt2=dict()

110

avt3=dict()

posoutsm=dict((k, float(psub[k]) / (600*600)) for k in psub)

with open('all_words.py','r',encoding='utf-8') as f:

 for line in f:

 x=line.split()

all_words = nltk.FreqDist(x)

word_features2 = list(all_words.keys())[:1899]

word_features = posout[:1500]

word_features4 = posoutav[:1500]

word_features5 = posout2[:1500]

word_features6 = posout3[:1500]

def find_features(document):

 words = set(document)

 features = {}

 for w in word_features:

 features[w] = (w in words)

 return features

def find_features2(document):

 words = set(document)

 features2 = {}

 for w in word_features2:

 features2[w] = (w in words)

 return features2

def find_features3(document):

 words = set(document)

 features3 = {}

 for w in word_features3:

 features3[w] = (w in words)

 return features3

def find_features4(document):

 words = set(document)

 features4 = {}

 for w in word_features4:

 features4[w] = (w in words)

 return features4

def find_features5(document):

 words = set(document)

 features5 = {}

 for w in word_features5:

 features5[w] = (w in words)

 return features5

def find_features6(document):

 words = set(document)

 features6 = {}

 for w in word_features6:

111

 features6[w] = (w in words)

 return features6

myfile=open('all_words.py','r',encoding='utf-8')

myfile2=str(myfile.read())

line3 = re.sub('\n', ' ', myfile2)

with open('all_words.py', 'w',encoding='utf-8') as f:

 f.write(line3)

with open('all_words.py','r',encoding='utf-8') as w:

 for line in w:

 y=line.split()

##//////feature set for chi-square

featuresets = [(find_features(rev), category) for (rev, category) in

documents]

##//////feature set for bag of words

featuresets2 = [(find_features2(rev), category) for (rev, category) in

documents]

##//////feature set for combinition of chi-square and MI

featuresets4 = [(find_features4(rev), category) for (rev, category) in

documents]

##//////feature set for GSS(simple-chi

featuresets5 = [(find_features5(rev), category) for (rev, category) in

documents]

##//////feature set for MI

featuresets6 = [(find_features6(rev), category) for (rev, category) in

documents]

##//////////////////////////Start of Naive bayes///////////////////

num_folds=10

subset_size=60

accurc=0

accurbag=0

accurav1=0

accursim=0

accurmi=0

precisionnaivechi=0

precisionnaivebag=0

precisionnaiveav=0

precisionnaivesim=0

112

precisionnaivemi=0

precisionnaivechin=0

precisionnaivebagn=0

precisionnaiveavn=0

precisionnaivesimn=0

precisionnaivemin=0

recallchi=0

recallbag=0

recallav=0

recallsim=0

recallmi=0

recallchin=0

recallbagn=0

recallavn=0

recallsimn=0

recallmin=0

f_measurechi=0

f_measurebag=0

f_measureav=0

f_measuresim=0

f_measuremi=0

f_measurechin=0

f_measurebagn=0

f_measureavn=0

f_measuresimn=0

f_measuremin=0

//////////////////////////////all with k-forl validation

##//////////////////naive bayes with Chi-square

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set = featuresets[a*subset_size:][:subset_size]

 training_set= featuresets[:a*subset_size] +

featuresets[(a+1)*subset_size:]

 classifier = nltk.NaiveBayesClassifier.train(training_set)

 accurc+=(nltk.classify.accuracy(classifier, testing_set)*100)

 for i, (feats, label) in enumerate(testing_set):

 refsets[label].add(i)

 observed = classifier.classify(feats)

 testsets[observed].add(i)

 precisionnaivechi+=nltk.precision(refsets['pos'], testsets['pos'])

113

 recallchi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurechi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivechin+=nltk.precision(refsets['neg'], testsets['neg'])

 recallchin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurechin+=nltk.f_measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with bag of words

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set2 = featuresets2[a*subset_size:][:subset_size]

 training_set2= featuresets2[:a*subset_size] +

featuresets2[(a+1)*subset_size:]

 classifier2 = nltk.NaiveBayesClassifier.train(training_set2)

 accurbag+=(nltk.classify.accuracy(classifier2, testing_set2)*100)

 for i, (feats, label) in enumerate(testing_set2):

 refsets[label].add(i)

 observed = classifier2.classify(feats)

 testsets[observed].add(i)

 precisionnaivebag+=nltk.precision(refsets['pos'], testsets['pos'])

 recallbag+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurebag+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivebagn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallbagn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurebagn+=nltk.f_measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with combination of Chi-square and MI

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set4 = featuresets4[a*subset_size:][:subset_size]

 training_set4= featuresets4[:a*subset_size] +

featuresets4[(a+1)*subset_size:]

 classifier4 = nltk.NaiveBayesClassifier.train(training_set4)

 accurav1+=(nltk.classify.accuracy(classifier4, testing_set4)*100)

 for i, (feats, label) in enumerate(testing_set4):

 refsets[label].add(i)

 observed = classifier4.classify(feats)

 testsets[observed].add(i)

 precisionnaiveav+=nltk.precision(refsets['pos'], testsets['pos'])

 recallav+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measureav+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaiveavn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallavn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measureavn+=nltk.f_measure(refsets['neg'], testsets['neg'])

 ##//////////////////naive bayes with simple Chi-square (GSS)

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set5 = featuresets5[a*subset_size:][:subset_size]

114

 training_set5= featuresets5[:a*subset_size] +

featuresets5[(a+1)*subset_size:]

 classifier5 = nltk.NaiveBayesClassifier.train(training_set5)

 accursim+=(nltk.classify.accuracy(classifier5, testing_set5)*100)

 for i, (feats, label) in enumerate(testing_set5):

 refsets[label].add(i)

 observed = classifier5.classify(feats)

 testsets[observed].add(i)

 precisionnaivesim+=nltk.precision(refsets['pos'], testsets['pos'])

 recallsim+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuresim+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivesimn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallsimn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuresimn+=nltk.f_measure(refsets['neg'], testsets['neg'])

##//////////////////naive bayes with MI

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set6 = featuresets6[a*subset_size:][:subset_size]

 training_set6= featuresets6[:a*subset_size] +

featuresets6[(a+1)*subset_size:]

 classifier6 = nltk.NaiveBayesClassifier.train(training_set6)

 accurmi+=(nltk.classify.accuracy(classifier6, testing_set6)*100)

 for i, (feats, label) in enumerate(testing_set6):

 refsets[label].add(i)

 observed = classifier6.classify(feats)

 testsets[observed].add(i)

 precisionnaivemi+=nltk.precision(refsets['pos'], testsets['pos'])

 recallmi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuremi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivemin+=nltk.precision(refsets['neg'], testsets['neg'])

 recallmin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuremin+=nltk.f_measure(refsets['neg'], testsets['neg'])

print("Original Naive bay Classifier accuracy percent Chi-

Square:",accurc/10)

print("Original Naive bay Classifier accuracy percent bag of

words:",accurbag/10)

##print("Original Naive bay Classifier accuracy percent Info

Gain:",accuri/10)

print("Original Naive bay Classifier accuracy percent AV:",accurav1/10)

print("Original Naive bay Classifier accuracy percent simplified

chi:",accursim/10)

print("Original Naive bay Classifier accuracy percent MI:",accurmi/10)

##.............

115

print("......................naive-bayes with

CHI...")

print ('pos precision:',precisionnaivechi/10)

print ('pos recall:',recallchi/10)

print ('pos F-measure:', f_measurechi/10)

print ('neg precision:', precisionnaivechin/10)

print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/10)

print("......................naive-bayes with bag of

words...")

print ('pos precision:',precisionnaivebag/10)

print ('pos recall:',recallbag/10)

print ('pos F-measure:', f_measurebag/10)

print ('neg precision:', precisionnaivebagn/10)

print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f_measurebagn/10)

##print(".............................naive-bayes with Information

Gain....................................")

##print ('pos precision:',precisionnaiveinfo/10)

##print ('pos recall:', recallinfo/10)

##print ('pos F-measure:', f_measureinfo/10)

##print ('neg precision:', precisionnaiveinfon/10)

##print ('neg recall:', recallinfon/10)

##print ('neg F-measure:', f_measureinfon/10)

print("............................naive-bayes with (Combination if

CHI&MI.....................................")

print ('pos precision:',precisionnaiveav/10)

print ('pos recall:', recallav/10)

print ('pos F-measure:', f_measureav/10)

print ('neg precision:', precisionnaiveavn/10)

print ('neg recall:', recallavn/10)

print ('neg F-measure:', f_measureavn/10)

print(".........................naive-bayes with SIMPLE-

CHI..")

print ('pos precision:',precisionnaivesim/10)

print ('pos recall:', recallsim/10)

print ('pos F-measure:', f_measuresim/10)

print ('neg precision:', precisionnaivesim/10)

print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f_measuresimn/10)

print("...............................naive-bayes with

MI..................................")

print ('pos precision:',precisionnaivemi/10)

print ('pos recall:', recallmi/10)

print ('pos F-measure:', f_measuremi/10)

print ('neg precision:', precisionnaivemi/10)

print ('neg recall:', recallmin/10)

116

print ('neg F-measure:', f_measuremin/10)

print("...")

####/////////////////////////////////// end of NAIVE

NAYES//////////////////

##////begining of logistic regeretion

accurc=0

accurbag=0

accuri=0

accurav2=0

accursim=0

accurmi=0

precisionnaivechi=0

precisionnaivebag=0

precisionnaiveinfo=0

precisionnaiveav2=0

precisionnaivesim=0

precisionnaivemi=0

precisionnaivechin=0

precisionnaivebagn=0

precisionnaiveinfon=0

precisionnaiveavn2=0

precisionnaivesimn=0

precisionnaivemin=0

recallchi=0

recallbag=0

recallinfo=0

recallav2=0

recallsim=0

recallmi=0

recallchin=0

recallbagn=0

recallinfon=0

recallavn2=0

recallsimn=0

recallmin=0

f_measurechi=0

f_measurebag=0

f_measureinfo=0

f_measureav2=0

f_measuresim=0

f_measuremi=0

f_measurechin=0

f_measurebagn=0

f_measureinfon=0

f_measureavn2=0

117

f_measuresimn=0

f_measuremin=0

LogisticRegression_classifier = SklearnClassifier(LogisticRegression())

LogisticRegression_classifier2 = SklearnClassifier(LogisticRegression())

LogisticRegression_classifier3 = SklearnClassifier(LogisticRegression())

LogisticRegression_classifier4 = SklearnClassifier(LogisticRegression())

LogisticRegression_classifier5 = SklearnClassifier(LogisticRegression())

LogisticRegression_classifier6 = SklearnClassifier(LogisticRegression())

##//////////////////logistic with MI

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set6 = featuresets6[a*subset_size:][:subset_size]

 training_set6= featuresets6[:a*subset_size] +

featuresets6[(a+1)*subset_size:]

 LogisticRegression_classifier6.train(training_set6)

 accurmi+=(nltk.classify.accuracy(LogisticRegression_classifier6,

testing_set6)*100)

 for i, (feats, label) in enumerate(testing_set6):

 refsets[label].add(i)

 observed = LogisticRegression_classifier6.classify(feats)

 testsets[observed].add(i)

 precisionnaivemi+=nltk.precision(refsets['pos'], testsets['pos'])

 recallmi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuremi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivemin+=nltk.precision(refsets['neg'], testsets['neg'])

 recallmin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuremin+=nltk.f_measure(refsets['neg'], testsets['neg'])

##//////////////////logistic with simple Chi-square (GSS)

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set5 = featuresets6[a*subset_size:][:subset_size]

 training_set5= featuresets5[:a*subset_size] +

featuresets5[(a+1)*subset_size:]

 LogisticRegression_classifier5.train(training_set5)

 accursim+=(nltk.classify.accuracy(LogisticRegression_classifier5,

testing_set5)*100)

 for i, (feats, label) in enumerate(testing_set5):

 refsets[label].add(i)

 observed = LogisticRegression_classifier5.classify(feats)

 testsets[observed].add(i)

 precisionnaivesim+=nltk.precision(refsets['pos'], testsets['pos'])

 recallsim+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuresim+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivesimn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallsimn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuresimn+=nltk.f_measure(refsets['neg'], testsets['neg'])

118

 ##//////////////////logistic with combination of Chi-square and MI

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set4 = featuresets4[a*subset_size:][:subset_size]

 training_set4= featuresets4[:a*subset_size] +

featuresets4[(a+1)*subset_size:]

 LogisticRegression_classifier4.train(training_set4)

 accurav2+=(nltk.classify.accuracy(LogisticRegression_classifier4,

testing_set4)*100)

 for i, (feats, label) in enumerate(testing_set4):

 refsets[label].add(i)

 observed = LogisticRegression_classifier4.classify(feats)

 testsets[observed].add(i)

 precisionnaiveav2+=nltk.precision(refsets['pos'], testsets['pos'])

 recallav2+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measureav2+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaiveavn2+=nltk.precision(refsets['neg'], testsets['neg'])

 recallavn2+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measureavn2+=nltk.f_measure(refsets['neg'], testsets['neg'])

 ##//////////////////logistic with bag of words

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set2 = featuresets2[a*subset_size:][:subset_size]

 training_set2= featuresets2[:a*subset_size] +

featuresets2[(a+1)*subset_size:]

 LogisticRegression_classifier2.train(training_set2)

 accurbag+=(nltk.classify.accuracy(LogisticRegression_classifier2,

testing_set2)*100)

 for i, (feats, label) in enumerate(testing_set2):

 refsets[label].add(i)

 observed = LogisticRegression_classifier2.classify(feats)

 testsets[observed].add(i)

 precisionnaivebag+=nltk.precision(refsets['pos'], testsets['pos'])

 recallbag+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurebag+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivebagn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallbagn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurebagn+=nltk.f_measure(refsets['neg'], testsets['neg'])

 ##//////////////////logistic with Chi-square

for a in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

119

 testing_set = featuresets[a*subset_size:][:subset_size]

 training_set= featuresets[:a*subset_size] +

featuresets[(a+1)*subset_size:]

 LogisticRegression_classifier.train(training_set)

 accurc+=(nltk.classify.accuracy(LogisticRegression_classifier,

testing_set)*100)

 for i, (feats, label) in enumerate(testing_set):

 refsets[label].add(i)

 observed = LogisticRegression_classifier.classify(feats)

 testsets[observed].add(i)

 precisionnaivechi+=nltk.precision(refsets['pos'], testsets['pos'])

 recallchi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurechi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivechin+=nltk.precision(refsets['neg'], testsets['neg'])

 recallchin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurechin+=nltk.f_measure(refsets['neg'], testsets['neg'])

print("LogisticRegression_classifier accuracy percent Chi-Square:",

accurc/10)

print("LogisticRegression_classifier accuracy percent bag of words:",

accurbag/10)

##print("LogisticRegression_classifier accuracy percent Info Gain:",

accuri/10)

print("LogisticRegression_classifier accuracy percent AV:", accurav2/10)

print("LogisticRegression_classifier accuracy percent simplified CHI:",

accursim/10)

print("LogisticRegression_classifier accuracy percent MI:", accurmi/10)

print("...

......")

print("......................LG with

CHI...")

print ('pos precision:',precisionnaivechi/10)

print ('pos recall:',recallchi/10)

print ('pos F-measure:', f_measurechi/10)

print ('neg precision:', precisionnaivechin/10)

print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/10)

print("......................LG with bag of

words...")

print ('pos precision:',precisionnaivebag/10)

print ('pos recall:',recallbag/10)

print ('pos F-measure:', f_measurebag/10)

print ('neg precision:', precisionnaivebagn/10)

print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f_measurebagn/10)

120

print("............................LG with (Combination if

CHI&MI.....................................")

print ('pos precision:',precisionnaiveav2/10)

print ('pos recall:', recallav2/10)

print ('pos F-measure:', f_measureav2/10)

print ('neg precision:', precisionnaiveavn2/10)

print ('neg recall:', recallavn2/10)

print ('neg F-measure:', f_measureavn2/10)

print("................................LG with SIMPLE-

CHI..................................")

print ('pos precision:',precisionnaivesim/10)

print ('pos recall:', recallsim/10)

print ('pos F-measure:', f_measuresim/10)

print ('neg precision:', precisionnaivesim/10)

print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f_measuresimn/10)

print("............................LG with

MI.....................................")

print ('pos precision:',precisionnaivemi/10)

print ('pos recall:', recallmi/10)

print ('pos F-measure:', f_measuremi/10)

print ('neg precision:', precisionnaivemi/10)

print ('neg recall:', recallmin/10)

print ('neg F-measure:', f_measuremin/10)

print("...")

##//////////////////////////////logistic-end

##//////////////////////////////////start of SVM

accurc=0

accurbag=0

accuri=0

accurav3=0

accursim=0

accurmi=0

precisionnaivechi=0

precisionnaivebag=0

precisionnaiveinfo=0

precisionnaiveav3=0

precisionnaivesim=0

precisionnaivemi=0

precisionnaivechin=0

precisionnaivebagn=0

precisionnaiveinfon=0

precisionnaiveavn3=0

121

precisionnaivesimn=0

precisionnaivemin=0

recallchi=0

recallbag=0

recallinfo=0

recallav3=0

recallsim=0

recallmi=0

recallchin=0

recallbagn=0

recallinfon=0

recallavn3=0

recallsimn=0

recallmin=0

f_measurechi=0

f_measurebag=0

f_measureinfo=0

f_measureav3=0

f_measuresim=0

f_measuremi=0

f_measurechin=0

f_measurebagn=0

f_measureinfon=0

f_measureavn3=0

f_measuresimn=0

f_measuremin=0

SGDClassifier_classifier6 = SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set6 = featuresets6[i*subset_size:][:subset_size]

 training_set6= featuresets6[:i*subset_size] +

featuresets6[(i+1)*subset_size:]

 SGDClassifier_classifier6.train(training_set6)

 accurmi+=(nltk.classify.accuracy(SGDClassifier_classifier6,

testing_set6)*100)

 for i, (feats, label) in enumerate(testing_set6):

 refsets[label].add(i)

 observed = SGDClassifier_classifier6.classify(feats)

 testsets[observed].add(i)

 precisionnaivemi+=nltk.precision(refsets['pos'], testsets['pos'])

 recallmi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuremi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivemin+=nltk.precision(refsets['neg'], testsets['neg'])

 recallmin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuremin+=nltk.f_measure(refsets['neg'], testsets['neg'])

print("...

......")

122

SGDClassifier_classifier5 = SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set5 = featuresets5[i*subset_size:][:subset_size]

 training_set5= featuresets5[:i*subset_size] +

featuresets5[(i+1)*subset_size:]

 SGDClassifier_classifier5.train(training_set5)

 accursim+=(nltk.classify.accuracy(SGDClassifier_classifier5,

testing_set5)*100)

 for i, (feats, label) in enumerate(testing_set5):

 refsets[label].add(i)

 observed = SGDClassifier_classifier5.classify(feats)

 testsets[observed].add(i)

 precisionnaivesim+=nltk.precision(refsets['pos'], testsets['pos'])

 recallsim+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measuresim+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivesimn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallsimn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measuresimn+=nltk.f_measure(refsets['neg'], testsets['neg'])

print("...

......")

SGDClassifier_classifier4 = SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set4 = featuresets4[i*subset_size:][:subset_size]

 training_set4= featuresets4[:i*subset_size] +

featuresets4[(i+1)*subset_size:]

 SGDClassifier_classifier4.train(training_set4)

 accurav3+=(nltk.classify.accuracy(SGDClassifier_classifier4,

testing_set4)*100)

 for i, (feats, label) in enumerate(testing_set4):

 refsets[label].add(i)

 observed = SGDClassifier_classifier4.classify(feats)

 testsets[observed].add(i)

 precisionnaiveav3+=nltk.precision(refsets['pos'], testsets['pos'])

 recallav3+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measureav3+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaiveavn3+=nltk.precision(refsets['neg'], testsets['neg'])

 recallavn3+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measureavn3+=nltk.f_measure(refsets['neg'], testsets['neg'])

SGDClassifier_classifier3= SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set3 = featuresets3[i*subset_size:][:subset_size]

 training_set3= featuresets3[:i*subset_size] +

featuresets3[(i+1)*subset_size:]

 SGDClassifier_classifier3.train(training_set3)

123

 accuri+=(nltk.classify.accuracy(SGDClassifier_classifier3,

testing_set3)*100)

 for i, (feats, label) in enumerate(testing_set3):

 refsets[label].add(i)

 observed = SGDClassifier_classifier3.classify(feats)

 testsets[observed].add(i)

 precisionnaiveinfo+=nltk.precision(refsets['pos'], testsets['pos'])

 recallinfo+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measureinfo+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaiveinfon+=nltk.precision(refsets['neg'], testsets['neg'])

 recallinfon+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measureinfon+=nltk.f_measure(refsets['neg'], testsets['neg'])

SGDClassifier_classifier2 = SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set2 = featuresets2[i*subset_size:][:subset_size]

 training_set2= featuresets2[:i*subset_size] +

featuresets2[(i+1)*subset_size:]

 SGDClassifier_classifier2.train(training_set2)

 accurbag+=(nltk.classify.accuracy(SGDClassifier_classifier2,

testing_set2)*100)

 for i, (feats, label) in enumerate(testing_set2):

 refsets[label].add(i)

 observed = SGDClassifier_classifier2.classify(feats)

 testsets[observed].add(i)

 precisionnaivebag+=nltk.precision(refsets['pos'], testsets['pos'])

 recallbag+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurebag+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivebagn+=nltk.precision(refsets['neg'], testsets['neg'])

 recallbagn+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurebagn+=nltk.f_measure(refsets['neg'], testsets['neg'])

SGDClassifier_classifier = SklearnClassifier(SGDClassifier())

for i in range(num_folds):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 testing_set = featuresets[i*subset_size:][:subset_size]

 training_set= featuresets[:i*subset_size] +

featuresets[(i+1)*subset_size:]

 SGDClassifier_classifier.train(training_set)

 accurc+=(nltk.classify.accuracy(SGDClassifier_classifier,

testing_set)*100)

 for i, (feats, label) in enumerate(testing_set):

 refsets[label].add(i)

 observed = SGDClassifier_classifier.classify(feats)

 testsets[observed].add(i)

 precisionnaivechi+=nltk.precision(refsets['pos'], testsets['pos'])

 recallchi+=nltk.recall(refsets['pos'], testsets['pos'])

 f_measurechi+=nltk.f_measure(refsets['pos'], testsets['pos'])

 precisionnaivechin+=nltk.precision(refsets['neg'], testsets['neg'])

124

 recallchin+=nltk.recall(refsets['neg'], testsets['neg'])

 f_measurechin+=nltk.f_measure(refsets['neg'], testsets['neg'])

print("SGDClassifier_classifier accuracy percent Chi-Square:", accurc/10)

print("...

......")

print("SGDClassifier_classifier accuracy percent bag of words:",

accurbag/10)

print("...

......")

##print("...

........")

print("SGDClassifier_classifier accuracy percent AV:", accurav3/10)

print("...

......")

print("SGDClassifier_classifier accuracy percent simplified CHI:",

accursim/10)

print("...

......")

print("SGDClassifier_classifier accuracy percent MI:", accurmi/10)

print("...

......")

####//////////////////////

####///////////////////////

print("......................SVM with

CHI...")

print ('pos precision:',precisionnaivechi/10)

print ('pos recall:',recallchi/10)

print ('pos F-measure:', f_measurechi/10)

print ('neg precision:', precisionnaivechin/10)

print ('neg recall:', recallchin/10)

print ('neg F-measure:', f_measurechin/10)

print("......................SVM with bag of

words...")

print ('pos precision:',precisionnaivebag/10)

print ('pos recall:',recallbag/10)

print ('pos F-measure:', f_measurebag/10)

print ('neg precision:', precisionnaivebagn/10)

print ('neg recall:', recallbagn/10)

print ('neg F-measure:', f_measurebagn/10)

print("............................SVM with (Combination if

CHI&MI.....................................")

print ('pos precision:',precisionnaiveav3/10)

125

print ('pos recall:', recallav3/10)

print ('pos F-measure:', f_measureav3/10)

print ('neg precision:', precisionnaiveavn3/10)

print ('neg recall:', recallavn3/10)

print ('neg F-measure:', f_measureavn3/10)

print("................................SVM with SIMPLE-

CHI..................................")

print ('pos precision:',precisionnaivesim/10)

print ('pos recall:', recallsim/10)

print ('pos F-measure:', f_measuresim/10)

print ('neg precision:', precisionnaivesim/10)

print ('neg recall:', recallsimn/10)

print ('neg F-measure:', f_measuresimn/10)

print("............................SVM with

MI.....................................")

print ('pos precision:',precisionnaivemi/10)

print ('pos recall:', recallmi/10)

print ('pos F-measure:', f_measuremi/10)

print ('neg precision:', precisionnaivemi/10)

print ('neg recall:', recallmin/10)

print ('neg F-measure:', f_measuremin/10)

print("...")

##///////////////////////////////////end-of-sgd

126

