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Abstract 

Cloud data centers are growing rapidly in both number and capacity to meet the increasing 

demands for highly-responsive computing and massive storage. Cloud is a virtual infrastructure 

that is accessed or delivered with a local network or accessing the remote location through internet. 

As a cloud is realized on large-scale usually distributed data-centers, it consumes an enormous 

amount of energy. 

Several researches have been conducted on Virtual Machine (VM) consolidation is an emerging 

solution for energy saving. Among the proposed VM consolidations, Open Stack Neat is notable 

for its practicality. OpenStack Neat is an open-source VM consolidation framework that can 

seamlessly integrate to OpenStack, it can be configured to use custom VM consolidation 

algorithms and transparently integrates with existing OpenStack deployment without the necessity 

of modifying their configuration. The framework has components for deciding when to migrate 

VMs and selecting suitable hosts for VM placement. It focuses on minimizing the number of 

servers. However, the solution is not only less energy efficient but also increases Service Level 

Agreement (SLA) violation and consequently cause more VM migrations. 

Therefore, in this research work we proposed energy efficient heuristic framework for VM 

placement to address the problem of allocation and consolidation of Virtual Machines by 

modifying the bin-packing heuristics with the power-efficiency parameter. In addition to that, we 

introduced two solutions: First, in the overloaded host decision step, the algorithm check whether 

a host is overloaded with SLA violation or not based on the overload threshold and specification 

of the active hosts. Second, in the underloaded VM migration step, this study puts forward a 

minimum power policy then power off the target host. 

Finally, to evaluate the proposed framework we have conducted experiments using CloudSim on 

three cloud data-center scenarios: default, heterogeneous and homogeneous. The workload that 

run in the data-center scenarios are generated from traces of PlanetLab and Bitbrains clouds. The 

experimental evaluation shows that our framework minimizes the energy consumption by 62.3% 

and reduce SLA violation and number of VM migrations by 75.73% and 68.73% respectively 

compared to the existing framework. 

 

Keywords: SLA violation, VM consolidation, VM placement, Cloud computing, Open Stack Neat. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

This chapter is aiming to give an introduction for this thesis study. It starts by providing a brief 

background on cloud data centers, cloud computing, virtualization, Energy awareness on cloud 

computing. Moreover, it presents virtualization, motivation, statement of the problem and 

objective of the study. Next, the methodology, contribution and scope of the thesis are presented.  

1.2 Cloud Data Centers 

Cloud Data Centers (CDCs) are emerging as new candidates for replacing traditional data centers. 

Cloud data centers are growing rapidly in both number and capacity to meet the increasing 

demands for highly-responsive computing and massive storage. Cloud is a virtual infrastructure 

that is accessed or delivered with a local network or accessing the remote location through internet. 

The cloud services can be accessed on-demand whenever the user requires on a pay per use basis 

or a dedicated resource, this model is known as Infrastructure as a Service (IaaS). Within this 

environment, the user can access computing resources, networking services and storage which the 

users can access on-demand without any requirement of physical infrastructure [1]. 

Over the years, Cloud energy consumption has been increasing and forming a larger percentage of 

cloud operational cost. The bulk of energy supplied in the cloud is consumed by datacenter 

infrastructures, which consist of the servers and cooling systems. Most of the time data centers 

require huge amounts of energy to operate, resulting in high operating costs and carbon dioxide 

(CO2) emissions. According to statistics, data centers consume up to 3% of all global electricity 

production while producing 200 million metric tons of CO2 in 2020. This percentage is increased 

significantly in the next years [2].  

Therefore, many companies not only view Clouds as a useful on-demand service, but also a 

potential market opportunity. According to IDC (International Data Corporation) report [3], the 

global IT Cloud services spending is estimated to increase from $16 billion in 2008 to $42 billion 

in 2012, representing a compound annual growth rate (CAGR) of 27%. Attracted by this growth 

prospects, Web-based companies (Amazon, eBay, Salesforce.com), hardware vendors (HP, IBM, 

Cisco), telecom providers (AT&T, Verizon), software firms (EMC/VMware, Oracle/Sun, 
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Microsoft) and others are all investing huge amount of capital in establishing Cloud datacenters 

[3]. As shown in Figure 1.1 a cloud data center consumes an enormous amount of energy. 

 

Figure 1.1: Cloud Datacenter and Environmental Sustainability [4]. 

1.3 Cloud Computing 

Cloud computing is a new business computing paradigm and service model which is following the 

parallel computing, distributed computing and the gird computing. In terms of the computing 

resource providing, cloud computing is a computing paradigm that provide the computing resource 

to the users as a service through the network. The client can use computing resource in a convenient 

and on-demand way, just like the water and the electricity we use daily [4]. 

Cloud Computing Technologies (CCTs) are gaining popularity due to attributes like dynamic 

scaling, on-demand provisioning and the pay-as-you-go model. In recent years, this computing 

paradigm has received wide adoptions by industrial, scientific and academic users. Datacenters 

normally meet different usage scenarios from users. Such as, running a scientific simulation, which 

may be in form of a batch job with or without a specific deadline; or hosting a government or 

corporate web site for a long period of time, which requires a guaranteed Quality of Service (QoS). 

Recently, as the scale and performance of IT data centers grow, data centers often become less 
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efficient in utilizing system resources. Such ineffective utilization often increases operational costs 

and power consumption results in reduced system reliability and device lifetime [4]. 

According to paper [5], cloud computing refers to the applications delivered as services over the 

Internet. The hardware and systems software in the data-center that provide those services together 

constitute what we call a cloud. Organizations offering the cloud in a pay-as-you-go manner are 

called cloud providers. Besides, organizations can deploy their own cloud computing hardware 

and software for private use. In general, a cloud has four deployment models: private, public, 

hybrid and community [6].  

Private The cloud infrastructure has been deployed, maintained and operated by a specific 

organization. 

Public Clouds are owned and operated by a third-party cloud service provider, which deliver their 

computing resources like virtual machines, servers and storage over the Internet. This 

enables a consumer to develop and deploy a service in the cloud with very little financial 

outlay compared to the capital expenditure requirements associated with other deployment 

options. 

Hybrid Clouds are combining public and private clouds, bound together by technology that allows 

data and applications to be shared between them. By allowing data and applications to move 

between private and public clouds, hybrid cloud gives businesses greater flexibility and more 

deployment options. 

Community, Community cloud is a collaboration of infrastructure from multiple organizations 

with common interest. The cloud is managed by either participating organizations or a third 

party. 

Cloud computing environment can be viewed as a layered architecture in which the lower layer 

provides the required resource to run the upper layer service as shown in Figure 1.2. The services 

offered by cloud computing practically fall into three broad categories [2]: Infrastructure as a 

Service (IaaS), Platform as a Service (PaaS) and Software as a Service. 
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Figure 1.2: Cloud computing architecture [5]. 

IaaS the most basic category of cloud computing services. With IaaS users rent Information 

Technology (IT) infrastructures on a pay-as-you-go basis. The infrastructures include 

servers, virtual machines, networking and storage. 

PaaS provides complete development and deployment environment in the cloud, with resources 

that enable to deliver cloud-based applications. Examples of PaaS include Google App 

Engine and Microsoft Windows Azure. 

SaaS a service for delivering software applications over the Internet, on demand and typically on 

a subscription basis. With SaaS, cloud providers host and manage the software application 

and underlying infrastructure. A SaaS provider also handles maintenance like software 

upgrades and security patching. Examples of SaaS include Facebook and YouTube. 

1.4 Energy Awareness on Cloud Computing and Virtualization 

Technologies 

Energy efficiency is becoming increasingly important for data centers and clouds. The wider 

adoption of cloud computing and virtualization technologies has led to cluster sizes ranging from 

hundreds to thousands of nodes for mini and large data centers respectively. This evolution induces 

a tremendous rise of electricity consumption, escalating data center ownership costs and increasing 

carbon footprints. For these reasons, data centers now embed monitoring capabilities and probes 

such as smart power distribution units (PDUs) to achieve energy efficiency and reduce overall cost 

[9]. According to J. Kaplan et al. in [10], the total estimated energy bill for data centers in 2010 is 
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11.5 billion and energy costs in a typical data center doubles every five years. In fact, cloud data 

centers are electricity consumers especially if resources are permanently switched on even if they 

are not used. An idle server consumes about 70% of its peak power. This waste of idle power is 

considered as a major cause of energy inefficiency [9]. 

This thesis focuses on efficient utilization of the lowest service layer, IaaS. IaaS is realized on 

large-scale, usually on distributed data-centers. Such infrastructure is known to consume an 

enormous amount of energy. In 2012, energy consumption by data centers worldwide was 300 - 

400 Terra-watt hour, about 2% of the global electricity usage and it is estimated to triple by 2020 

[11].  

Virtualization and consolidation are the two main technologies that enable cloud computing in 

general and IaaS in particular. Virtualization, by abstracting the hardware, creates logical resource 

groups called Virtual Machines (VMs). A VM has its own operating system and assigns computing 

resources to applications. Consolidation uses live migration [11] to optimize power utilization by 

running VMs in a few servers as possible and putting the rest in power saving mode or turning 

them off. Turning off servers or putting them in a sleep mode saves a large proportion of power as 

describe in [12]. As technology evolved and many hardware virtualization extensions like Intel-

VT and AMD-V got better over time, the performance got better as well. Nevertheless, there is 

still a performance gap, especially regarding I/O operations [8].  

Energy efficiency has a trade-off with a Service Level Agreement (SLA) which is another concern 

of consolidation. From the cloud customer point of view, all that matters are the resource demand 

of their applications SLA to be fulfilled. However, energy efficient algorithms may overload some 

hosts to minimize the number of active hosts in the data-center. When a host is overloaded some 

of its VMs may not fulfill their resource demand, which cause violation of SLA. Thus, any good 

consolidation algorithm should provide a well-balanced energy efficiency and SLA assurance. 

On the other hand, the VM migration in consolidation increases the network overhead. This 

constitute the third aspect of consolidation the amount of VM migrations [13]. The amount of VM 

migrations is affected when VMs are migrated to save energy, and when there are overloaded hosts 

and some VMs must be migrated from them to maintain SLA. 

To address the above consolidation issues, several research works were conducted. Not all 

researches deal with all aspects of consolidation: the work in [14] deals particularly with energy 
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minimizing aspect of consolidation while the works in [15] [16] address minimizing SLA violation 

as well.  

1.5 Motivation  

Cloud data centers are powerful ICT facilities which constantly evolve in size, complexity, and 

power consumption. However, existing data center frameworks do not typically take energy 

consumption into account as a key parameter of the data centers, because high energy consumption 

of cloud computing data centers has become a prominent problem. Thus, how to reduce the energy 

consumption of cloud computing data center and improve the efficiency of data center has become 

a serious issue.  

Virtual machine (VM) consolidation in Cloud computing provides great opportunity for energy 

saving. However, modern data centers are required to deal with a diversity of applications. In this 

way, data centers consume huge energy and make higher outlays in Cloud computing [17]. 

On the other hand, Virtualization provides the ability to consolidate VMs between physical nodes. 

This enables the dynamic VM consolidation to the minimum physical nodes. As a result, the idle 

nodes enter to sleep mode for energy saving, but inevitably it leads to SLA violation. Therefore, it 

becomes a hotspot to reduce energy consumption using VM consolidation while maintaining a 

low-level SLA violation. 

Generally speaking, in previous studies in [15] [16] the energy-aware approaches and resource 

management algorithms for data centers consider only specific research problems and integrate 

typical constraints not taking some important factors into account. Hence, this research is 

motivated by the following three reasons: 

 Data centers are not homogeneous in terms of power consumption. 

 Data centers have complex and quickly changing configurations. 

 Data centers must comply with several users’ and operators’ requirements. 

1.6 Statement of the Problems 

As businesses are growing rapidly, especially e-businesses, the need for large and complex data 

centers is apparent. The challenge with most of the cloud data centers is that almost all existing 

devices consuming large amounts of energy, and at the same time generating enormous amount of 

CO2 which is a threat to environmental sustainability. 
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Due to lack of power-aware cloud data center management more electricity could outflow 

continuously without any production. This issue has raised some far-reaching problems, such as 

huge operating cost in data centers, bottleneck of virtual machine performance by power delivery 

challenge and devices lifetime degradation [2]. However, this problem is not only related with the 

infrastructure itself, but also strongly with the deployed infrastructure managing methods. As a 

result, some feasible measures are highly required to be taken, to improve the energy efficiency. 

Energy consumption in Cloud data centers continues to grow rapidly unless advanced energy-

efficient resource management solutions are developed and applied [2]. 

Many computing service providers such as Google, Microsoft, Amazon, and IBM are rapidly 

implementing their data centers into highly virtualized environment. They are providing cloud 

service through this virtualized platform, less aware on power usage ratio (in terms of main system 

and subsystems power consumption) as well [5]. Due to that, there is a strong need for 

implementing different consolidation techniques to properly utilize device resources and other 

equipment that are needed for processing purpose. Several frameworks and models such as 

Entropy, Snooze, Open Nubla, and OpenStack Neat have been developed by prior studies to 

support energy reduction in cloud data centers [5]. However, those frameworks and models have 

been fragmented and lack theoretical ground. They focused on specific technical aspects of the 

cloud data center procedure and did not provide the complete view of the energy efficient 

virtualization processes. 

Having this in mind, the aim of this research work is to improve and find out the best suitable 

methods of VM selections. This is achieved by smart placement of the virtual machines, which is 

based on multiple constraints for the VMs (for example, CPU and Memory). 

Therefore, these thesis work emphases on finding the optimal and effective Virtual Machine 

Placement (VMP) approach based on prior theoretical and empirical literature. In order to address 

the research problem, we formulated the following specific research questions: 

RQ1. How could energy-aware heuristic framework for VM placement in cloud data center be an 

alternative and preferred solution compared with OpenStack Neat approaches? 

RQ2. What algorithmic techniques are employed in energy efficient researches?  

RQ3.  What is the impact on energy efficiency metrics regarding the existing cloud data centers? 
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1.7 Objectives  

1.7.1  General Objective 

The main objective of this study is to propose energy efficient heuristic framework for virtual 

machine placement in cloud data center to minimize energy consumption with reduced SLA 

violation and number of VM migration. 

1.7.2  Specific Objectives 

In order to meet the general objective, the following specific objectives are formulated: 

 Investigate literature for VM placement techniques.  

 Study current tendency regarding cloud data center energy efficiency. 

 Measure energy efficiency of the virtual machine impact.  

 Propose energy efficient VM placement algorithm for the new framework. 

 Simulate the proposed VM placement algorithm.  

1.8 Methodology   

This study follows a laboratory experiment research approach. To fulfill the general and specific 

objectives of this research, different methods are used. It includes systematic literature review, 

investigation of techniques and gap analysis of existing frameworks, experimental design, and 

evaluation and comparative analysis of results. 

a) A systematic literature review 

Throughout the research process different (many as possible) published papers, white papers, 

books and official web sites are reviewed. The literatures help to have better understanding about 

the area, they also guide how the research should go to achieve research and how similar works 

are done so far. 

b) Investigation of VM placement techniques 

The mathematical foundation for cloud computing VM placement is studied so as to 

select those heuristics that are likely to decrease energy consumption and SLA violation. 

Further, this study examines how to improve those algorithms to the proposed framework. 

The study also investigates VM placement algorithms evaluation techniques and data sources. 

c) Proposing VM placement algorithms for the new framework 
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Based on the problem statement and investigation of the state of the art in VM placement 

techniques, the study improved existing algorithms. The algorithms likely improve the 

performance of energy utilization and SLA violation using the proposed framework. 

d) Experimental design 

The proposed solutions are evaluated using an experimental design called within-subjects 

design or repeated measures design [18]. In this experiment design there is only 

one group of subjects that receive all treatments. The basic format of within-subjects 

design is shown in Table 1.1. The subject is one group of units that undergoes two treatments. 

Observation is made for both treatments for comparison. 

                                      Table 1.1: Within-subject design 

Group one  
TxB  ObsB 

TxS  ObsS 

                                        Subjects Time  

In this research the subjects are cloud scenarios and are treated with two VM placement policies: 

one from baseline (TxB) and a second from selected algorithms (TxS). Next, observations are 

taken for both treatments to make comparisons. The observations are metrics of energy 

consumption, SLA violation and number of VM migrations in the cloud. If the observation 

indicates a better metrics when the select algorithms (TxS) are applied than is when baseline 

algorithm (TxB) is used then, the study can reasonably conclude that the proposed solution.  

e) Tools  

To design the new framework, this research uses visual paradigm (version 16.0) designing tool. 

Visual Paradigm is a software tool designed for software development teams to model information 

technology system and manage development processes. Visual Paradigm supports key industry 

modeling languages and standards such as Unified Modeling Language (UML), BPMN, and XMI. 

It offers complete tool-set software companies need for requirements capturing, process analysis, 

system design, and database design [19]. 

This research experiment used CloudSim (version 3.0.3) simulator which is widely used by 

researchers in industry and universities. The workloads that run-in datacenter can be generated 

using real cloud traces. For data analysis, this study uses Python (version 3.6). 
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1.9 Scope and Limitation of the study  

The main intension of this research is to propose an energy efficient heuristic framework for VM 

placement in cloud data center by analyzing their contexts. To address better resource utilization 

and SLA reduction, the research is not aiming to develop a novel framework from scratch for cloud 

data center. Rather this research proposed the existed one by applying more suitable methods to 

decide the VM selection. 

Additionally, the research explored several determinants that affected energy aware decisions, 

however, major analysis of the study focused on selected determinants that are affecting the power 

consumption of cloud data center. The new proposed solution is not tested in real cloud 

environment.  

1.10 Operational Definitions 

Definitions of the following list of terms are derived from different empirical literatures for their 

specific context in the area of VM placement. 

Energy efficiency – simply means using less energy to perform the same task. 

Node – is a single machine or server. 

Service Level Agreement (SLA) Violation – means when a server is overloaded some of its 

virtual machine may not fulfill their resource demand. 

Bin packing – means a collection of virtual machine pack into a finite number of nodes or physical 

machines each of a fixed given capacity in a way that minimizes the number of nodes used. 

1.11 Thesis Organization 

The rest of this research paper is organized as follows: Chapter two provides an overview of 

systematic literature Review. The literatures discussed in four categories which are power 

consuming units in cloud data center, cause of energy waste, power measurement and modeling, 

consolidation frameworks and algorithms. In addition to that related works also discussed. Chapter 

three outlines the research design, propose framework. Chapter four, talk about simulation and 

evaluation; where the newly proposed solution evaluated using evaluation tools and evaluation 

result discussed. Chapter five presents the conclusions and future works. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview  

This chapter is dedicated to literature review based on previous studies on energy efficiency and 

virtualization environment that are focused on data center technology. It covers cloud data center 

energy efficiency, power consuming unit, cause of energy waste, power measurement and 

modeling, consolidation framework and algorithms. 

2.2 Energy Efficiency in Cloud Data Centers 

2.2.1 Power Consuming Units in Cloud Data Centers 

As per discussed previously, datacenter IT equipment consume the most energy in a cloud 

computing environment. More, it has been shown that excessive energy consumption raises 

environmental, system performance and monetary concerns. Therefore, it is imperative to find out 

the factors, which determine the amount of energy consumed by a datacenter and hence the causes 

of energy wastage in cloud datacenters. In fact, more than half of the data center power is 

consumed by IT loads as shown in Figure 2.3. According to the Environmental Protection Agency 

(EPA) report to Congress on Server and Data Center Energy [21], 59% power consumed by total 

IT load and 33% consumed. The rest of the power is consumed by other devices like distribution 

wiring, air conditioners, pumps, and lighting. 

 

Figure 2.3: Typical power draw in a cloud data center [22] 
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2.2.2 Major Causes of Energy Waste 

As described in the last section, servers are the main power consumers in data centers. The key 

reasons for this huge consumption are the following: 

Low server utilization:  As data centers are growing, the number of servers is continuously 

increasing. Most data center servers are underutilized. According to the Natural Resources Defense 

Council (NRDC) report [23] [24], average server utilization remained static between 12% and 18% 

from 2006 and 2012, while servers draw between 60% and 90% of peak power. Consolidating 

virtual servers on a smaller number of hosts allows running the same applications with much lower 

power consumption. By increasing server utilization techniques, the number of required servers 

and overall energy greatly reduced. 

Lack of a standardized metric of server energy efficiency: to ensure energy efficiency 

optimizations, it is important to use energy efficiency metric for servers to sort them according to 

their energy efficiency and to enable scheduling algorithms to make decisions and to select the 

best resources to maximize energy efficiency. Even though some metrics focusing on IT efficiency 

have appeared in recent years [25], they do not provide a simple benchmark that can drive the 

optimization of energy efficiency [23]. 

Energy efficient solutions are still not widely adopted: As stated in the NRDC report [23], many 

big Cloud industries do a great job on energy efficiency, but represent less than 5% of the global 

data centers' energy use. The other 95% small, medium, corporate and multi-tenant operations are 

much less efficient on average. Hence, energy efficiency best practices should be more adopted 

and used especially for small and medium sized data centers that are typically vary in efficiency 

and consume about half of the amount of power consumed by all the data centers [23]. 

2.2.3 Power Measurement and Modeling in Cloud 

Before dealing with power and energy measurement and modeling, it is important to understand 

power and energy relationship and to present their units of measure. Power consumption indicates 

the rate at which a machine can perform its work and can be found by multiplying voltage and 

current while electrical energy is the amount of power used over a period of time. The standard 

metric unit of power is the watt (W) and the energy unit is watt-hour (WH). Power and energy can 

be defined as shown in 2.2 and 2.3 equations, where P is power consumption, I is current, V is 

voltage, E is energy and T is time interval: 
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P = IV                                         (2.2) 

E = PT                                         (2.3) 

  To quantify power and energy consumption in the cloud, the study distinguishes between 

measurement techniques and energy estimation models. The first one, i.e. Eq. 2.2, directly 

measures actual power consumption via instant monitoring tools. Power metering models estimate 

the power consumption of servers and VMs using hardware-provided or OS-provided metrics [26]. 

2.2.3.1 Power Measurement Techniques 

Power direct measurement in Cloud can be achieved in data centers that embed monitoring 

capabilities and such as smart power distribution units (PDUs). This section introduces two 

measurement methods to obtain information about the power consumption of servers and VMs. 

Power measurement for servers: The obvious way to get accurate information about energy 

consumption of servers is to directly measure it. However, this requires extra hardware to be 

installed in the hosts, need to add intelligent monitoring capabilities in the data center and to deal 

with huge amounts of data. Green Open Cloud (GOC) is an example of energy monitoring and 

measurement framework that relies on energy sensors (watt meters) to monitor the electricity 

consumed by Cloud resources. It collects statistics of the power usage in real-time and embeds 

electrical sensors that provide dynamic measurements of energy consumption and an energy-data 

collector [27]. 

Power measurement for VMs: Even if power consumption of servers can be measured in real 

time, power consumption of VMs cannot be measured by any sensor and cannot be connected to 

a hardware measurement device. Some effort has been made the work of [27] to measure VM 

power consumption. The virtual machine power consumption is computed by retrieving the idle 

power from the power consumption of the server when it hosts the VM, which is impractical and 

not accurate. Alternative solutions based on extending power monitoring adaptor between the 

server driver modules and the hypervisor are proposed in [28] and [29]. However, this solution 

measures the total power consumed by the virtualization layer and didn’t provide per VM power 

usage. 

2.2.3.2 Power and Energy Estimation Models 

Most servers don't have built-in power measurement sensors in modern data center. Besides, even 

if the total server power can be measured in real time VM (virtual machine) power cannot be 
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measured purely by any power sensor. Models that estimate the power and energy consumption as 

well as VM migration power cost are being more challenging for power metering. This section 

presents a general overview of power estimation models and tools in cloud and introduces data 

center energy efficiency metrics. 

Power and energy modeling for servers: Power consumption models for servers have been 

extensively studied in literature [30] and vary from complex to simple. As the CPU of a server 

consumes the power and as the relationship between power and CPU Utilization is linear, CPU 

based linear models represent a lightweight and a simple way to estimate servers' power usage 

[31]. The work in [32], simple utilization-based power models for servers are proposed, as shown 

in Equation. 2.4: 

Power consumption = Pidle + U ∗ (PPeak - Pidle)                           (2.4)                     

P is total power consumption, PPeak is peak power consumption, Pidle is idle power consumption, 

and U is CPU utilization (a fraction between 0 and 1). The author assume that CPU is the only 

factor in their power models and present an approximation for total power against CPU utilization 

(U) as shown in Figure 2.4: 

 

 

Peak Power

Idle Power

Power 

Dissipation 

100 %
0%

CPU Utilization
 

Figure 2.4: Server power model  

Energy efficiency metrics: In addition to power models, improving energy efficiency in Cloud 

data centers require metrics that capture data centers and server’s efficiency and provide the 
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necessary information for high level management and scheduling decisions. Some metrics of 

energy efficiency have been proposed for data centers. The Green Grid [33] defined two data 

centers efficiency metrics: Power Usage Effectiveness (PUE) and Data Center Efficiency (DCE). 

Power Usage Effectiveness (PUE) is defined as the total power consumed by the data center 

divided by the power used by the IT equipment, as shown in Equation. 2.5: 

                     PUE =
Total Facility Power

IT EquipementPower 
                            (2.5) 

Data center Efficiency (DCE) is the indicator ratio of IT data center energy efficiency and is 

defined as the reciprocal of PUE (see Equation. 2.6). 

                DCE =
1

PUE 
 =

IT Equipement Power

Total Facility Power 
                 (2.6) 

These two metrics measures only the proportion of power used by IT equipment and can be used 

to compare data center efficiency. Energy efficiency metrics for servers that could be used to sort 

them according to their efficiency and to enable scheduling algorithms to make decisions have not 

been widely investigated. 

Performance per Watt (PPW) has become a popular metric as it can be used to measure and rank 

the energy efficiency of servers. It can be defined as the rate of transactions or computations that 

can be delivered by a computer for every watt of power consumed. Formally the PPW is defined 

by Intel [34] as: “The term performance-per-watt is a measure of the energy efficiency of a 

computer architecture or a computer hardware. It can be represented as the rate of transactions or 

computations or a certain performance score that can be delivered by a computer for every watt of 

power consumed”. This metric provides scores and rank servers no matter their size or structure. 

The higher the performance per watt, the more energy efficiency server. 

2.3 Cloud Infrastructure Energy Management Platforms 

There are several cloud computing platforms for managing the infrastructure in a cloud. The list 

includes: Google Borg, Microsoft Apollo, Apache Mesos, Eucalyptus and Open Stack Neat [35] 

[36]  .  

Open Stack Neat is a very widely used open-source tool for cloud infrastructure management and 

is supported by large community [36] and [37]. Even though, Open Stack is vast, and its 

components are rich in features, its scheduler does not directly support advanced optimization such 

as VM consolidation and load balancing. When a new VM request arrives to an Open Stack 
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scheduler, the scheduler filters suitable hosts through a configured parameter such as available 

Central Processing Unit (CPU) or Random-Access Memory (RAM). Those hosts are then 

prioritized by a weight function [38]. With those options an initial VM placement can be controlled 

by configuring or modifying filter and weight functions. The limitation with the scheduler is that 

it has only an initial VM placement policy. It does not include a run-time resource optimization: 

that migrates VMs from overloaded hosts for maintaining SLA or under loaded hosts for reducing 

energy consumption. 

In the next subsections the study describes what has been attempted in literatures to resolve the 

problem of VM consolidation in Open Stack Neat.  

2.3.1 VM Consolidation Algorithms 

A practical VM consolidation framework constitutes algorithms that resolves three sub problems: 

(1) a decision when to start a VM migration (2) a selection of which VMs to migrate (3) a selection 

of hosts for placement [19] – [21]. Suitable algorithms must be included for each category of sub 

problems. The VM consolidation algorithms of OpenStack Neat [40] are the following: 

1. A decision when to start VM migration: VM migration process starts when there are hosts 

that are overloaded or under loaded. Particular VMs are migrated from overloaded hosts to 

maintain SLA. From the under loaded host all VMs are migrated so that the host is turned off 

or put in power saving mode. Several heuristics are proposed for the host overload detection 

problem: 

▪ Averaging threshold-based (THR) overload detection algorithm: A static CPU 

utilization threshold is set above which a host is determined to be overloaded. 

▪ Local Regression (LR) algorithm: Estimate the future CPU utilization using local 

regression. 

▪ The Markov Overload Detection (MHOD) algorithm: Markov chain model is used to 

determine whether a host is normally serving a load or being overloaded.                  

Similarly, for host under load detection the following heuristics are proposed: 

▪ Average threshold-based under load detection: A static CPU utilization threshold is 

set below which a host is determined to be under loaded. 

▪ Minimum utilization: The minimum utilized host is decided to be under loaded. 

2. VM selection: a VM selection decides which VMs to be migrated from overloaded hosts. The 

following are the proposed heuristics: 
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• The minimum migration time policy: The minimum migration time policy migrates a VM 

that requires the minimum time to complete a migration relatively to the other VMs 

allocated to the host. 

• Random selection policy: Randomly selects VMs to be migrated. 

• Maximum correlation policy: VMs that have the highest correlation of the CPU utilization 

with the other VMs are selected to be migrated. 

3. VM Placement:  the VM placement is seen as a bin packing problem with variable bin sizes 

and prices, where bins represent the physical nodes; items are the VMs that have to be 

allocated; bin sizes are the available CPU capacities of the nodes; and prices correspond to the 

power consumption by the nodes [41]. Some popular solutions of this problem are: 

1) The First Fit (FF): First Fit begins with the liveliest bin and tries to pack every item in it 

before going into next bin. If appropriate bin is not to be found for the item, then the subsequent 

bin is elected to locate as the new bin. 

2) First Fit Decreasing (FFD): In FFD the items are arranged in descending order and after that 

items are processed as in the method of using First Fit algorithm. 

3) Best Fit Decreasing (BFD): Like FFD, BFD also arranges items in descending order and 

afterwards for packing items it prefers a bin with minimum vacant space to be left there after 

the item is being packed. 

4) Worst Fit Decreasing (WFD): Worst Fit Decreasing works accurately equal to BFD apart 

from in one thing, rather than selecting bin with least empty space it opts bin with greatest 

empty space to be left there after the allocation of item on that bin. 

5) Second Worst Fit Decreasing (SWFD): Commensurate WFD, it just selects bin with second 

least empty space. It is also called as Almost Worst Fit Decreasing (AWFD). 

This section discusses recent research efforts in the area of power management at the cloud data 

center level. In the literature review above and below, a previous research investigated energy 

efficiency in CDCs on migration, consolidation and reconfiguration. 

Song et al. in  [42], developed an adaptive and dynamic model, operating system-base for efficient 

sharing of a server by optimizing resources (CPU and memory) between virtual machines.  

B. Jianxin et al. in [43], developed an energy saving on-line placement model, based on a balance 

of workload by distributing it in a virtual machine to achieve a least number of nodes to execute 
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that load. So, the workloads are replaced, and resized. However, the migration and relocation of 

VMs for matching application demand can impact the QoS service requirements of the user.  

R. Buyya et al. in [44], proposed (a) architectural principles for energy-efficient management 

of Clouds; (b) energy efficient resource allocation policies and scheduling algorithms 

considering quality-of-service expectations, and device power usage characteristics; and (c) a 

completely unique software technology for energy efficient management of Clouds.  

A. Beloglazov et al. in [7], proposed a completely unique technique for dynamic consolidation 

of VMs supported adaptive utilization thresholds, which ensures a high level of meeting to the 

Service Level Agreements (SLA). They validated the high efficiency of the proposed technique 

across different sorts of workloads using workload traces from quite thousand Planet Lab servers. 

S. Kumar et al. in [45], proposed a Green Cloud framework, which make Cloud green from 

both user and provider's perspective. The framework relies on two main components, Carbon 

Emission and Green Cloud. 

Uddin et al. in [46], developed a tool to improve the performance and energy efficiency of data 

centers. They Divided data center components into different resource pools depending on different 

parameters. The framework highlights the importance of implementing green metrics like power 

usage effectiveness (PUE) and data center effectiveness and carbon emission calculator to live the 

efficiency of data center. The framework is predicated on virtualization and cloud computing. The 

tool was to increase the utilization of the data centers from 10% to more than 50%.  

M. Sharma et al. in [47], presented an analysis of various Virtual machine (VM) load balancing, 

a replacement VM load balancing algorithm has been proposed and implemented during a Virtual 

Machine environment of cloud computing in order to achieve better response time and reduce cost. 

According to X. Lia et al. in [48], virtual machine placement algorithm named EAGLE, which 

can balance the utilization of multidimensional resources and thus lower the energy 

consumption. Experimental results show that EAGLE can reduce energy as much as 15% 

more energy than the first fit algorithm. As shown the below Table 2.2 the above literature 

review has their own techniques and limitations 
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Table 2.2: Summarized energy management in cloud data center level 

Author  Objective  Algorithm used 

Method or 

Metrics Limitation 

Song et al. [42]  
Optimizing 

resources 

Dynamic virtual 

machine allocation 

Overload 

signal 

generation 

Waiting times are 

high 

Bo et al. [43]  
Balance of 

workload 

Application live 

placement 

Over 

provisioning 

Impact on Quality 

of-service 

Rajkumar et al. 

 [20] 

Manage resource 

allocation 

policies 

and scheduling 

New application 

provisioning 

algorithm 

Average 

improvement 

time with and 

without 

federation 

No parameter to 

indicate CO2 

emission 

Beloglazov et 

al. [7] 

Dynamic 

consolidation of 

VMs 

Best fit decreasing 

Dynamic 

reallocation of 

VMs 

No suitable metrics 

 

K. Saurabh and 

B. Rajkumar 

[45] 

Green Cloud 

framework 

Enterprise storage 

model 

Automatic 

scale-out and 

scale-in 

Increase the 

network traffic 

Uddin et al. 

[46] 

Achieve energy 

efficiency in data 

center 

Mixed workload 

algorithm 

Green metrics 

and set 

benchmark 

Did not concern to 

dynamic load 

Meenakshi et 

al. [47] 

Achieve better 

response time 

and cost 

Round robin load 

balancing  

Virtual 

machine load 

balancing 

Much calculation 

needs more time  

Xin et al. [48] 
Increase energy 

efficiency 

New priority rout 

VM placement 

Automatic VM 

placement 

Did not concern on 

performance 
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2.4 Cloud Computing Simulation Tools   

A wide variety of cloud simulation tools are available for modeling and simulating extensive cloud 

computing environments [49]. There are several existing studies that provide overviews of 

simulation tools to support cloud computing. According to Zhao et al. in [49], presented a summary 

of tools to model and simulate cloud computing systems, including both software and hardware 

simulators. They give a feature description for tools, and provide a comparison based on platform, 

programming language, and whether they are software or hardware-based. 

Malhotra et al. in [50], presented an overview of eight tools, and provide a tabular comparison 

based on whether they support energy efficiency modelling, performance or quality of service 

(QoS), programming language, availability (on the web), and license type.  

This thesis work review and analyzes energy aware cloud computing simulators that are used to 

evaluate the efficiency and performance aspects of cloud computing environments. The list of 

Cloud simulators that we have encountered are: SPECI, Green Cloud, CloudSim, DCSim, 

CloudAnalyst, iCanCloud, CDOSim, and GDCSim.  

SPECI (Simulation Program for Elastic Cloud Infrastructures), is a simulation tool which allows 

exploration of aspects of scaling as well as performance properties of future datacenters. Given the 

size and middleware design policy as the input, SPECI simulates the performance and behavior of 

data centers [51]. 

CDOSim is a cloud deployment option (CDO) Simulator which can simulate the response times, 

SLA violations and costs of a CDO. A CDO is a decision concerning simulator which takes 

decision about the selection of a cloud provider, specific runtime adaptation strategies, components 

deployment of virtual machine and its instances configuration. Component deployment to virtual 

machine instances includes the possibility of forming new components of already existing 

components. Virtual machine instances configuration refers to the instance type of virtual machine 

instances. CDOSim can simulate cloud deployments of software systems that were reverse 

engineered to KDM models. CDOSim has ability to represent the users rather than the providers’ 

perspective. CDOSim is a simulator that allows the integration of fine-grained models. CDOSim 

is best example for comparing runtime reconfiguration plans or for determining the tradeoff 

between costs and performance [50]. CDOSim is designed to address the major shortcomings of 

other existing cloud simulators such as 
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 Consequently, oriented towards the cloud user perspective instead of exposing fine-grained 

internals of a cloud platform. 

 Mitigates the cloud users lack knowledge and control concerning a cloud platform structure 

 Simulation is independent of concrete programming languages in the case appropriate 

KDM extractors exist for a language. 

Green cloud is a sophisticated packet-level simulator for cloud computing data centers with a 

focus on cloud communications. It offers a detailed fine-grained modeling of the energy consumed 

by the data center IT equipment, such as computing servers, network switches, and communication 

links [52]. 

CloudSim is a toolkit (library) for simulation of Cloud computing environments developed in the 

cloud’s laboratory at the Computer Science and Engineering Department of the University of 

Melbourne, Australia. It provides basic classes for describing data centers, virtual machines, 

applications, users, computational resources, and policies for management of diverse parts of the 

system such as: scheduling and provisioning. These components can be put together for users to 

evaluate new policies, scheduling algorithms, and mapping. In Cloud. It is a complex simulation 

toolkit using which most of the Cloud scenarios can be built by simply extending or replacing the 

classes and coding the desired scenario [20].The primary objective of this tool is to provide a 

generalized, and extensible simulation framework that enables seamless modeling, simulation, and 

experimentation of emerging cloud computing infrastructures and application services. By using 

CloudSim, researchers and industry-based developers can focus on specific system design issues 

that they want to investigate, without getting concerned about the low-level details related to 

Cloud-based infrastructures and services [20]. 

DCSim (Data Center Simulator) simulates a virtualized data center providing IaaS service for the 

cloud. DCSim is an event-driven simulator designed for transactional and continuous workloads 

such as a web server. The simulator is developed in Java. The main component of DCSim is the 

Datacenter, which contains hosts, VMs, and different management components and policies. The 

datacenter is composed of interconnected hosts that are managed by a set of management policies. 

Each host it’s composed of a set of resource managers that manage local resource allocation, a 

CPU scheduler to decide when to run VMs, and a power model that decides how much power is 

being consumed by the host at any point in time [53]. 
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Figure 4.12: DCSim architecture [53] 

CloudAnalyst It was developed to simulate large-scale Cloud applications with the purpose of 

studying the behavior of such applications under various deployment configurations. 

CloudAnalyst helps developers with insights in how to distribute applications among cloud 

infrastructures and value-added services such as optimization of applications performance and 

providers incoming with the use of Service Brokers. CloudAnalyst generates information about 

response time of requests, processing time of requests, and other metrics. By using CloudAnalyst, 

application developers can determine the best strategy for allocation of resources [54]. 

iCanCloud is a simulation platform aimed to model and simulate cloud computing systems, which 

is targeted to those users who deal closely with those kinds of systems. The main objective of 

iCanCloud is to predict the trade-offs between cost and performance of a given set of applications 

executed in a specific hardware, and then provide to user’s useful information about such costs. 

However, iCanCloud can be used by a wide range of users, from basic active users to developers 

of large distributed applications [55].  

Green Data Center Simulator (GDCSim) is a simulator for studying the energy efficiency of 

data centers under various data center geometries, workload characteristics, platform power 

management schemes, and scheduling algorithms. GDCSim is used to iteratively design green data 

centers. It is suitable for online analysis [56]. 

Cloud Computing Simulation Tools Feature Matrices 

Table 4.7 summarizes cloud computing simulators on high-level technical features as follows: 

 Language(s): the major identified programming language(s) that were used in the 

development of the simulation platform. 

 Platform Portability: the ability to use the simulation platform under multiple operation 

systems (e.g. MS Windows, Linux) without significant effort and performance difference. 
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 Distributed Architecture: the ability of software to be executed on more than one host. 

This category includes a single simulation run being distributed among multiple hosts as 

well as scaling up for load balancing if the multiple simulation runs need to be executed at 

the same time. 

 Model Persistence Type: the identified persistence format of the experiment scenarios 

that the simulation platform requires in order to execute simulation runs. 

 Scalability: is the ability to quickly and easily increase or decrease the size of simulation 

platform. 

 User Documentation Availability: the identified availability of separate documentation 

that explains how to install and use the platform. 

 Graphical User Interface Availability: the availability of a graphical user interface that 

enables the graphical modelling of experiments, simulation execution and the presentation 

of simulation results. 

 Headless Execution: the identified ability to run the simulation platform without a user 

interface, using only command line arguments. 

 Format of Result Output: the format which is used by the simulation platform to save 

simulation results once a simulation run(s) has been completed. 

Table 4.7: Summary of identified cloud computing simulators based on technical feature 
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2.5 Summary  

In line with the above works, understand current state-of-art and help this thesis study to have 

inclusive view about energy efficiency and power consuming units in cloud data centers, cause of 

energy waste, power measurement and modeling, VM consolidation solutions. The reviewed 

researches are the base for energy efficiency hence, they are all taken as an input and consider 

together with the new perspective which this research wants to bring. 

2.6 Related works   

2.6.1 Energy Efficient Operations 

As recalled from chapter one, energy efficient operation is one of the main concerns of cloud 

computing. Therefore, there are several works that proposed energy aware cloud operations using 

VM consolidation technology [22] - [24], [39] and [44] - [47]. Here, related works on VM 

placement algorithms and related work on frameworks are presented.  

2.6.2 Frameworks for Energy Reduction in Cloud data center 

Despite the large volume of research published on the topic of dynamic VM consolidation, there 

are few software implementations publicly available online. To the best of our knowledge, the 

earliest open-source implementation of a VM consolidation manager is the Entropy project. 

Entropy is an open-source VM consolidation manager for homogeneous clusters developed by 

Hermenier et al. in [57]. According to the author, entropy is built on top of Xen and focused on 

two objectives: (1) maintaining a configuration of the cluster, where all VMs are allocated enough 

resources, and (2) minimizing the number of active hosts.  

To optimize the VM placement, Entropy periodically applies a two-phase approach. First, a 

constraint programming problem is solved to find an optimal VM placement, which minimizes the 

number of active hosts. Then, another optimization problem is solved to find a target cluster 

configuration with the minimal number of active hosts that also minimizes the total cost of 

reconfiguration, which is proportional to the cost of VM migrations. Instead of optimizing the VM 

placement periodically as Entropy, OpenStack Neat detects host underload and overload 

conditions and dynamically resolves them, which allows the system to have a more fine-grained 

control over the host states. 
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The authors in [58], proposed and implemented a framework for distributed management of VMs 

for private clouds called Snooze, which is open source and released under the General Public 

License version 2. In addition to the functionality provided by the existing cloud management 

platforms, such as OpenStack, Eucalyptus, and Open Nebula, Snooze implements dynamic VM 

consolidation as one of its base features. Another difference is that Snooze implements hierarchical 

distributed resource management. The management hierarchy is composed of three layers: local 

controllers on each physical node, group managers managing a set of local controllers, and a group 

leader dynamically selected from the set of group managers and performing global management 

tasks. The distributed structure enables fault tolerance and self-healing by avoiding single points 

of failure and automatically selecting a new group leader if the current one fails. Snooze also 

integrates monitoring of the resource usage by VMs and hosts, which can be leveraged by VM 

consolidation policies. These policies are intended to be implemented at the level of group 

managers and therefore can only be applied to subsets of hosts. This approach partially solves the 

problem of scalability of VM consolidation by the cost of losing the ability of optimizing the VM 

placement across all the nodes of the data center.  

Whereas the OpenStack Neat enables scalability by distributed underload or overload detection 

and VM selection, and potentially replicating the VM placement controllers. In contrast to Snooze, 

it can apply global VM placement algorithms for the selected migration VMs by taking into 

account the full set of hosts. Another difference is that OpenStack Neat transparently integrates 

with OpenStack, a mature open-source cloud platform widely adopted and supported by the 

industry, thus ensuring long-term development of the platform. 

 Uddin et al. in [59], discussed how virtualization can be used to improve the performance and 

energy efficiency of data centers. And it proposes a Green IT framework using virtualization 

technology to achieve power and energy efficiency in data centers. The framework provided an 

imminent solution to the data center owners to improve the performance of their existing data 

center by implementing this framework. It also helped them to reduce the emission of greenhouse 

gas so that global warming effects can be eliminated or reduced. This paper mainly focuses on 

calculating energy efficiency and carbon footprints that is, CO2 emissions, so devices related to 

power energy used for calculating energy efficiency. 
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K. Santhosh et al. in [60], proposed a framework for selection of data center based on energy 

efficiency. This approach mainly concentrates on the submission of tasks to energy efficient data 

center which in turn results in minimizing the operational expenditures of the cloud environment. 

The operation taken by the servers, computer room air conditioning units and other IT equipment 

like routers, and switches. 

D. Tugrul et al. in [61], investigated to identify energy efficiency metrics that need for industry to 

develop standards and metrics for measuring energy efficiency in data centers. Such metrics is 

vital tools for data center stakeholders to use when assessing the performance of their facilities and 

determining where resources should be focused to create improvement. They develop a model of 

the measurable components of a data center is created to provide a framework for organizing 

metrics and communicating results throughout the organization. The strengths and weaknesses of 

two of the most common data center metrics, PUE and DCP, are examined in this paper. Table 2.4 

summarizes the related works that was discussed from previous researcher using different 

approaches. 
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Table 2.3: Summary of related works on data center energy awareness techniques   

 

Authors 

Objective or 

purpose 

Framework or 

Method 

 

Result Obtained 

Gap or 

Limitation 

Kumar S., 

and 

Parthiban L. 

[60] 

Design a data center 

selection framework 

for submission of 

tasks with minimal 

energy consumption 

Cloud data center 

selection 

framework 

Minimizing 

the operational 

expenditures of 

the cloud 

environment 

Waiting times 

are high 

T. Daim et 

al. [61] 

 

Identify metrics used 

to measure energy 

efficiency 

 

Model for data 

center 

metrics 

Metrics that 

categorize DC 

into measurable 

units. 

Did not 

consider for 

virtual 

machine 

Anton B., 

and Buyya 

R. [62] 

Give an overview of 

advancements in 

energy-efficient 

computing 

Dynamic 

consolidation of 

VMs using 

regression model 

Reduce the power 

consumption 

under different 

workloads. 

No suitable 

metric to show 

energy 

efficiency level 

X. Lia et al. 

[63] 

Increasing the 

resource utilization 

of virtual data center  

Virtual machine 

placement 

algorithm 

15% more energy 

saving than the 

first fit algorithm 

Did not 

concern on 

performance 

M. Uddin et 

al. [60] 

A strong 

need to develop 

strategies, policies or 

frameworks for DCs.  

Metrics based 

green IT 

framework 

Green IT 

framework used 

for energy 

efficient  

Did not 

consider the 

dynamic load 

2.6.3 Frameworks to Characterize Energy Efficiency 

The authors in [64], defined an architectural framework and principles for energy-aware Cloud 

computing, and developed algorithms for energy-aware mapping of VMs to suitable Cloud 

resources in addition to dynamic VM consolidation. The process of the VM consolidation is as 

follows: firstly, set a fixed upper utilization threshold for hosts in data centers; secondly, probe 

each host’s utilization for a period of time. If it exceeds the threshold, it is denoted as 
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overload; finally, choose VMs from those overload hosts to migrate. However, the fixed 

threshold is not suitable for virtual environment with variable workloads. According to the study 

in [16], VM consolidation should be optimized continuously in an online manner due to the 

variability of workloads experienced by modern applications. Then, they proposed novel adaptive 

heuristics for dynamic VM consolidation based on the analysis of historical data. Experimental 

results show that the allocation and selection algorithms can immensely save energy. However, 

we think that the SLA violation and energy consumption produced by the framework can be further 

improved.  

 The study in [65], proposed a flexible and energy-aware framework for VM consolidation in a 

data center. The core element of the framework is an optimizer which is used to deal with SLA 

requirements, the interconnection among different data centers and energy consumption. Finally, 

experimental results demonstrated that the framework obtained a good energy-performance 

tradeoff. 

The authors in [66], modeled a cloud as a set of jobs or tasks to be distributed along a set of 

resources. They defined an optimization function as the profit of executing jobs with specified 

SLA minus the cost of power consumption. An exact solution to the optimum function required 

several minutes to schedule, even 10 jobs among 40 candidate hosts. So, the first-fit and best-fit 

heuristics are proposed as an approximate solution. The best-fit solution has a result close to the 

optimal in extremely low time. The jobs considered for the experiment are Web-services and their 

resource usage is learned using a machine learning technique. According to their later work in [16] 

improved the optimum function by including a penalty for VM migration. 

The study in [67], proposed Utilization Prediction Aware Best-Fit Decreasing (UP- FD) 

consolidation solution. The UP-BFD enables proactive consolidation of VMs using a resource 

utilization prediction model. The model uses the K-nearest neighbor regression to predict CPU 

utilization of VMs and hosts based on the historical data.  

A. Beloglazov et al. in [44], specified some of the practices like energy efficient hardware, terminal 

server and clients and the methods like DVFS (Dynamic Voltage and frequency scaling) However 

these methods are not much efficient so forwarding of an efficient planned technique with factors 

like scalability and no centralized algorithm for dedicated resource allocation and also stronger 

virtual machines that consist of more efficiency in power saving and solid policies for resource 
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sharing. The VMs components are dispatcher, and managers for the system like internal and to 

overall system, local managers that reside in system nodes as a virtual monitor (VMM). The 

approach like Cloud computing naturally leads to energy-efficiency the reduction state of 66% 

when compared to the normal system which does not follow these virtual machine systems. 

X. Lia et al. in [68], proposed a virtual machine placement algorithm named EAGLE, which 

address the problem of online virtual machine placement with the goal of minimizing the total 

energy consumption. In this regard it reduces the number of resources fragments and decreases 

their sizes, as well.  In addition to that multi-dimensional space partition model was used to 

describe the resource usage state of physical machines. Experimental results show, that EAGLE 

can reduce energy as much as 15% more energy than the first fit algorithm. 

2.6.4 VM Placement Algorithms 

In many of the approximate solutions for consolidation, the VM placement part is handled 

with simple heuristics such as a modified form of best-fit and first-fit decreasing [24] 

[46] and [69]. In the works of Beloglazov et al., the VM placement problem is handled by the 

Modified Best Fit Decreasing (MBFD) algorithm [40]. The algorithm deals with minimizing the 

number of active servers and is based on the bin-packing heuristic, BFD. The default VM 

placement algorithm in CloudSim cloud simulator is the Power-Aware Best-Fit Decreasing 

(PABFD) [70]. The PABFD places the current VM on a host that fits it and the estimated increase 

in power is the minimum. The author stats that the context of PABFD the best-fit stands for the 

best in power- utilization for the VM to be placed rather than its mathematical definition to place 

to the fullest host that fits the VM. 

The study in [69], proposed an improved VMC framework of cloud data center that it classifies 

the overload host into overload host with SLAV and without SLAV. According to Masoumzadeh 

et al., and Hlavacs et al. in [71], proposed a novel strategy for virtual machine selection that 

exploits dynamic criteria to select the virtual machine to migrate, and the result of experiments 

shows that the proposed method is better than previous single criterion method. 

A comprehensive performance analysis of various VM placement algorithms is conducted by Z. 

Mann and M. Szabo [72], for overload and underload detection, the authors reuse algorithms from 

OpenStack Neat framework. The VM placement algorithms considered for comparison include 

PABFD and PAWFD. According the work of Guazzone et al. in [13]. The “Guazzone” algorithm 
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is the best performing algorithm and it applies from three host selection criteria: (i) powered-on 

host proceeds powered-off host, (ii) within powered-on or powered-off host category, hosts are 

selected by decreasing size of free CPU, and (iii) in case of same CPU capacity, hosts are selected 

by increasing values of idle power consumption.  

To address the issue of high SLA violation and VM migrations caused by heuristics that only deal 

with minimizing the number of servers, Farahnakian et al. proposed prediction aware VM 

placement [73], the proposed algorithm called Utilization Prediction Aware Best-Fit Decreasing 

algorithm (UP-BFD) chooses a host based on the prediction of future resource utilization. Their 

results show that UP-BFD performs better than BFD and FFD with no utilization prediction 

functionality. 

The study in [74], introduced a two-staged VM scheduling algorithm which includes network link 

capacity and physical machine size as constraints and modeled the problem. They combined Best 

Fit heuristic of Bin Packing as constraints and modeled the problem. They combined Best Fit 

heuristic of Bin Packing with min-cut hierarchical clustering algorithm to place VM's. Here the 

network congestion is reduced by MLU (Maximum Link Utilization) and also the number of active 

PMs used is also reduced.   

The authors in [75], proposed a work using relaxed on-line bin packing algorithm VISBP (Variable 

Item Size Bin Packing). Here they used trace-driven simulation in order to compare VISBP with 

Black-box, Gray-box and Vector Dot algorithms. VISBP algorithm used only CPU and Memory. 

And the algorithm achieves good green computing effect and stability compared to other 

algorithms. Also, it excels in hot spots mitigation and load balance. Due to the support of 'change' 

operation the algorithm supports dynamic resource allocation. Since here the VM to PM ratio is 

not optimized SLA violation is not reduced optimally. 

As per the above related works, the study on algorithms for allocation of virtual machines (VMs) 

to physical machines (PMs) in infrastructure clouds has been done recently as shown in Table 2.5. 

Initial placement, consolidation, or tradeoffs between honoring service-level agreements and 

constraining provider operating costs are some of the problems which are covered in those 

algorithms. Of these, power saving and delivering QOS are the two major goals of the VM 

placement techniques in VM consolidation. 
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 Table 2.4: Introduce the comparative review of the most common used algorithms. 

Algorithm  Technique  
Parameters 

Used 
Objective  Limitation 

MFR (Measure 

Forecast 

Remap) [76] 

Stochastic 

Integer 

Programming 

CPU 

Meets SLA 

requirements and 

reduced number of 

PM's 

Poor 

performance  

Best Fit heuristic of 

Bin Packing with 

min cut hierarchical 

clustering 

algorithm [74]. 

Constraint 

programming 

Network link 

capacity and 

Physical 

machine size. 

Number of active PM's 

used is reduced. 

More Migration 

cost 

Variable Item Size 

Bin Packing [75] 

Bin 

packing 

CPU, 

Memory and 

network 

Achieves good 

green computing 

effect, load 

balancing, dynamic 

resource allocation 

and 

stability. 

SLA violation 

Modified Best-Fit 

algorithm [77] 
Adaptive 

CPU 

threshold 

algorithm 

Needs to reduce the 

number of VM 

migration 

SLA violation 

increased 

BGM BLA [72] 
Genetic 

algorithm 

CPU, 

memory, 

storage 

Reduced energy 

consumption 

High energy 

consumption 

compared with 

another 

algorithm 

Enhanced FFD 

[78] 

 

Bin packing 

 

CPU 

More energy 

efficient, High 

system through-put. 

SLA violation 

Energy aware best 

fit decreasing 

algorithm [79] 

Adaptive 

threshold 

algorithm 

CPU 
Reduced energy 

consumption 

Needs to reduce 

the number of 

VM migration. 
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2.7 Summary  

This chapter mainly focused on the previous studies which are highly related with this research 

work. In contrast to the discussed studies, we propose our work on existing OpenStack Neat 

framework instead of proposing full-fledged framework for VM consolidation. The VM placement 

algorithms had been improved, like most of the above previous works, based on bin-packing 

heuristics. However, as this thesis study reason out in the problem statement, minimizing the 

number of servers by using heuristics like best-fit is not enough. The power utilization differences 

among hosts must be also considered. Though, the Power-Aware Worst-Fit Decreasing algorithm 

in [65] looks at power differences among hosts, it does so for the current load (VM) only. It does 

not consider the idle power of hosts as well, which contribute significant part of the server’s power 

utilization [80].  

This thesis study proposed energy efficient heuristic framework for VM placement in cloud data 

centers to address the problem of allocation or consolidation of Virtual Machines by modifying 

the bin-packing heuristics with the power efficiency (power model of each physical host) 

parameter. To overcome the core element of the framework, is efficient in reducing energy 

consumption, SLA violation and number of VM migrations. Related with this to lower SLA 

violation and number of VM migrations, we defined a new bin-packing rule called medium-fit. 

The medium-fit heuristic, when modified by power-efficiency, is efficient in reducing energy 

consumption, SLA violation and amount of VM migrations. 
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CHAPTER THREE 

PROPOSED FRAMEWORK  

3.1 Overview  

This chapter presents the design of energy aware VM placement framework. The design focuses 

on the part which is added in the existing framework. It defines and designs the newly added 

components which able to fulfill the premise which this thesis study wants to address. 

3.2 Proposed Framework for VM Placement  

As per the discussion in section 2.6, unlike to previous works this thesis study prefers OpenStack 

Neat framework among those open-source implementations of a VM consolidation. Since this 

approach addressed our stated problem. 

OpenStack Neat framework is designated for dynamic consolidation of VMs based on the 

OpenStack platform. Extensibility in this context means the ability to implement new VM 

consolidation algorithms and apply them on OpenStack Neat without the necessity to modify the 

source code of the framework itself. Different implementations of the algorithm can be plugged 

into the framework by modifying the appropriate options in the configuration file. As shown in 

Table 3.6, it is defined notations of host’s status in cloud data center.  

Table 3.5: Notations for the host status in cloud data center 

 

 

 

 

 

 

 

 

 

 

According to the problem discussed in Section 1.6, this study proposes the framework in 

CloudSim. The steps about the proposed framework are as follows: 

 Step I. The overload decision algorithms find overload host and get the status of Overload host. 

Then select VMs from the OverSV and OverNSV using the proposed SLA violation decision 

Notation  Description 

Over  The Overload host status 

OverSV  The Overload host with SLA violation 

OverNSV  The Overload host with No SLA violation 

Under  The Underload host’s status 

Idle  The Idle host’s status 

Critical The host is overloaded 
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algorithm. Then the OverSV has been detected, next step is to select particular VMs to be migrated 

from the OverSV host until it become saturated (all VMs on the host are kept unchanged) and put 

the VMs into VM selection for migration. 

Next, OverNSV has been detected, no migration of virtual machines required which saves power 

required to migrate VMs. whereas if they become critical state, select VMs to be migrated from 

the OverNSV host until it become under-load threshold or not overloaded. Then put the VMs into 

VM selection for migration. 

Step II. The underload host detection finds the host with the minimum utilization compared to the 

other hosts and select VMs from this host and put VMs into VM selection for migration. If this can 

be done, the VMs are set for migration to the determined destination hosts, and the source host is 

switched to idle host once all the migrations have been completed. If all the VMs from the source 

host cannot be allocated, the host is kept active. Unless the idle host become power off. 

Step III. Choose a maximum request utilization VM in the VM selection for migration, and then 

select a host in the under or Idle hosts to receive the VM based on the Minimum Power policy 

(denoted as MinPower). If the selected host does not become Critical after the first migration, then 

select a minimum request utilization. And put the VM in VM selection for migration and migrate 

it to the host until the host become the normal loaded threshold. 

Step IV. Repeat this step until there is no VM in VM selection for migration need to migrate.  
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    Figure 3.5: Overview of proposed framework for EEHFVMP 

Figure 3.5: describes the proposed framework. The detailed action of the Overload decision 

algorithm, SLA violation decision algorithm, VM selection algorithm, Detection of physical 

machines (PMs) with critical condition, Selection of virtual machine for migration and Placement 

policy of virtual machines discussed as follows. 

According the study in [81], OpenStack Neat framework is comprised of components. Some 

components are implemented on the compute node and some on the controller node.  

Components Description 

Global Manager: a component that is deployed on the controller host and makes global 

management decisions, such as mapping VM instances to hosts, and initiating VM live migrations. 

Local Manager:  a component that is deployed on every compute host and makes local decisions, 

such as deciding that the host is underloaded or overloaded and selecting VMs to migrate to other 

hosts.  
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Overload Detection: Deciding if a host is overloaded so that some VMs should be migrated from 

it to other active or reactivated hosts (to avoid violating the SLA requirements). 

Underload Detection: Deciding if a host is underloaded so that all VMs should be migrated from 

it and the host should be switched to a low-power mode (to minimize the number of active physical 

servers).   

VM Selection for Migration: virtual machine selection policies are used to choose more VMs 

from the set of overloaded hosts. 

VM Migration and Consolidation: Performing VM migration process with minimal service 

downtime and resource consumption during migration process. Whereas VM Consolidation is a 

technique to reduce the number of active PMs by migrating and consolidating the VMs into 

reduced number of physical machines. 

3.2.1 The Overload Decision Algorithm 

For ease, overload decision algorithm can be abbreviated to ODA, which aims to decide a host 

over or not. Up to now, four ODAs have been implemented in CloudSim, i.e. Interquartile Range 

(IQR), Local Regression (LR), Robust Local Regression (LRR) and Median Absolute Deviation 

(MAD). 

IQR as a measure of statistical dispersion in descriptive statistics, the IQR, also called middle fifty, 

is equal to the difference between the upper (75 %) and lower (25 %) quartiles.  

LR is linear algebra, regression aims to find a trend line for a large set of data points. The LR aims 

to find a trend line by minimizing the sum of the absolute weighted distances between the line and 

the points. LRR is vulnerable to the outliers caused by heavy-tailed or other distributions. To make 

it robust, the LRR is proposed to assign an additional weight to each absolute distance in the LR 

so that it can weaken the outliers.  

The process of MAD is as follows: firstly, calculate the median value of a set A. Then, take the 

absolute distances between the median and the points into set B. Finally, figure out the median 

value of the set B. 

3.2.2   SLA Violation Decision Algorithm 

Service Level Agreement (SLA) violation decision algorithm (SLAVDA), it decided whether a 

host generates SLA violation with high probability or not. Some necessary parameters are defined 

to deduce the qualifications of SLAVDA as shown in Table 3.7. 
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Table 3.6: The description of the parameters defined in algorithm SLAVDA 

Parameter      Description 

Hi  The ith host in the cloud data center 

Vi j  The jth virtual machine on the ith host 

N  The number of hosts in the cloud data center 

Mi  The number of virtual machines on the ith hosts 

MUHi  The Maximum Utilization (MIPs) of the host Hi 

AUHi  The Total Allocated Utilization (MIPs) for VMs by Hi 

MUVi j  The Maximum Utilization (MIPs) of the jth VM on Hi 

RUVi j  The Request Utilization (MIPs) of the jth VM on Hi 

RUVj  
The Request Utilization (MIPs) for the jth VM in VM section for 

migration. 

First, we need to find out the necessary and enough condition for SLA violation. According to 

paper [82]., when the total request utilization of the VMs exceeds the allocated utilization of them 

on Hi , Hi generated SLA violation. If they are equal, it assumed to generate no SLA violation. 

Then, we can easily deduce Equation. (3.3). 

                     
∑ 𝐴𝑈𝑉i j 

Mi
𝐽=1

𝑀𝑈𝐻i
  <  

∑ 𝑅𝑈𝑉i j 
M𝑖
𝐽=1

𝑀𝑈𝐻i
 , SLA violation 

                     
∑ 𝐴𝑈𝑉i j 

Mi
𝐽=1

𝑀𝑈𝐻i
  =  

∑ 𝑅𝑈𝑉i j 
M𝑖
𝐽=1

𝑀𝑈𝐻i
 , No SLA violation                      (3.3) 

                     
∑ 𝐴𝑈𝑉i j 

Mi
𝐽=1

𝑀𝑈𝐻i
  >  

∑ 𝑅𝑈𝑉i j 
M𝑖
𝐽=1

𝑀𝑈𝐻i
 , impossible 

             

                             1.0 < xi, SLA violation                                                       

                         0 ≤ xi ≤ 1.0, No SLA violation                                            ( 3.4 ) 

                              xi < 0, impossible 

 

The total allocated utilization of the VMs on Hi can never exceed the maximum utilization of the 

host. It means that if the request utilization of the VMs on Hi exceeds the maximum utilization, 

the host generate SLA violation. For simplicity the ratio of ∑  𝑀𝑖
𝐽=1

𝑅𝑈𝑉i j
𝑀𝑈𝐻i⁄  is set to xi (for each 

Hi). Then, Eq. (3.4) can be derived from Eq. (3.3) 
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According to Eq. (3.4), the necessary and enough condition for SLA violation is xi > 1.0, where 

xi is less than or equal to the ratio. When xi > 1.0, Hi become OverSV. When 0 < xi ≤ 1.0, Hi 

become OverNSV or under. And when xi = 0, Hi in Idle. The SLAVDA decides whether the 

OverNSV hosts transform into OverSV (xi > 1.0) with great probability. 

Once it has been decided that a host is overloaded and got its status, the next step is to select VMs 

to migrate from this host. Here we have used four policies for VM selection. The policies are 

applied iteratively. After a selection of a VM to migrate, the host is checked again for being 

overloaded. If it is still considered as being overloaded, the VM selection policy is applied again 

to select another VM to migrate from the host. This is repeated until the host is considered as being 

not overloaded.  

The pseudocode for the algorithms is presented below 

If the host is overloaded, the algorithm applies the VM selection policy to select VMs that need to 

be migrated from the host. If the Overload host does not generate SLA violation, then the migration 

result show higher energy consumption. Therefore, we need a method to decide the status of 

Overload host whether it result in SLA Violation or not. 

 

Algorithm 1: Overloaded host detection with the status of SLA Violation 

Input: hostList 

Output: host status, OverloadedHost, N is total no. of Host and M is total number of VM 

1 allVmsTotAllocatedUtil=0; 

2 allVmsTotRequestUtil=0; 

3       for each host H in hotList do; 

4         HUtilization=H.getUtil(); 

5    hostList=hostList.sortDecreasingUtilization() 

6 for i=1 to N do  

7 { 

8 overloadhost=hostList[i] 

9 for J=1 to M do 

10     { 

11      allVmsToAllocatedUtil=allVmsTotAllocatedUtil+totAllocatedUtilOfVm[i][j] 

12      allVmsTotRequestUtil= allVmsTotRequestUtil+requestUtilOfVm[i][j] 

13              } 

14            a= allVmsTotAlocatedUtil maxUtilOfH[i]⁄  

15          b= allVmsTotRequestUtil maxUtilOfH[i]⁄  

16                           If (a < b) then 



39 | P a g e  

 

17   host_status=OverSV 

18 else if (a=b) 

19          host_status = OverNSV 

20            } 

21 switch (host_status) 

22   { 

23 case’OverSV’: 

24 vmsForMigrate= vmsForMigrate+getvmsForMigrateFromOverloadedHost(host) 

25 migrationMap.add(getNewVmPlacement(vmsForMigrate)) 

26 for each VM in migrationMap do 

27 repeat 

28    { 

29           destHost.vmList[i]= migrationMap[i] 

30          } until (OverSV= saturated) 

31           case’OverNSV’: 

32 vmsForMigrate= vmsForMigrate+getvmsForMigrateFromOverloadedHost(host) 

33 migrationMap.add(getNewVmPlacement(vmsToMigrate)) 

34 for each VM in migrationMap do 

35   repeat 

36               destHost.vmList[i]= migrationMap[i] 

37              } until (OverNSV≠ saturated) 

38    } 

39    } 

Select VMs from the OverSV hosts until they become saturated and put the VMs into the 

VmsForMigrate. Finally, select VMs from the OverNSV hosts using the proposed SLA violation 

decision algorithm until they become saturated, and put the VMs into the VmsForMigrate.   

Under loaded Host Detection: 

We have proposed an algorithm that find underloaded host which is given in algorithm 2 below. 

First find the CPU utilization of each host then sort in decreasing order to find the minimum 

utilization host as underloaded host to migrate all VMs from this host to other host by applying 

VM placement algorithm without overloading the other host. The complexity of the algorithm is 

nm, where n is the number of host and m is the number of VMs that is to be migrated.    

             Algorithm 2: Underloaded host detection  

Input: hostList, Output: Underloaded host 

1 VmsToMigrate= = NULL; 

2       for each host h in hotList do; 

3         hUtilization=h.getUtil(); 

4    hostList=hostList.sortDecreasingUtilization() 



40 | P a g e  

 

5 underloadedHost =hostList.lastHost 

6 vmsForMigrate= vmsForMigrate+getvmsForMigrateFromUnderloadedHost(host) 

7 migrationMap.add(getNewVmPlacement(vmsForMigrate)) 

8 for each VM in migrationMap do; 

9 repeat 

10               destHost.vmList[i]= migrationMap[i] 

11              } until (destHost ≠ Overload) 

3.2.3 The VM Selection Algorithm  

Virtual machine selection algorithm (VMSA), which aims to select VMs from Over hosts and 

prevent them from being over. Four VMSAs have been implemented in CloudSim, i.e. Minimum 

Migration Time (MMT), Minimum Utilization (MU), Random Selection (RS) and Maximum 

Correlation (MC). The MMT aims to select a VM from Over host with the least migration time. 

The MU aims to select a VM from Over host with the least request utilization. The RS aims to 

randomly select a VM from Over host.  The MC aims to select a VM with the maximum correlation 

with other VMs on over host. 

3.2.4 Detection of physical machine with Critical Condition 

According to conducted studies in [71] - [78], each live migration has additional overhead costs 

and that take up to 10% of the processing efficiency. In addition, it wastes the bandwidth. Thus, in 

the cloud data centers with thousands of hosts, performing unnecessary migrations disrupt the 

balance of the entire system and have a negative impact on the efficiency of running applications 

[83].  

In other words, in cloud environments, a proper dynamic management approach, based on the 

performance of hosts, should have the best decision for migration of virtual machines to be able to 

prevent unnecessary migrations. Due to the heterogeneity of systems in the data center, considering 

a fixed value as the overload threshold cannot be much appropriate [82]. 

As an example, a host with a smaller number of CPU cores is more likely to go to the overloaded 

mode by adding a virtual machine; however, at the same conditions, a host with greater number of 

cores is less likely to go to the overloaded mode by the addition of the virtual machine. That is 

why each machine should be considered as overloaded regarding its specific conditions.  
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In this paper, the linear regression algorithm is used to detect whether the CPU is overloaded or 

not. It is possible that an overloaded machine, regarding the high number of cores, is less likely to 

be in trouble in terms of the percentage of CPU efficiency; however, a large amount of its main 

memory is occupied in which case there is the possibility of SLA violation and it should be 

considered as a critical state. 

3.2.5 Placement Policy of Virtual Machines 

The placement problems of VMs on servers have always been a huge challenge at the cloud data 

center.VM placement problems in cloud data center are a physical resource mapping process of 

VMs to servers according to the reasonable allocation rules. This stage is similar to finding a 

solution for the bin-Packing problem. In fact, the placement is intended to be performed in a way 

that the number of active servers is minimal [82]. Simulated annealing (SA) algorithm is an 

unbound algorithm that is used for difficult designs. For this purpose, the list-based SA algorithm 

is used in the virtual machines placement policy. In this policy, it has been taken into consideration 

that migration should not lead to overloading to replace the virtual machines selected for migration 

since such migration bears two major drawbacks: first, it increases the likelihood of SLA violations 

at the destination and, second, it increases the probability of another migration at the destination, 

for which it consumes energy. Thus, interquartile range which is one of the measures of dispersion 

and covers the distance between the first quarter and the third one is employed to solve the problem 

as shown in Figure 3.6. The way it implemented describe in the algorithm stages.  

Therefore, to do that first generating an initial list and evaluation of it: a list of servers should be 

established for the primary list to be formed. This list should not contain the overloaded, low-

loaded and turned-off servers. As we state on the above section 3.2 interquartile range is used to 

prepare the lists. Interquartile range of a sample represents a distance containing observations 

interval. The interquartile range, as a measure of dispersion, is preferred over the variance. To 

form the list, all turned-on servers placed ascending ordered in terms of overloading states and 

those servers located within the interquartile range are added to the list. In this way, overloaded 

and low-loaded servers are out of the selection area. 

Then, a list of the virtual machines selected to migrate. (The number of server list members and 

the list of virtual machines must be equal; otherwise, interquartile primary servers recheck again 

and again due to being low loaded). 
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                             Figure 3.6: Interquartile range of a sample 

3.3 Energy Utilization Factors 

Given that a cloud must serve a certain workload of VMs, it is obvious that as the load increases 

simultaneously energy consumption also increased. Besides the load, there are other factors that 

affect the total energy: the number of active hosts that serve the workload and the power model of 

hosts running the load. The number of active hosts and power models of active hosts can be 

affected by the choice of VM placement algorithm. In Figure 3.7, we summarize energy utilization 

factors in cloud computing. 

 

Figure 3.7: Illustration of energy utilization factors [84]. 

The description of each factor including the way they affect energy consumption and 

possible mitigation is given below. 

Load (Resource demand) the relation between CPU utilization and power is monotonic and 

mostly linear [84]. Which means that total energy in a data-center increases with the workload. 
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However, the VMs can be assigned to a smaller number of hosts instead of distributing them to 

large number of hosts in order to reduce energy consumption. 

Number of active hosts when a workload is assigned to a smaller number of hosts and the rest are 

either turned off or put in sleep mode, the total data-center energy can be minimized. This happens 

because the idle power (power at zero loads) contributes a large portion of the total power 

consumed; according to study in [48] a host can consume up to 70% of its peak power in the idle 

state. As investigated in related works, bin-packing heuristics such as BFD and FFD can be 

adopted to minimize the number of hosts that handle the whole workload.  

Power model of hosts some hosts are more power efficient than others. For example, 

assigning loads to a quad-core host usually be more power efficient than a dual core host. That is 

so because adding a core can take a negligible amount of power compared with turning on or 

activating additional host [84]. 

To incorporate power-model of servers into our solution, we define Power Efficiency (PE) 

of a host, as shown in the Equation 3.4: 

Power Efficiency = CPUtotal / Powermax                          (3.4) 

Where, 

 CPUtotal is the CPU capacity of a host 

 Powermax is the power utilization of a host at 100 % CPU utilization. It is the sum 

of the idle power and power due to the maximum load. 

Definition of efficiency which is the ratio of output to input parameter. The efficiency becomes 

higher as the output gets higher and input gets lower. The same definition has been used to define 

energy efficiency of the “Lago" algorithm in [85]. 

3.4 Power Efficient Modified Heuristics 

In the above section the study analyzed the factors that affect energy consumption in cloud 

computing. Accordingly, the following heuristics, illustrated in Figure 3.8, are expected to lead 

to an energy efficient VM placement algorithms: 
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Figure 3.8: Illustration of power-efficient modified heuristics  

The power-efficient modified heuristics modify the bin-packing rules by power-efficiency (PE) 

parameters: 

• Minimize the number of active hosts using bin-packing heuristics such as FFD, BFD and 

MFD. 

• Favor hosts with higher power efficiency (PE).  

• Using an algorithm that combines the above rules.  

In this research the study implements the combined method for better energy efficiency. 

3.5 Medium Fit Decreasing Heuristic 

The efficiency of practical VM placement algorithm not only has to be measured by its energy 

saving capability but also by its ability to avoid side effects: cost due to SLA violation and network 

overhead due to VM migrations. The best-fit based algorithms have a tendency to create 

overloading of some hosts when minimizing the number of active hosts and consequently more 

VM migrations by overload detection algorithm. This study proposed a bin-packing of physical 

machines existence with the intention of providing a good balance between minimizing energy 

and reducing overloading effect and its name call Medium Fit (MF). In this regard the version 

where items are sorted in decreasing order by the Medium Fit Decreasing (MFD). 

To define the Medium-Fit algorithm as follows: Let LD be a desired resource utilization 

level between overload-threshold and under-load threshold; say it is an average level between 
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overload threshold and under-load threshold: LD = (overloadthr + underloadthr)/2 

. Then the MF rule is defined to favor a host whose resource level has a minimum distance. 

From LD. More precisely, 

 Allocated-host = arg minh |Lh – LD|, where Lh is utilization level of host h.    (3.6) 

If LD = overloadthr, it has the best-fit algorithm. If on the other hand LD = underloadthr then it 

is equivalent to the worst-fit. Hence the name medium-fit. For example, if overloadthr is assumed 

to be 0.9 (90%) and underloadthr is assumed to be 0.3 (30%) then LD = 0.6. 

The reason why the MFD algorithm minimizes overload probability and at the same time 

minimize the number of active servers is explained in the following. Suppose that all hosts 

are below LD and the underload detection algorithm selects the lowest loaded host for its 

VMs to be migrated. Then, the MFD algorithm takes each VM in turn and allocates it 

to the highest loaded host according to Equation (3.6). The process is repeated taking VMs from 

the lowest loaded host to highest ones until some hosts pass the desired level, LD. The hosts whose 

VMs are migrated from are then turned off or put in sleep mode. This is minimizing the number 

of active servers without causing the highest loaded hosts pass overload-threshold. On the other 

hand, if some hosts are above the desired level, say by the long run underload migration process, 

then Equation (3.6) imply that any new VM migration (from underloaded or overloaded hosts) 

allocated to a host whose load level is near LD. In both cases, MFD minimizes the overload 

probability, and consequently reduce SLA violation and VM migrations. 

3.6 Heuristic Algorithms for Virtual Machine Placement 

Before defining the algorithms, here, a generic flowchart is given to illustrate the basic idea. The 

generic flowchart contains the basic common blocks. The generic flowchart is given in Figure 3.9.  

In the generic flowchart the algorithm first takes as input the VM lists to be migrated and host lists 

in the cloud data center. Then, for each VM sorted by decreasing resource utilization, the algorithm 

finds a host that best fits the VM and is the best in terms of the particular rule of the algorithm. A 

host fits for a VM if it has enough resource for the VM. The best host is then determined by 

iteratively selecting the better host. Next, a VM and its best host are added to a vmPlacement map. 

When all VMs are exhausted, the vmPlacement, a map of VMs and allocated hosts, is returned. 
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The criteria for selecting whether a host is better than another host is different among the VM 

placement algorithms. For example, in PABFD a host is better than another host if its CPU 

utilization level is higher than the other host. In the following sections the study presented the 

proposed and baseline algorithms each differ by the criteria they select the better host. 

 

 

 



47 | P a g e  

 

 

Figure 3.9: An illustration of a generic flowchart 
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Figure 3.9 contains the basic instructions for both the proposed and baseline algorithms. And it 

presents the proposed and baseline algorithms each of which are differed by the criteria they 

select the better host. 

It has to be noted that some of the algorithms – Algorithm 3,4 and 5 – apply finding a host to a 

VM part of the generic flowchart twice: first to place a VM from the active hosts and second to 

place the VM from the inactive(power off) host lists (after power on them) in case none of the 

active hosts fitting the VM. 

Next to this section, the researcher investigates three algorithms with respect to pseudo-code 

respectively. 

  Power Efficient First Fit Decreasing Algorithm (PEFFDA) is an algorithm as shown in 

Algorithm 3, that first gets the VM list to be migrated and the host list to be allocated. For each 

VM sorted by decreasing resource demand (line 1 in Algorithm 3), the algorithm first tries to find 

a host that fits it and is the best (line 5-13). A host fits for a VM if it has enough resource for the 

VM (line 6). The best host is then determined by iteratively replacing allocatedHost with a better 

host (line 7-11). In PEFFD, a host is better than another host if its power efficiency, PE (see 

Equation 4.1), is greater than that of the other host and the lowest indexed one is chosen for a tie-

breaking. Next, a VM and the best host are added to a vmPlacement map (line 15). If an active 

host is not found for a VM, then a host is searched from inactive host lists with same process (line 

16-31). When all VMs are exhausted the vmPlacement map is returned. 

  Power Efficient Best Fit Decreasing Algorithm (PEBFDA) is an algorithm shown in 

Algorithm 4 which has some similarity with PEFFD described above. The difference is PEBFD 

uses the best-fit rule instead of the first-fit rule. In PEBFD, a host is better than another host if its 

power efficiency, PE, is greater than all of the other hosts. In case the two hosts have the same PE, 

then the one that has lower available CPU is chosen (line 12-16 in Algorithm 4). 
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end 

end 
end 

else 

end 

end 

end 

end 
end 

 

Algorithm 3: Power Efficiency First Fit Decreasing (PEFFD) 

 

Input: activeHostList, inactiveHostList, vmList 

Output: vmPlacement 

1 sort vmList in the order of decreasing CPU utilization; 

2 foreach vm in vmList do 

3      best Power Efficiency ← MIN ;    // MIN is the minimum number 

4           allocatedHost ← NULL; 

5       foreach host in activeHostList do 

6              if host has enough resource for vm then 

7                 power Efficiency ← getTotalCPU(host) / getMaxPower(host); 

8                     if power Efficiency > bestPowerEfficiency then 

9                           allocatedHost ← host; 

10                         bestPowerEfficiency ← power Efficiency; 

11  

12  

13  

14       if allocatedHost ≠ NULL then 

15          add (allocatedHost, vm) to vmPlacement; 

16  

// assign allocatedHost from powered off hosts 

17             bestPowerEfficiency ← MIN; 

18             allocatedHost ← NULL; 

19            foreach host in inactiveHostList do 

20                     if host has enough resource for vm then 

21                           power Efficiency ← getTotalCPU(host)/getMaxPower(host); 

22                            if power Efficiency > bestPowerEfficiency then 

23                                 allocatedHost ← host; 

24                                  bestPowerEfficiency ← power Efficiency; 

25                            end 

26  

27               

28              if allocatedHost ≠ NULL then 

29                     add (allocatedHost, vm) to vmPlacement; 

30  

31   

32  

Result: vmPlacement 
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else 

then 

end 
end 

end 

end 

end 

else 

else 

end 

end 

end 

end 

end 

end 

Algorithm 4: Power Efficiency Best Fit Decreasing (PEBFD) 

Input: activeHostList, inactiveHostList, vmList 

Output: vmPlacement 

1   sort vmList in the order of decreasing CPU utilization; 

2 foreach vm in vmList do 

3       bestPowerEfficiency ← MIN; 

4         all ocatedHost ← NULL; 

5    foreach host in activeHostList do 

6            if host has enough resource for vm then 

7                   power Efficiency ← getTotalCPU(host)/getMaxPower(host); 

8                  if power Efficiency > bestPowerEfficiency then 

9                           allocatedHost ← host; 

10                             bestPowerEfficiency ← power Efficiency; 

11  

12                       if power Efficiency == bestPowerEfficiency then 

13                            if getAvailableCPU(host) < getAvailableCPU(allocatedHost) 

     

14                                      allocatedHost ← host; 

15  

16  

17  

18  

19  

20        if allocatedHost ≠  NULL then 

21           add (allocatedHost, vm) to vmPlacement; 

22  

                                // assign allocatedHost from inactive hosts 

23           bestPowerEfficiency ← MIN; 

24             allocatedHost ← NULL; 

25            foreach host in inactiveHostList do 

26                  if host has enough resource for vm then 

27                            power Efficiency ← getTotalCPU(host)/getMaxPower(host); 

28                        if power Efficiency > bestPowerEfficiency then 

29                                  allocatedHost ← host; 

30                                        bestPowerEfficiency ← power Efficiency; 

31                                  

32                              if power Efficiency == bestPowerEfficiency then 

33                                  if getAvailableCPU(host) < 

34                                              getAvailableCPU(allocatedHost) then    

35                                                 allocatedHost ← host; 

36  

37                                           

38                                                

39  

40            if allocatedHost ≠ NULL then 

41                add (allocatedHost, vm) to vmPlacement; 

                 Result: vmPlacement 

 

Medium Fit Power Efficient Decreasing Algorithm (MFPED) is a short form of MFD heuristic 

in such a way that it supports a higher PE in case of connection. In MFPED a host is favored when 
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else 

end 

end 

end 

end 

end 

end 

end 

its distance from the desired level, as defined in (4.2), is a minimum and in case two hosts have 

the same distance from the desired level, the one that has higher PE is chosen. The MFPED is 

listed in Algorithm 5. 

The alternative combination is to favor the highest power-efficient (PE) host and in case of a tie to 

apply the MF rule to produce Power Efficient Medium Fit Decreasing (PEMFD). 

 

Algorithm 5: Medium Fit Power Efficient Decreasing (MFPED) 

 

Input: hostList, vmList 

Output: vmPlacement 

1 LD ← 0.6; // The desired level is set to 0.6 

2 sort vmList in the order of decreasing CPU utilization. 

3 foreach vm in vmList do 

4              minDiff ← MAX ; // MAX is the maximum number 

5              allocatedHost ← NULL; 

6      foreach host in hostList do 

7             if host is active and has enough resource for vm then 

8                   diff ← |𝑔𝑒𝑡𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(ℎ𝑜𝑠𝑡)  −  𝐿𝐷 |; 

9                  if diff < minDiff then 

10                        allocatedHost ← host ; 

11                           minDiff ← diff ; 

12  

13                       if diff == minDiff then 

                                  // PE(.) is the power efficiency of a host 

14                             if PE(host) > PE(allocatedHost) then 

15                                            allocatedHost ← host; 

16                

17                           

18  

19  

20  

21       if allocatedHost = NULL then 

22          add (allocatedHost, vm) to vmPlacement; 

23  

24  

  

             Result: vmPlacement 
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3.7 Summary  

This chapter showed that the design of proposed framework. It focuses on the newly added 

components design. Next, we have discussed the VM selection and allocation policy to overcome 

the stated problem. In addition to that, we address the mechanism to minimize the number of 

physical hosts by conducting different methods. Finally, this research work believes that all kind 

of consolidation systems can incorporate these components to take the advantage of balancing the 

energy efficiency, SLA violation and number of VM migrations for infrastructure as service (IaaS) 

in cloud data centers. 
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CHAPTER FOUR 

SIMULATION AND EVALUATION 

4.1 Overview  

This chapter discusses the simulation and evaluation of the proposed framework in detail, tools 

and technologies used. Evaluation setup with typical cloud scenarios. In addition, the evaluation 

setup and considerations taken during the evaluation are also discussed and finally the result and 

discussion are presented. 

4.2 Tools and Technologies 

  Most researchers use actual cloud environment or laboratory setup to evaluate their works, 

however we do not have such environment around. Hence it is not possible to evaluate the 

proposed solution in real cloud environment or cloud lab. Basically, what is needed for evaluation 

is compute host from controller host to do the dynamic VM placement. Though, there are many 

papers which focus their work on tracing workloads in actual cloud environment, this workload 

trace data can be from real cloud environment input for this evaluation. This research chooses 

Bitbrains workload trace data to do the evaluation and we discuss what has been done on the 

workload trace and what Bitbrains is? 

 BitBrains is a cloud service provider that specializes in managed hosting and business 

computation for enterprises [85]. The dataset collected contains resource utilization by 1,750 VMs 

from a distributed data-center and is available online from the Grid Workloads Archive [86]. It is 

organized into two folders: fast Storage traces that consists of 1,250 VMs and Rnd traces that 

consists of 500 VMs. In this work, we used the fast Storage traces. The dataset is organized as 

one file per VM, each file containing 30 days of data sampled every 5 minutes. 

This research chooses this Bitbrains data with two reasons. The first one is the workload data 

collected from real cloud business-critical loads which is able to show that the proposed system 

can work for companies which run business critical systems. The second and the main one is the 

data is collected for a month long. This is actually very important because the proposed 

framework need monthly data of a detected node to measure the energy consumption.  
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4.3 Evaluation Setup  

The solution proposed in this thesis work is not a full-fledged energy aware framework. But, the 

newly added components help existing framework to enhance energy efficiency and SLA 

reduction. In these section two main points are discussed regarding the evaluation setup: 

A. Why not a real experiment?  

B. which simulation tool is preferred?  

These two questions show the steps which this thesis work gone through to evaluate the proposed 

solution. The steps followed are discussed below:  

A. Why not real experiment?  

Since, we don’t have real cloud or laboratory environment which would help to work as a 

validation step, we have chosen to simulation as an evaluation technique. 

Another way we may think is that, why not deploying cloud environment itself and run the solution 

on it? The solution needs to run on top of cloud computing environment and to do that beside 

resource utilization knowledge, it needs domain expert and professionals in the area. Since the 

focus of the study was energy consumption, and with the assumption of simulation tools, we could 

not able to acquire a knowledge which help to develop cloud tool or environment to integrate with 

the proposed framework. There are cloud operating systems such as OpenStack, Open Nebula and 

eucalyptus. These operating systems help to create the cloud environment. Some are open sources 

and others are proprietary. The operating systems has their own minimum requirements to operate 

on and needs knowledge to integrate the cloud environment with proposed framework.  

B. which simulation tools is preferred? 

Simulation is a technique to create a process model of a real system. Simulation is designed for 

system evaluation and test heuristics or strategies [20]. In a real cloud computing environment, all 

implementations and evaluation operations are time-consuming, not repeatable, and expensive. 

Moreover, the performance problems and security issues are often difficult to analyze. Therefore, 

it is difficult to synthesize and analyze diversified aspects of the underlying heuristic in a real 

Cloud environment. So, a more effective alternative is the use of simulation tools according to the 

study [20]. 
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 As per discussed previously on literature review and by taking the comparative survey of state-

of-the-art in cloud computing simulation tool. From the eight simulation tools this research work 

chose the third one (cloudsim) to study further for three reasons. The first one is the simulation 

tool objective i.e. experimentation on infrastructures and application services. The second one is 

the scalability to easily increase and decrease the size of the simulation, while the other are not 

salable except iCanCloud, but iCanCloud use C++ language and the last reason is cloudsim is the 

widely used simulation toolkit. In addition to that, this simulation tools are cloud environment 

which have nodes/resource and their runtime utilization data. The main thing is the utilization data, 

that is what this research solution needs to calculate the workload. According to Rodrigo et al. in 

[20], 18 of the tools analyzed were derivatives or extensions of CloudSim.   

 CloudSim is an open-source toolkit for modeling and simulating cloud environment and 

evaluation of resource allocation algorithms [20]. It is widely used by research works in industry 

(such as HP Labs) and in academia [6] [24] [47] and [71]. It offers the following novel features: 

(i) support for modeling and simulation of large-scale cloud computing environments, (ii) a 

platform for modeling clouds, service brokers, and resource allocation policies, and (iii) support 

for simulation of network connections among the simulated system. 

CloudSim contains Java classes for modeling the different components of a cloud including classes 

for data-center, host, and virtual machine as shown Figure 4.14. Users of the simulator customize 

it by extending the classes and overriding the methods. 
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Figure 4.14: CloudSim class diagram [20] 

CloudSim Classes Description  

The following extract from paper [20] gives a brief description of CloudSim main classes. 

CloudSim is the main class responsible for managing event queues and controlling step-by-step 

(sequential) execution of simulation events. 

Datacenter Data center encapsulates a set of compute hosts and implements a set of policies for 

allocating processor, memory, and storage devices to hosts and VMs. 

Datacenter Broker This class models a broker that negotiates between SaaS and cloud providers. 

Datacenter Characteristics This class contains configuration information of data-center 

resources. 

Host This class models a physical resource such as a compute or storage server. It encapsulates 

important information such as the amount of memory and storage, a list and type of 

processing cores (to represent a multi-core machine), an allocation of policy for sharing the 

processing power among VMs. 
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Vm This class models a virtual machine (VM), which is managed and hosted by a Cloud host 

component. Every VM component has access to a component that stores the following 

characteristics related to a VM: accessible memory, processor, storage size, and the VM’s 

internal provisioning policy that is extended from an abstract component called the Cloudlet 

Scheduler. 

Bw Provisioner, RAM Provisioner and VmScheduler. These three classes are all abstract class 

and provide components for defining policies of bandwidth management, ram management 

and VM management for a server. 

Vm Allocation Policy This abstract class represents a provisioning policy that a VM Monitor 

utilizes for allocating VMs to hosts. The main function of the Vm Allocation Policy is to 

select the available host in a data center that meets the processor, memory, and storage 

requirement for a VM deployment. 

VmScheduler This is an abstract class implemented by a Host component that models the policies 

(space-shared, time-shared) required for allocating processor cores to VMs. The 

functionalities of this class can easily be overridden to accommodate application-specific 

processor sharing policies. 

Cloudlet This class models the Cloud-based application services. It has a pre-assigned instruction 

length and data transfer overhead. 

Cloudlet Scheduler This abstract class is extended by the implementation of different policies 

that determine the share of processing power among Cloudlets in a VM. 

Consolidation Framework in CloudSim 

The consolidation framework of OpenStack Neat is included in the CloudSim in the form of power 

packages [84]. Power packages are implemented by extending the cloud entity classes to be power 

aware. The list includes Power Datacenter, Power Host, Power VM, Power VM Allocation and 

Power VM Selection policy. In addition, it includes a power-model package that simulates real 

server’s power model and a class for host utilization history that used by overload estimation 

algorithms. The description for some of the important classes is given in the following list. 

Power Datacenter is a class that enables simulation of power-aware data centers. It also updates 

processing of each cloudlet running in data-center and initiate optimization of VM allocation when 

the resource utilization of cloudlets changes. 
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PowerHost is class enables simulation of power-aware hosts. Besides inheriting the methods in 

Host class, Power Host adds methods for setting power model of a host and getting power 

utilization at a given load. 

PowerVM the class of a VM that stores its CPU utilization history. The history is used by VM 

allocation and selection policies. 

PowerVmAllocationPolicyMigrationAbstract the class of an abstract power-aware VM 

allocation policy that dynamically optimizes the VM allocation using migration. Implementation 

of a VM placement algorithm can be achieved either by simply replacing the findHostForVm 

method of this class or by overbidding the method in an extended class. 

PowerVmSelectionPolicy the class of an abstract VM selection policy for VM migration. This 

class can be extended to implement custom VM selection policy. 

4.4 Cloud Scenarios 

There are cloud data center scenarios are configured for evaluation: Default, Heterogeneous and 

Homogeneous. Each scenario contains host configuration, VM types and workloads that run in the 

data-center. The configuration of the three scenarios are described in the following subsections. 

  Default-scenario 

The first scenario, shown in Table 4.8, adopts the data-center setup of Beloglazov et al. [33] which 

is included in CloudSim. It has a cloud environment of 800 hosts from two server models (400 

hosts from each server type) and four types of VMs. For the VM instances, their CPU capacity is 

given in millions of instructions per second (MIPS). The number of VMs and their workloads are 

generated from real clouds workload traces. The traces are from Planetlab cloud and Bitbrains 

cloud service provider [86] and [57]. 

For overload prediction the local regression policy which is available in the CloudSim simulator 

is used. At each optimization step, the minimum loaded host is chosen for its VMs to be migrated. 

If the remaining hosts have enough resource to handle the VMs, the host turned off for saving 

energy. 

  Host types 

In the Default-scenario two types of hosts are configured: (i) HpProLiantML110G4 which has 

dual-core processors @1800 MHZ and 4GB RAM, and (ii) HpProLiantML110G5 which has 

dual-core processors @2660 MHZ and 4GB RAM. The power model of those hosts is presented 
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in Figure 4.15. As shown in Table 4.8. Present the data-center host, VM and PlanetLab traces are 

adopted from the default configuration in CloudSim. 

Table 4.8: Default-scenario parameters and configurations 

Parameters Configuration 

Host types 
HP ProLiant ML110 G4 (2 X 1800 MIPS) 

HP ProLiant ML110 G5 (2 X 2660 MIPS) 

Number of hosts 800; 400 of each host type 

VM types 

2500 MIPS 

2000 MIPS 

1500 MIPS 

1000 MIPS 

Workloads 
PlanetLab (10 days of traces) 

Bitbrains (10 days of traces) 

Overload decision Local regression 

Underload decision The minimum loaded host 

Table 4.9. The power consumption by servers can be accurately described by a linear relationship 

between the power consumption and CPU utilization. As can be seen from the table that even at 

low utilization, the host consumes a significant amount of power. Hence it is required to turn off 

such kind of hosts, when not in use. 

Table 4.9: Power Consumption (Watts) at different load levels 

Host 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HpProLiant 

Ml110G4Xeon3040 
86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HpProLiantM 

l110G5Xeon3075 
93.7 97 101 105 110 116 121 125 129 133 135 

 

https://www.sciencedirect.com/science/article/pii/S1319157817302288#t0015


60 | P a g e  

 

 

                               CPU Utilization (%) 

Figure 4.15: Power models for hosts in Default-scenario 

  VM types 

The VM instances included in CloudSim simulator are equivalent to those provided by Amazon 

cloud provider [33]. The following four VM instance types are used in this thesis study: 

• High-CPU Medium Instance: 2.5 EC2 Compute Units, 0.85 GB RAM 

• Extra Large Instance: 2 EC2 Compute Units, 3.75 GB RAM 

• Small Instance: 1 EC2 Compute Unit, 1.7 GB RAM 

• Micro Instance: 0.5 EC2 Compute Unit, 0.633 GB RAM 

  Heterogeneous-scenario 

In this scenario the number of host types is increased to four by adding two quad-core IBM server 

models: IBM Xeon X3470 (4 X 2933 MIPS) and IBM Xeon X3480 (4 X 3067 MIPS). To make 

a comparable computational power as that of the Default-scenario, the number of hosts is reduced 

to 560 (140 of each server type). The CPU capacity and power model of all four hosts are shown 

in Table 4.10. The addition of two server types creates more heterogeneity in the cloud. And PE 

is the power efficiency of hosts. 

 

 

 

 

 

 

 

0 20 40 60 80 100 

90 

100 

110 

120 

130 

HpProLiantML110G4 

HpProLiantML110G5 



61 | P a g e  

 

Table 4.10: Heterogeneous-scenario host configuration  

Parameters Configuration PE 

Host types 

HP ProLiant ML110 G4 (2 X 1800 MIPS) 32 

HP ProLiant ML110 G5 (2 X 2660 MIPS) 39 

IBM Xeon X3470 (4 X 2933 MIPS) 104 

IBM Xeon X3480 (4 X 3067 MIPS) 108 

Number of hosts 560, 140 of each type 

  Homogeneous-scenario 

In this scenario only one type of host is defined in the data-center. The setup differs from Default-

scenario by the host type which in this case is only the HP ProLiant ML110 G5 server. In this 

scenario the power efficiency, PE, of all hosts are equal. Thus, performance improvement with 

respect to energy consumption is not expected from this study.  

 Workload traces 

The experiment is performed on workload traces collected from real clouds: PlanetLab and 

Bitbrains. The PlanetLab is a cloud of global research network and the traces are collected from 

a monitoring system called CoMon [57]. The data contains the percentage of CPU utilization by 

more than a thousand of VMs from servers located at more than 500 places around the world. It 

is collected during 10 random selected days from March up to April 2011 Archive. The dataset is 

organized as one folder per day and a file in a folder contains one day CPU utilization of a VM 

sampled every 5 minutes. The statistical characteristics of the dataset is shown in Table 4.11. This 

workload is available with CloudSim simulator. On the below Table 4.11. The percentages are 

relative to the configured CPU capacity of VMs. 
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Table 4.11: Statistical characteristics of Planetlab workloads traces 

Period of data 

collection 

Number of VMs Mean-load (%) St.dev. (%) 

 

 

 

 

March and 

April Months 

data set 

1052 12.31 17.09 

898 11.44 16.83 

1061 10.7 15.57 

1516 9.26 12.78 

1078 10.56 14.14 

1463 12.39 16.55 

1358 11.12 15.09 

1233 11.56 15.07 

1054 11.54 15.15 

1033 10.43 15.21 
  

Previously we stated the Bitbrains on section 4.2. To reuse the same utilization-model as that of 

PlanetLab available in CloudSim, we have converted the datasets of Bitbrains into the format of 

PlanetLab datasets. The first 10 days of the converted datasets that are used in this thesis study 

experiment and their statistical characteristics are shown in Table 4.12. The percentages are 

relative to the configured CPU capacity of VMs. 

Table 4.12: Statistical characteristics of Bitbrains workloads traces  

Period of data 

collection 

Number of VMs Mean-load (%) St.dev. (%) 

 

 

 

 

 

August Month 

data set 

1238 11.21 26.33 

1237 7.6 17.52 

1234 5.1 13.16 

1233 8.48 21.11 

1232 9.43 21.67 

1231 8.63 23.19 

1218 7.73 17.49 

1209 10.78 24.07 

1207 7.06 16.93 

1205 8.64 21.62 
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 VM lists and workload assignments 

The number of VMs are determined by the number of files in a workload folder. Workload folders 

are organized by date as shown in Table 4.11 and Table 4.12 for both PlanetLab and Bitbrains 

traces. For example, for workload folder at date 3/03/2011 of PlanetLab traces, 1052 number of 

VMs are created and that constitutes the VM lists for one experiment. The VM lists so created 

CPU capacity from the four types of VMs defined in Table 4.8 Each VM in the VM lists is then 

assigned one of the workload files in the folder that determines its CPU utilization pattern for one 

day. 

  The initial placement of the VM lists to host lists is determined by the specified capacity of the 

VMs from the four types defined in Table 4.8 and the rule of the working VM placement 

algorithm. After initial placement, the optimization phase follows according to the OpenStack 

Neat framework which includes one of the VM placement algorithms for host selection. The 

resource demand of a VM, after initial placement, is read from the corresponding workload files. 

4.5 Evaluation Metrics 

We adopt three main evaluation metrics are those that measure energy efficiency, SLA violation 

and number of VM migration. Energy efficiency, it represents the total energy consumption of 

all the hosts in cloud data center. Energy efficiency is measured with the total cloud data-center 

energy consumption in kWh (kilowatt hour), 

EnergyC = data-center energy consumption per day                                       

SLATAH (SLA violation Time per Active Host): The percentage of time, during which active 

hosts have experienced the CPU utilization of 100 %. When a host experiences 100 % utilization, 

it is not be able to allocate enough CPU to the VMs on it, so it generates SLA violation. The 

SLATAH can be calculated using Eq. (2). In CloudSim simulation, 𝑇𝑠𝑖  is counted whenever the 

CPU capacity requested exceeds the available capacity.  

  SLA violation Time per Active Hos =
1

𝑁
∑

𝑇𝑠𝑖

𝑇𝑎𝑖

𝑁
𝑖=1                                                        (4.4) 

Where, 

– N is the number of hosts 
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– Tsi is the SLA violation time 

– Tai is the active time for Hi 

A VM migration causes overhead on a network as well as SLA violation and the associated 

metric is denoted by number of VM migration. 

Number of VM migration = the number of VM migration in cloud data-center per day 

In all defined metrics the lower the metric value is, the better the performance of the algorithm 

under consideration. 

4.6 Results and Discussions 

In this section, we discussed the experimental results. From Figure 4.16 to Figure 

4.18, we can see the performance of algorithms in three different scenarios on three metrics: 

EnergyC, SLAV and Migrations. For all the three metrics, the least of the average of each of them, 

the better result we achieved. 

 According to the experimental results among the 16 different combinations of ODA and 

SLAVDA selection algorithms, the best one is LR_MMT_1.2. Thus, we present the results of 

LR_MMT_1.2 for redesign framework from Table 4.13 to Table 4.15. The results of the 

experiment for each scenario are discussed in the following subsections.  

Performance of algorithms in the Default-scenario 

Table 4.13 summarizes the average performance of the algorithms in the Default-scenario with 

respect to all defined metrics: energy consumption, SLA violation Time per Active Host 

(SLATAH) and #VM migrations. In the table, the best values are highlighted in boldface. The 

researcher observe that the proposed algorithms outperform the baseline algorithms in all 

performance metrics. The performance difference between proposed algorithms is negligible 

(<1%) with respect to average energy consumption while with respect to both SLATAH and #VM 

migrations, MFPED has the best performance. Compared with PEBFD, MFPED improves 

SLATAH and #VM migrations by 14% and 7% respectively using PlanetLab traces. Using 

Bitbrains traces, MFPED improves SLATAH and #VM migrations by 54% and 24%, respectively 

over PABFD. 
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Table 4.13: Average performance of algorithms in the Default-scenario.The best values defined in 

bold face. 

Workloads Algorithms EnergyC(kwh) SLATAH (%) #VM migrations 

PlanetLab 

traces 

MFPED 110.93 
3.62 10975 

PABFD 161.87 
6.21 24364 

PEBFD 110.41 
4.21 11819 

PEFFD 110.53 
4.02 12104 

Bitbrains 

traces 

MFPED 
65.58 2.44 7216 

PABFD 
103.75 6.03 19808 

PEBFD 
88.09 3.77 9605 

PEFFD 
65.90 2.63 7612 

Thus, we conclude that, in case of the Default-scenario, the proposed algorithms improve both 

metrics (energy consumption, SLA violation) regardless of the workload traces considered. 

In the Default-scenario all proposed algorithms deliver lower energy consumption, reduced SLA 

violation and VM migrations compared with baseline algorithms. Comparison by energy 

efficiency of the proposed algorithms against the baselines PEFFD and PABFD are shown in 

Figure 4.16. From the box plots of Figure 4.16.a, we observe that PEBFD resulted in the lowest 

median energy consumption of 109.5 kwh in case of PlanetLab workload traces. It is followed by 

a closer result of MFPED and PEFFD with values 109.9 kWh and 109.7 kWh, respectively. The 

highest energy consumption has resulted from the baseline algorithm PABFD with a median value 

of 165 kWh.  
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Figure 4:16: Comparison by energy efficiency of algorithms in the Default scenario.  

Total energy consumption in data-center with two types of dual-core HP ProLiant servers.  

PEFFD and PABFD are the baseline algorithms and the rest are the proposed ones. Negligible (< 

1%) with respect to average energy consumption while with respect to both SLATAH and #VM 

migrations, MFPED has the best performance. Compared with PEFFD, MFPED improves 

SLATAH and #VM migrations by 32% and 15% respectively while using PlanetLab traces. Using 

Bitbrains traces, MFPED improves SLATAH and #VM migrations by 64% and 18%, respectively 

over MBFD.                                                             

Performance of algorithms in the Heterogeneous-scenario 

Table 4.14 presents the average performance of the algorithms with respect to all defined metrics 

for Heterogeneous-scenario. The performance difference between the algorithms is negligible (< 

0.5%) with respect to energy consumption. With respect to SLATAH and #VM migrations, 

MFPED has the lowest value followed by PEFFD. The improvement of MFPED over the baseline 

PABFD is 71.3% for SLATAH and 62.2% for #VM migrations. In case of Bitbrains traces too, 

the proposed algorithms improve energy consumption against the baseline algorithms. Also, 

energy performance differences among the proposed algorithms are negligible. The MFPED 

algorithm improves SLATAH and #VM migration by 71.3% and 62% respectively, against 

PABFD. Thus, in Heterogeneous-scenario, the proposed algorithms improve all metrics (energy 

Results using PlanetLab traces                (a) Results using Bitbrains traces (b) 
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consumption, SLA violation and number of VM migration) by a greater amount than the 

improvement in case of the Default-scenario. 

Table 4.14: Average performance of algorithms in the Heterogeneous-scenario. The best values 

defined in bold face. 

Workloads Algorithms EnergyC(kwh) SLATAH (%) #VM migrations 

PlanetLab 

traces 

MFPED 35.65 1.74 6908 

PABFD 49.99 6.06 18295 

PEBFD 35.58 2.28 7783 

PEFFD 35.59 2.04 7441 

Bitbrains 

traces 

MFPED 28.10 1.59 5753 

PABFD 33.42 6.55 17896 

PEBFD 20.55 2.06 6003 

PEFFD 20.57 1.83 5596 

In the Heterogeneous-scenario all proposed algorithms give lower energy consumption, reduced 

SLA violation and VM migrations compared with baseline algorithm. As shown in in Figure 4.17 

the proposed algorithms resulted in higher energy consumption improvement over baseline, 

PABFD, than the improvement in case of Default-scenario. 

  

 

Figure 4.17: Comparison by energy efficiency of algorithms in the Heterogeneous-scenario.  

Results using PlanetLab traces                (a) Results using Bitbrains traces (b) 
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Total energy consumption in data-center with four types of servers from dual-core HP ProLiant 

and quad-core IBM Xeon. PABFD are the baseline algorithms and the rest are the proposed ones. 

The result shows that the power efficiency, PE, as defined in (3.3) is an important energy efficiency 

factor. From the chart line of Figure 4.17.a, we observe that all proposed algorithms resulted in a 

median energy consumption of about 35.6 kwh using PlanetLab workload traces. The 

improvement of proposed algorithms over baseline, PABFD, is around 28.8%. In case of Bitbrains 

workload traces shown in Figure 4.17.b, the lowest median energy consumption has resulted from 

both PEFFD and PEBFD with a value of 24.3 kwh. The improvement of proposed algorithms, in 

this case, over the baseline PABFD is about 38.5%. 

Performance of algorithms in the Homogeneous-scenario 

In Homogeneous scenario, as the power efficiency of almost all hosts is the same, the only power 

saving VM placement method is to minimize the number of hosts. Thus, we do not expect an 

improvement in energy efficiency from proposed algorithms. As shown in Figure 4.18, both 

PEBFD and PEFFD, resulted in nearly equal median energy consumption of 110.75 kwh and 65.58 

kwh for PlanetLab and Bitbrains traces, respectively. The worst energy efficiency (highest 

consumption) has resulted from PABFD in both workload traces. 

As shown Table 4.15 presents the average result of the experiment in Homogeneous-scenario using 

PlanetLab traces. There is no average energy saving by the proposed algorithms against PABFD. 

There is, however, improvement in reducing SLA time per active host and number of VM 

migrations. Compared with PABFD, MFPED improves SLATAH and #VM migrations by 42.1% 

and 3.26%, respectively, when traces from PlanetLab are used. Similarly, in case of Bitbrains 

traces, the two PABFD and PEBFD, give almost equal energy consumption. Using Bitbrains 

traces, MFPED improves SLATAH and #VM migrations by 56.83% and 56.68%, respectively 

over PABFD. We also note that the worst algorithm with respect to all three metrics in both 

workload traces is the PABFD. 

 

 

 



69 | P a g e  

 

Table 4.15: Average performance of algorithms in Homogeneous-scenario. The best values 

defined in bold face. 

Workloads Algorithms EnergyC(kwh) SLATAH (%) #VM migrations 

PlanetLab 

traces 

MFPED 
110.93 3.62 10975 

PABFD 
158.94 6.25 27497 

PEBFD 
110.39 4.27 11872 

PEFFD 
110.57 4.02 12107 

Bitbrains traces 

MFPED 
65.59 2.59 8502 

PABFD 
103.70 6.00 19625 

PEBFD 
65.29 3.16 8408 

PEFFD 
65.58 2.65 7562 

There is no average energy saving by the proposed algorithms against baseline MBFD in case of 

Homogeneous-scenario. The benefit of the proposed algorithms, in this case, is on reducing 

overload time fraction and number of VM migrations. In Homogeneous scenario, as the power 

efficiency of all hosts is the same, the only power saving VM placement method is to minimize 

the number of hosts. Thus, we do not expect an improvement in energy efficiency from proposed 

algorithms. As shown in Table 4.16, both BFD based algorithms, MBFD and PEBFD, resulted in 

nearly equal median energy consumption of 110.8 kwh and 73.3 kwh for PlanetLab and Bitbrains 

traces, respectively. The worst energy efficiency (highest consumption) has resulted from PABFD 

in both workload traces. 
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Figure 4.18: Comparison by energy efficiency of algorithms in the Homogeneous scenario.  

Total energy consumption in data-center with one type of server: HP ProLiant ML110 G5.  PABFD 

are the baseline algorithm and the rest are the proposed ones. 

These three test cases with PlanetLab and Bitbrains data inputs shows the whole figure of the 

proposed solution, according to the tests the solution is doing what it intends to do successfully. 

The test results show the java implementation and its results, so what we should understand from 

The result is important. The data we got as a result shows the output of the proposed framework. 

The threshold value is changed in each detection time based on each host resource utilization. 

This research work answered three research questions, below the result with respect to each 

research questions discussed: 

RQ1. How could energy-aware heuristic framework in cloud data center be an alternative and 

preferred solution compared with existing framework approach? 

In this study, we proposed energy efficient heuristic framework for VM placement to achieve a 

better energy-performance tradeoff. There are two main contributions in the framework: First, in 

the overloaded host decision step, the algorithm check whether a host is overloaded with SLA 

violation or not based on the overload threshold and specification of the active hosts. Second, in 

the underloaded VM migration step, apply minimum power policy to allocate the host for VMs 

migration then power off the target host (the host with high power consumption). Finally, we have 

Results using PlanetLab traces                (a) Results using Bitbrains traces (b) 



71 | P a g e  

 

conducted experiments using CloudSim on three cloud data-center scenarios: default, 

heterogeneous and homogeneous. Workloads that run in the data-centers are generated from traces 

of PlanetLab and Bitbrains clouds. The results of the experiments show that, 28% up to 62.3 % 

minimize energy consumption, 71.3% up to 75.73% reduce SLA violation and 62.2 up to 68.73% 

reduce number of VM migration.  

RQ2. What algorithmic techniques is employed in energy efficient researches?  

A comprehensive performance analysis of various VM placement algorithms is conducted by Z. 

Mann and M. Szabo [72], for overload and underload detection, the authors reuse algorithms from 

OpenStack Neat framework. The VM placement algorithms considered for comparison include 

PABFD and PAWFD. By default, VM migration list was decreasingly sorted with respect to CPU 

utilization and the VM placement algorithm was PABFD but not PAWFD. We then used the 

decreasingly sorted VM migration but instead of PABFD we used our proposed PEFFD, PEBFD, 

MFPEFD algorithms for VM placement one at a time. To compare the effectiveness of our 

algorithm we use three metrics which are energy consumption, SLA violation per active host and 

number of virtual machine migration. Then, we ran simulation randomly among day wise 

PlanetLabs and Bitbrains workload data to compare the existing and proposed algorithms that have 

been discussed in earlier section. Therefore, all of our proposed VM placement algorithms 

performed better than PABFD which is used as base line algorithm in CloudSim. The three metrics 

are scored by both LR and MMT with parameter 1.2 combination the result MFPED algorithm, 

which draw best result compared to PABFD algorithm and the rest two algorithms. 

RQ3. What is the impact on energy efficiency metrics when compared with the existing cloud data 

centers? 

We can see the comparison of the existing and the proposed one on three metrics: EnergyC, 

SLATAH and number of VM migrations. For all the three metrics, the least of the average of each 

of them, the better result we had achieve. As per discussed in the previous section 4.5, the 

following is the simulation result of three metrics: 

(a) The Energy evaluation: In figure 4.17 (a) and (b), for the Existing one, the minimum and 

maximum evaluation values are 35.58 kwh and 49.99 kwh respectively. For the proposed one, 

the values are 20.55 kwh and 33.42 kwh respectively. Compared with the Existing one, the 
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proposed framework has 38.5%decrease for energy consumption for the three-type 

combinations. 

(b) The SLATAH evaluation: In figure 4.17 (a) and (b), we use the 10-day workload to evaluate 

the three metrics for the three-type combination policies. In each subfigure of the figure, each 

chart line represents 10 average results from the 10-day workload, of which the dotted line 

represents the results. For better comparison, we use the average of the 10 results as an 

evaluation value. Therefore, the evaluation values for the existing one can be easily figured 

out 6.06% in Table 4.15 (a). For the proposed one, the value is 1.74%. Compared with the 

Existing one, the proposed one has 75.3% decrease for the three-type combinations for the 

SLATAH. 

(c) Number of VM migration evaluation: In figure 4.17 (a) and (b), the experiment result shows a 

reduction of VM migration which significant for our proposed framework. Compared to the 

prior work, VM migration reduced by 68.73%. 

4.1 Summary  

This chapter mainly focused on implementation and evaluation of the proposed framework, and it 

also discuss about evaluation setup and considerations. In both default and heterogeneous power 

model configuration the proposed algorithms provide a better performance than the baseline 

algorithms. The performance difference between proposed algorithms is negligible with respect to 

energy consumption. With respect to the other metrics such as SLA time per active host 

(SLATAH) and number VM migration the MFPED performs the best. Statistical tests show that 

the improvement in total energy consumption, SLA violation, and VM migrations are highly 

significant. 

Another important observation is that the relative performance of the algorithms is independent of 

the workload data used. It means that the choice of which VM placement algorithm to use does 

not depend on the type of service running in the cloud. Finally, we observe that the data-center 

host types affect the relative performance of the algorithms. For example, in the homogeneous 

setup all algorithms except PABFD have about the same energy consumption; the PABFD and the 

proposed algorithms resulted in a relatively higher energy efficiency when there is big difference 

among the power utilization efficiency of hosts. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions and Contributions  

One of the main challenges in cloud computing was the enormous amount of energy consumption 

in cloud datacenters. Several research works are devoted to address the challenge using VM 

placement. VM Placement is the process of minimizing energy consumption in a cloud by 

allocating VMs to the fewest possible servers. The complexity of the problem of placement arises 

from the trade-off between energy saving and SLA isolation. In this research work, we have 

addressed the problem by find out more appropriate methods to decide the placement and redesign 

of OpenStack Neat framework. Firstly, we classify the host status overload into two types, i.e. 

OverSV and OverNSV. And proposed SLA violation decision algorithm (SLAVDA) to decide 

whether an OverNSV host is OverSV or not. 

Then the proposed algorithm improves energy efficiency when compared with the baseline 

algorithm: PABFD. The improvement in energy efficiency over PABFD can be up-to 42%, 

depending on the data-center host types and workloads. Moreover, to avoid unnecessary SLA 

violation and VM migrations, we defined a new bin-packing rule called medium-fit. Compared 

with other VM placement algorithms, the medium-fit power efficient decreasing algorithm 

(MFPEDA), provides a lower SLA violation and number of VM migrations. MFPED improves 

SLA violation and number of VM migrations against PABFD by up-to 71% and 62%, respectively, 

depending on the cloud scenario. Regarding practical implementation, the only additional 

information necessary to implement the proposed algorithms is the peak power of hosts.  

Finally, we have evaluated the proposed framework and the existing framework through 

simulation on large-scale experiments driven by workload traces collected from more than a 

thousand PlanetLab and Bitbrains VMs. The results show that the redesign framework got an 

improvement in energy efficiency. This result indicates that data center operators and owners 

should understand data center’s efficiency and reduce energy consumption. 
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Moreover, the contribution of this thesis work is to achieve better energy-performance tradeoff by 

introducing a new framework from the existing perspective. The framework support data center 

owners to prevail over energy problems by switching to a new paradigm of energy efficient 

technologies. The thesis also contributes to the body of knowledge for future study on overload 

detection, VMs selection and VMs placement algorithms to save energy consumption in cloud 

datacenters. Researchers in the area could use the framework to develop cloud native data center 

power management system. 

5.2 Future Works 

This research might support for future researches interested to explore more on this field. The 

elements below might be of some relevance to the constituents mentioned in this aspect:  

• The framework currently includes only CPU utilization. In future research, the framework 

should include more utilization about memory, disk, and network, to meet more complicated 

situations in the placement problem. 

• More work is still underway for the proposed heuristic framework. It has not been evaluated 

on large scale experiments in practice and considered other resource requirements such as input 

output (IO), bandwidth and storage. Therefore, the proposed framework evaluated in real 

environment considering IO, bandwidth and storage in future work. 

• Considering the scope of this thesis work, it is all focused-on computing elements of the 

data center (or servers). Computing devices are not the only elements in data center 

that consume energy. Other elements like network equipment’s or air conditioning units 

also contribute to the total energy consumption. Thus, further research can be performed in 

this regard to realize the problem of data center energy consumption. 
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A. Appendix 

A.1 Baseline Algorithm 

A baseline algorithm: the PABFD, a VM placement in CloudSim [79], are given in Algorithm 2. 

For PABFD (Algorithm 2), a host is better than another if the estimated power for the current VM 

is smaller than the one estimated for the other host. 

Algorithm 2: The Power Aware Best-Fit Decreasing 

Input: hostList, vmList 

Output: vmPlacement 

 

 

 

 

 

 

 

 

 

    

     

 
    

  host in hostList  

  host has enough resources for vm  

          

      

     

     

  

  

  

  

      

      

  

   

sort vmList in the order of decreasing CPU utilization; 
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A.2 Performance of the Vm Placement Algorithms for the Case of Three 

Scenarios 

In this section, we can see the performance of algorithms in three different scenarios on three 

metrics: EnergyC, SLAVTAH and number of Migrations. 

The following lists show the energy consumption, EnergyC(.); SLA violation Time per Active 

Host, SLATAH(.); and the number of VM migrations, #VM Migration(.) Performance of the VM 

placement algorithms for 10 experiments in heterogeneous cloud data-center setup using 

PlanetLab traces: 

EnergyC (MFPED) 37.14 27.62 31.17 37.72 32.91 50.82 39.66 38.69 33.62 27.2 

SLATAH(MFPED) 1.38 1.35 2.13 1.85 1.52 1.56 1.61 1.41 1.89 2.68 

# VM M (MFPED) 5401 4396 6680 8453 6581 9451 7540 7241 6465 6871 

 

EnergyC (PABFD) 50.84 39 43.82 54.3 46.59 68.1 55.55 54.4 47.17 40.16 

SLATAH (PABFD) 5.99 6 6.24 5.96 6.12 5.86 5.99 5.98 6.06 6.43 

#VM Mig (PABFD) 17829 15076 15866 20408 17553 22558 19788 20272 17337 16260 

 

EnergyC (PEBFD) 37.03 27.6 31.1 37.6 32.86 50.67 39.61 38.59 33.59 27.11 

SLATAH (PEBFD) 1.99 1.75 2.42 2.34 2.29 2.06 2.14 2.03 2.54 3.28 

#VM Mig (PEBFD) 6523 5324 6930 9743 7428 10392 8708 8042 7354 7381 

 

EnergyC (PEBFD) 37.03 27.6 31.1 37.6 32.86 50.67 39.6 38.59 33.59 27.1 

SLATAH (PEBFD) 1.99 1.75 2.42 2.34 2.29 2.06 2.14 2.03 2.54 3.28 

#VM Mig (PEBFD) 6523 5324 6930 9743 7428 10392 8708 8042 7354 7381 
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The following lists show the same metrics in case of Bitbrains traces: 

EnergyC (MFPED) 37.14 27.62 31.17 37.72 32.91 35.61 19.87 16.06 15.76 27.1 

SLATAH (MFPED) 1.38 1.35 2.13 1.85 1.52 0.48 1.34 1.55 3.01 1.31 

#VM Mig (MFPED) 5401 4396 6680 8453 6581 2936 4960 6005 6755 5362 

 

EnergyC (PABFD) 28.39 36.17 22.56 30.84 38.8 48.14 30.85 28.42 27.48 42.54 

SLATAH (PABFD) 6.35 6.59 6.57 6.73 6.74 6.17 6.36 6.49 6.9 6.63 

#VM Mig (PABFD) 16226 19684 17539 18253 18557 19682 15692 15495 18328 19501 

 

EnergyC (PEBFD) 15.93 24.17 10.49 16.7 24.01 35.49 19.8 16.04 15.74 27.06 

SLATAH (PEBFD) 1.77 1.86 2.1 1.76 2.43 1.04 1.83 1.96 3.95 1.92 

#VM Mig (PEBFD) 4713 6329 5810 5277 8058 4631 5658 6422 6639 6495 

 

EnergyC (PEFFD) 15.96 24.23 10.48 16.75 24.1 35.47 19.82 16.06 15.7 27.1 

SLATAH (PEFFD) 1.34 1.72 2.01 1.56 1.92 0.81 1.52 2.24 3.34 1.85 

#VM Mig (PEFFD) 4737 5794 5108 5198 6558 3611 5404 6388 6873 6285 

 

 

 

 

 

 

 


