

IMPROVING THE COMPRESSION ALGORITHMS PERFORMANCE

FOR SCANNED AMHARIC PDF FILES

A Thesis Presented

by

Haimanot Andargachew

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Computer Science

January 2020

ACCEPTANCE

Improving the Compression Algorithms Performance for

Scanned Amharic PDF Files

By

Haimanot Andargachew

Accepted by the Faculty of Informatics, St. Mary’s University, in partial

fulfillment of the requirements for the degree of Master of Science in

Computer Science

Thesis Examination Committee:

__

Internal Examiner

External Examiner

__

Dean, Faculty of Informatics

January 2020

DECLARATION

I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials used

for the thesis work have been duly acknowledged.

Haimanot Andargachew

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Million Meshesha (Ph.D)

Signature

Addis Ababa

Ethiopia

January 2020

I

ACKNOWLEDGEMENTS

First and for most I would like to thank Almighty GOD for giving me strength, courage and

patience in order to accomplish this research.

I would like to express my special appreciation and thanks to my advisor Dr. MILLION

MESHESHA, you have been a tremendous mentor for me. I would like to thank you for

encouraging my research and for allowing me to grow as a researcher. His sage advice,

encouragement, guidance and support enabled me to develop an understanding of the subject.

Besides his expertise, I really appreciate for his concern and perspective advice throughout my

thesis work. This accomplishment would not have been possible without him. He is honestly the

GREATEST teacher and advisor I have ever known.

I would like to extend my appreciation to my best friends Berekeab, Addissu, Yohannes and

Gizachew for their constructive comment and constant assistance and encouragement they

rendered to me.

II

Abstract

The advancement and accessibility of digital computers and the introduction of the Internet and

World Wide Web lead to in massive information explosion all over the world. There for large

amount of newspapers, magazines and printed documents available with numerous information

and knowledge of different areas. PDF file format documents, facilitates office automation and

the move towards paperless office. PDFs can become inconveniently large when they contain a

large amount of high-resolution content such as images and Graphics, or even just a very large

number of pages. To make the information and knowledge embedded in these PDF documents

accessible and share to the public there is a need to minimize the data size using different

mechanisms.

This study has been conducted to develop Amharic PDF file document compression system by

applying an effective page segmentation technique that can identify text and non-text blocks with

the aim of reconstructing PDF document layouts to optimize memory space requirement and

bandwidth for transmission.

The first step of the proposed approach is separating textual and non-textual objects. After a

applying combination of page segmentation techniques, namely: connected component with

Dilation and connected components Area, Height and width analysis techniques is applied to

detect a graphics part of a document. Based on the experiment on the average 78% accuracy rate

is achieved from the proposed approach. The next step after textual and non-textual separation is

column block detection for textual objects. Similar page segmentation techniques are applied to

segment column layout. The proposed technique accurately identified column layout with an

accuracy of 89%, thereby all coordinate information’s about column block is stored for

reconstructing stage. Finally, the extracted objects are compressed using Huffman compression

algorithms. The proposed approach experimented on different PDF documents and compresses

the extracted objects with compression ratio of less than 50%, which is better compression result

than existing commercial compression tools.

The proposed approach also capable of reconstructing the compressed data after decompression.

Based on the stored layout coordinate information the original PDF documents non-textual

blocks and textual columns reconstructed on the average 74% accuracy. From correctly

segmented column and paragraph block the proposed techniques 92% accuracy rates. However,

the performance of the proposed method greatly affected black shades in PDF document images

while scanning, irregular shaped images with non-rectangular shaped text blocks results in loss

of some text and difficult to segmentation.

Key Words: Data Compression, OCR, Page layout segmentation, Portable

Document file

III

List of Acronyms

ASCII
American Standard Code for Information

Interchange

CDIS Compression for Document Image System

CMYK Cyan, Magenta, Yellow, and Key color mode

HTTP Hyper Text Transfer Protocol

LZ77 Lempel–Ziv 1977

LZW Lempel–Ziv–Welch

MATLAB Matrix Laboratory

OCR Optical Character Recognition.

PDF Portable Document Format

PPM Prediction by Partial Matching

SVG Scalable Vector Graphics

UNICODE Universal Character Encoding

XML Extensible Markup Language

IV

Table of Contents

ABSTRACT .. II

LIST OF ACRONYMS ... III

LIST OF FIGURES .. VII

LIST OF TABLES... IX

LIST OF ALGORITHMS .. X

CHAPTER ONE: INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 STATEMENT OF THE PROBLEM ... 2

1.3 OBJECTIVE OF THE STUDY .. 4

1.3.1 General objective ... 4

1.3.2 Specific objectives ... 5

1.4 METHODOLOGY ... 5

1.4.1. Study design .. 6

1.4.2 Dataset collection and preparation ... 6

1.4.3 Implementation tool ... 6

1.4.4 Evaluation procedure ... 6

1.5 SCOPE AND LIMITATION OF THE STUDY .. 7

1.6 SIGNIFICANCE OF THE STUDY ... 8

1.7 ORGANIZATION OF THE STUDY .. 8

CHAPTER TWO: LITERATURE REVIEW.. 10

2.1 OVERVIEW ... 10

2.2 DATA COMPRESSION TECHNIQUES ... 10

2.2.1 Lossless Compression .. 11

2.2.2 Lossy compression technique .. 16

2.3 AMHARIC WRITING SYSTEM .. 18

2.3.1 The Amharic Writing ... 19

2.3.2 Amharic Printed Documents .. 21

2.4 OVERVIEW OF PDF FILE FORMAT ... 21

2.4.1 PDF File Structure ... 22

2.4.2 PDF Document Structure ... 25

2.4.3 Common file representation in PDF file .. 26

V

2.5 PAGE LAYOUT SEGMENTATION .. 27

2.5.1 Text/Graphic Segmentation ... 27

2.5.2 Text Line and Word Segmentation .. 28

2.6 SEGMENTATION TECHNIQUES .. 28

2.6.1 Top-Down Techniques ... 29

2.6.2 Bottom-Up Techniques .. 30

2.6.3 Hybrid Techniques ... 31

2.7 RELATED WORKS ... 34

CHAPTER THREE: METHODS AND ALGORITHMS ... 38

3.1 DESIGN OF THE SYSTEM ... 38

3.1.1 Preprocessing ... 40

3.1.2 Page Layout Segmentation ... 41

3.1.4 Text Recognition using OCR ... 48

3.1.5 Data Compression .. 49

3.2 PERFORMANCE EVALUATION ... 51

CHAPTER FOUR: EXPERIMENTATION AND ANALYSIS... 52

4.1 DATASET PREPARATION ... 52

4.2 PREPROCESSING ... 53

4.2.1 PDF to Image conversion ... 53

4.2.2 Color Space Transformation .. 54

4.3.2 Binarization .. 55

4.3 PAGE LAYOUT SEGMENTATION .. 55

4.3.1. Text and Graphic separation ... 56

4.4.2 Column Block Segmentation ... 64

4.4.3 PDF Objects Extraction ... 66

4.4.3.1 Non-Text Components Extraction .. 67

4.4.3.2 Textual Components Extraction .. 68

4.4 OCR APPLICATION .. 69

4.4.1 Text recognition Using tesseract OCR ... 69

4.4.2 Text recognition Using FineReader OCR .. 69

4.4.3 Text recognition Using FreeOCR .. 70

4.5 ENCODING .. 71

4.5.1 Compression using Huffman Compression.. 71

4.5.2 Compression using LZW Compression ... 72

4.5.2 Compression using RLE Compression .. 73

4.6 DECOMPRESSION AND RECONSTRUCTION .. 74

VI

4.6.1 Decompression ... 74

4.6.2 Reconstruction ... 75

4.6.3 Experimental result for PDF document reconstruction .. 76

4.7 EXPERIMENTAL RESULT OF THE PROPOSED COMPRESSION APPROACH .. 78

4.8 FINDINGS AND CHALLENGES .. 80

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS ... 81

5.1 CONCLUSIONS .. 81

5.2 RECOMMENDATIONS .. 82

REFERENCES ... 84

APPENDIX I: AMHARIC CHARACTERS .. 88

APPENDIX II: SAMPLE CODES ... 89

VII

List of Figures

Figure 2-1 Method for Data compression ___ 11

Figure 2-2 file structure of PDF files ___ 22

Figure 2-3 internal content of PDF file __ 23

Figure 2-4 Object structure of PDF file ___ 25

Figure 2-5 composition of a given real world document ______________________________ 28

Figure 2-6 Watershed Lines and Catchment Basins __________________________________ 33

Figure 3-1 Architecture of the proposed approach ___________________________________ 39

Figure 3-2 CMYK and RGB color space __ 40

Figure 3-3 Morphology Dilution approach ___ 43

Figure 3-4 watershed algorithm ___ 46

Figure 3-5 python code used to recognize Amharic text image using Tesseract ____________ 49

Figure 3-6 Run length Encoding ___ 51

Figure 4-1 PDF to Image conversion ___ 54

Figure 4-2 CMYK to RGB color space conversion __________________________________ 54

Figure 4-3 Implementation of binarization ___ 55

Figure 4-4 Implementation of Dilation __ 56

Figure 4-5 Dilation Using Different Thresholds: ____________________________________ 56

Figure 4-6 Implementation of Horizontal Run Length Smoothing ______________________ 57

Figure 4-7 Dilation and HRLS Connected Words ___________________________________ 58

Figure 4-8 Implementation of Connected Components _______________________________ 58

Figure 4-9 Experimental result connected component segmentation _____________________ 59

Figure 4-10 Implementation of Watershed ___ 59

Figure 4-11 Experimental result Watershed Segmentation ____________________________ 59

Figure 4-12 Analysis for Text\Graphics separation __________________________________ 60

Figure 4-13 Experimental result after applying the proposed text/graphics separation approach.61

Figure 4-14 Effect of Underlines in segmentation: ___________________________________ 63

Figure 4-15 Effect of irregular shaped images ______________________________________ 63

Figure 4-16 Implementation of vertical dilution _____________________________________ 64

Figure 4-17 Analysis for Text column segmentation _________________________________ 64

Figure 4-18 Experimental result after the proposed Text column segmentation applied. _____ 65

Figure 4-19 Effect of broken titles ___ 66

Figure 4-20 the source code used to extract non text components _______________________ 68

Figure 4-21 Experimental results of image extraction from PDF file ____________________ 68

Figure 4-22 Implementation detail used for text region extraction ______________________ 69

Figure 4-23 Use of tesseract OCR for Amharic text recognition ________________________ 69

Figure 4-24 Implementation of Huffman compression _______________________________ 72

VIII

Figure 4-25 Implementation of Huffman compression _______________________________ 73

Figure 4-26 Implementation of RLA compression ___________________________________ 73

Figure 4-27 presents reconstruction of text and non-text regions________________________ 76

Figure 4-28 Experimental result after the original Image and constructed image after

decompression___ 76

Figure 4-29 The proposed page segmentation & compression approach for Amharic PDF

documents __ 78

Figure 4-30 The Effect of Thresholding in the Presence of Shadow _____________________ 80

IX

List of Tables

Table 1-1 Comparison of Amharic PDF Compression performance of known software 3

Table 2-1: Comparison of various coding schemes. ... 16

Table 2-2: Amharic Characters ... 19

Table 2-3: Amharic Numeric System ... 20

Table 2-4: Amharic Punctuation Marks .. 20

Table 2-5: Different Amharic Font Types ... 21

Table 4-1: Summarizing PDF documents collections .. 53

Table 4-2: Experimental result of the proposed text/graphics separation using connected component with

Dilation and connected components Area, Height and width analysis techniques 62

Table 4-3: Experimental result of the proposed text/graphics separation using watershed segmentation

with Dilation and connected components Area, Height and width analysis techniques 62

Table 4-4 The performance of the proposed column blocks segmentation techniques 66

Table 4-5: Performance of the three OCR Engines .. 71

Table 4-6: Experimental result of the three compression algorithms ... 74

Table 4-7: Experimentation result of the proposed reconstruction techniques from the whole test

PDF files ... 77

Table 4-8: Experimentation result of the proposed reconstruction techniques from correctly

segmented PDF files ... 77

Table 4-9: Performance of proposed approach compared with existing popular compression

systems .. 79

X

List of Algorithms

Algorithm 2-1 Run-length-algorithm .. 12

Algorithm 2-2 Shannon – Fano encoding algorithm ... 13

Algorithm 2-3 Step by step procedure followed by Huffman encoding 14

Algorithm 2-4 The steps followed in LZ compression ... 15

Algorithm 3-1 One pass connected component labeling algorithm.. 44

Algorithm 3-2 Two pass connected component labeling algorithm ... 45

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Data Compression is the process of converting an input data stream to another data stream that

has a smaller size[1]. Data compression will encode or replace the original information or

representation by a fewer bit characters which is reduced in size. Compression is very useful

because it reduces the usage of resources required to store and transmit. This compressed file can

be reversed to obtain the original file with the help of decompression[1]. The two types of

compression techniques available these are lossy compression and lossless compression[1]. The

lossy compression results in some loss of data from the original while performing the

decompression process. The lossless compression, on the other hand, retains its original file

exactly without any loss of data.

The Portable Document Format (PDF) is a file format developed by Adobe in the 1990s to

present documents, including text formatting and images, in a manner independent of application

software, hardware, and operating systems[2]. Based on the PostScript language, each PDF file

encapsulates a complete description of a fixed-layout flat document, including the text, fonts,

vector graphics, raster images and other information needed to display it. PDF file format is

highly interesting files to compress, because they contain already pre-compressed data, but still

have enough 'room' for further compression[3].

PDF compression is the reduction in size of a PDF image in order to make it compatible with

processes such as web uploads, printing, and attaching to emails[4]. PDF compression is

important because PDF files can be very bulky, given the amount of information that they

contain. But compressing PDF file format is not easy like other textual file formats because the

primarily use of PDF file format is for presentation purpose and we need another third-party tool

to access the internal object of the PDF documents. One possibility for textual image

compression is to perform optical character recognition (OCR) on the text and transmit (or store)

2

the ASCII codes for the characters, along with some information about their position on the

page[4]. The problem with this is that recognition is not completely reliable, particularly if

unusual fonts, foreign languages or mathematical expressions are being scanned.

Language dependent compression systems are developed and well demonstrated for many

languages in the worlds such as Arabic, Chinese, Hindus[5][6][7]. Document images

segmentation and compression systems with high accuracy rate are commercially available for

use for Latin scripts and some of the oriental languages[8]. However, for those languages in

Africa and Ethiopia with their own scripts, much attention is not given for developing robust

compression system to minimize memory space and speed up data communication. Since

developing effective data extraction and compression system (that successfully extract PDF

contents and compress of varying quality, font, size and style) is a continuing process, this study

aims to propose a data compression approach for Amharic PDF files.

1.2 Statement of the Problem

Different types of information are uploaded in the Internet, such as text document, document

images and multimedia data. PDF formats are usually designed to compress information as much

as possible (since these can tend to become very large files)[9]. PDF file format documents,

facilitates office automation and the move towards paperless office. Nowadays the availability of

the internet anyplace and on anything facilitates the distribution and publication of documents in

different languages including Amharic. PDF files are especially useful for documents such as

magazine articles, product brochures, or flyers in which you want to preserve the original graphic

appearance online.

Text compression algorithms are normally defined in terms of a source alphabet Σ of 8-bit ASCII

codes and 16-bit UNICODE. We consider choosing Σ to be an alphabet whose symbols are the

words of English or, in general, alternate maximal strings of alphanumeric characters and non-

alphanumeric characters.

These days a number of Amharic documents are available in PDF format. The difference in

compression ratios between different compression tools is quite small. This is probably caused

by the pre-compressed nature of the PDF file[7]. To show compression performance for Amharic

PDF file a comparison is made among 7Z, Gzip and Winzip in terms of compression ratio.

3

 ZIP file format: one popular instance of compression, that many computer users are

familiar with is the ZIP file format, which, as well as providing compression, acts as

an archiever, storing many files in a single output file.

 GZip is also the other data compression software: it takes a chunk of data and makes

it smaller in size. The original data can be restored by un-zipping the compressed file.

It is relevant to web apps and web sites because the HTTP protocol includes the

ability to gzip data that is being sent.

 7Z file format, a popular Open Source archive format introduced by 7-Zip, providing

higher compression ratio than RAR, and now supported by many archive managers.

Experimental results of ZIP, Zip and 7Z software’s in compressing Amharic PDF files is

presented blow in Table 1.1 Comparison of Amharic PDF Compression performance of known

software

Table 1-1 Comparison of Amharic PDF Compression performance of known software

File Name
Original

Size

Compression Using 7Z Compression Using Zip Compression Using GZip

Size After

Compression
Performance

Size After

Compression
Performance

Size After

Compression
Performance

addis-times.PDF 3.69 MB 3.46 MB 7% 3.46 MB 7% 3.55 MB 4%

feteh-gazeta-no-

185.PDF
3.42 MB 3.29 MB 4% 3.31 MB 4% 3.31 MB 3%

News.PDF 172KB 152 KB 12% 155 KB 10% 155 KB 6%

In the above experiment sample PDF Amharic Online News and Magazines with MB and KB

were used to make a compression performance analysis. Experiment conducted on the three-

compression application software’s (7Z, Zip and GZIP), shows that they are not effective for

Amharic text PDF files at all. This is because the compression software considers the Amharic

PDF as an image whether it contains text or not. As a result, there is a need to explore the way to

design a compression that recognize Amharic textual image files.

Different researchers attempted to develop language dependent compression algorithm for

Arabic[5], Chinese[6] and Hindus[10] languages to address the problem of efficiency and

effectiveness of the compression algorithm developed for Latin scripts. To the researcher’s

4

knowledge goes, there is no work on the development of a compression approach for Amharic

language script PDF files.

PDF files are often ideal candidates for compression since the purpose of PDF as a format in the

first place is ease of sharing and reading[11]. PDF is often the preferred format for document

sharing and storage due to its universality. PDF files look the same regardless of the machine or

operating system on which they are opened; all that is required is a free PDF reader such as

Adobe Reader[11]. However, PDFs can become inconveniently large when they contain a large

amount of high-resolution content such as images and Graphics, or even just a very large number

of textual pages. Large PDF files sometimes exceed email attachment limits; load slowly,

especially from web pages; take up a lot of storage space; and are generally difficult to work

with. This, of course, is where PDF compression comes in. Hence, this study explores on various

PDF pages layout segmentation techniques for identifying text, non-text and column blocks, for

recognizing and compressing texts in them and reconstructs back to original PDF file. To this

end, the following research questions are formulated, investigated and answered.

 Which page segmentation technique is effective for identifying textual, non-textual and

column block in real life PDF documents?

 Which compression algorithm is more suitable to compress Amharic PDF document

files?

 What kind of page column layout detection and reconstruction techniques is fitting in

order to maintain the original PDF document layouts?

 To what extent the proposed model improves the degree of compression of Amharic PDF

files.

1.3 Objective of the Study

1.3.1 General objective
The general objective of the study is to design Amharic PDF files compression approach that

identify layout of the PDF documents with the aim of recognizing the text block and

reconstructing PDF document layouts to optimize memory space requirement and bandwidth for

transmission.

5

1.3.2 Specific objectives

On the way of attaining the general objective, the study specifically achieves the following

objectives.

 To review previously proposed related works on non-English languages compression and

identifies suitable techniques and approach for Amharic PDF files compression.

 To identify different layouts of real-life PDF file documents.

 To prepare dataset for testing and for evaluation of the proposed approach

 To explore and select potential page segmentation techniques for identifying textual, non-

textual and column layouts of real-life PDF documents

 To design a technique for Amharic PDF page layout segmentation, compression and

reconstruction after recognition

 To evaluate the performance of the proposed approach in compressing Amharic PDF

files.

1.4 Methodology

It is evident that certain set of steps are usually required to accomplish a certain task. These set

of steps could guide which activity to do first and keep on doing in a chronological order. The

word methodology refers to a documented approach which is used to perform activities in a

manner which is coherent, consistent, accountable and repeatable. Methodology is a process that

mainly consists of intellectual activities. Usually only the end goal of the methodological process

is manifested as the product or result of the physical work[12].

Methodology provides a way to achieve the objectives of a research problem. Literatures, such as

books, journal articles, conference proceedings and the Internet about PDF data extraction in

general and PDF layout segmentation and data compression in particular have been intensively

reviewed in order to acquire detailed understanding of the subject matter and the research areas.

Also, the past and present research works on semantic and other languages reviewed to have a

better background on the best performing algorithms and techniques regarding to data

compression. Therefore, in order to achieve the specific and general objectives of the study and

answer the research questions, the following step by step procedure and methods are used.

6

1.4.1. Study design

This research follows an experimental research, which uses manipulation and controlled testing

to understand causal processes. This type of research come up with conclusions which are

capable of being verified by observation or experiment[13]. Following experimental research

dataset preparation, techniques identification, system design, system development and evaluation

are the procedures that this study follows[13].

1.4.2 Dataset collection and preparation

Amharic PDF Documents that contain graphics, columns and paragraph have been collected

from various sources to measure the performance of the proposed approach. PDF Amharic

documents with various font styles, sizes and types collected from Amharic news PDF files from

different magazines and from online sites, such as the Walta Information Center, BBC and

FANA Amharic.

1.4.3 Implementation tool

Different researchers had used Java, MATLAB and Python for image pre-processing,

segmentation, feature extraction and to compressing documents. The reason is that this

programming languages have a lot of built in methods for image processing. Due to this, this

research uses MATLAB for Image segmentation, extraction and developing a prototype and

Python to implement compression and reconstruction.

1.4.4 Evaluation procedure

The performance of the proposed approach is tested at several stages. Since, this study focuses

on PDF objects layouts segmentation, compression of extracted objects and reconstruction, the

performance of the proposed approach layout segmentation and reconstruction is measured by

direct mapping, which determines the performance by finding the correspondences between

detected entities and ground truth.

Depending on the nature of the application there are various criteria to measure the performance

of a compression approach. When measuring the performance, the main concern would be the

space efficiency. Since the compression behavior depends on the redundancy of symbols in the

source file, it is difficult to measure performance of a compression algorithm in general[14]. The

7

performance depends on the type and the structure of the input source. Additionally, the

compression behavior depends on the category of the compression algorithm: lossy or lossless. If

a lossy compression algorithm is used to compress a particular source file, the space efficiency

and time efficiency would be higher than that of the lossless compression algorithm. There are

different measurements to evaluate the performances of those compression systems. Following

are measurements used to evaluate the performance of the proposed approach.

Degree of Compression: Compression Ratio calculated by finding the ratio between the

compressed and original file.

The above Equation 1.1 shows the formula to calculate Degree of Compression. Where,

Uncompressed Size is the size of the original file before applying compression algorithms and

compressed size is the size of the file after applying compression algorithms.

1.5 Scope and limitation of the study

This research is a pioneer research on PDF files compression in Amharic language. The main

intent of this research is investigating the way to compress the contents of the PDF documents

using different approaches that are insensitive to font difference and word variants thereby

enhance effectiveness and efficiency of the existing compression systems. This research follows

different approaches for segmentation, extraction and compression of the PDF files. In addition,

for data compression, the research applies lossy compression for extracted text data. This study

experiments some available page column layouts segmentation and reconstruction techniques for

multiple columns in Amharic PDF files. Among many available algorithms, preferred techniques

study and test in real-life PDF documents. The performance of the proposed page column and

paragraph segmentation and reconstruction techniques are measured by sample scanned PDF

documents from website documents, newspapers and magazines.

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

Eq. (1-1)

8

Real-life PDF documents have different physical and logical page layouts. However, this study

only focuses on text and non-text separation, column block detection and reconstruction.

However, segmentation and reconstruction of other page layouts such as header, table, footer and

other formats are out of the coverage of the study. Also handwritten documents recognition are

out of the scope of this study. Preprocessing, text segmentation and recognition stage of an OCR

are adopted from Google developed Tesseract OCR engine.

1.6 Significance of the study

Different PDF Documents articulated in Amharic scripts are loaded highly in information

centers, libraries, public media and government institutes. Storing and sharing this document

need high storage capacity and high bandwidth for transferring. Compression reduces data size

and transmission time. This study puts its own contribution in developing a new approach for

Amharic PDF files compression system. It can also be implemented in different governmental

and non-governmental institutions to move towards efficient storage management. In addition, it

has an inevitable contribution for magazines and newspaper as a data archiving tool.

Furthermore, it can be used as an input for future works which might be aimed to develop a full-

fledged Amharic PDF file Compression approach.

1.7 Organization of the Study

The first chapter presents the background of the study, statement of the problem, general and

specific objectives of the study, methodology of the study, scope and limitation of the study and

significance of the research results.

The second chapter is a literature review on data compression, document image page

segmentation techniques and overview of PDF file format. It also includes a review on the

history and characteristics of the Amharic writing system and different type of documents

written in Amharic language. Finally, related research works on document image compression

and page segmentation are presented.

In the third chapter, the algorithms and techniques used in the study are presented. The chapter

also includes the performance measurement techniques and formulas for the proposed PDF

documents segmentation and compression approach.

9

The fourth chapter presents implementations of the proposed system, techniques and different

experimentations. This chapter also addresses integration and evaluation of the performance of

the system. The chapter finally addresses findings and challenges during the experiment.

The last chapter, chapter five presents conclusions based on the findings of the study and forward

recommendations for further research works.

10

CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

In the last decade, we have been witnessing a transformation or evolution in the way we

communicate, and the process is still under way. This transformation includes the ever-present,

ever-growing Internet; the explosive development of mobile communications; and the ever-

increasing importance of video communication[1]. Data compression is one of the enabling

technologies for each of these aspects of the multimedia revolution. It would not be practical to

put images, let alone audio and video, on websites if it were not for data compression algorithms.

Cellular phones would not be able to provide communication with increasing clarity without

proper compression. The advent of digital TV would not be also possible without compression.

Data compression, which for a long time was the domain of a relatively small group of engineers

and scientists, is now ubiquitous[1].

Data compression is the process of encoding information using fewer bits than the original

representation will use; it is the process that is used to reduce the physical size of

information[15]. Compression is just about everywhere, all images that can be gotten from the

web are compressed[16]. The reason we need data compression is that more and more of the

information that we generate, and use is in digital form consisting of numbers represented by

bytes of data. And the number of bytes required to represent multimedia data can be huge.

2.2 Data Compression Techniques

Compression techniques are classified into two; namely, Lossless and Lossy compression

algorithms[17]. In Lossless compression technique, since no data is lost, during the compression

process, the exact replica of the original file can be retrieved by decompressing back to the

original file. Text compression is generally of lossless type. In this type of compression generally

the compressed file is used for storing or transmitting data[18]. In lossy compression technique,

the compression process ignores some less important and non-observable data and the exact

replica of the original file can’t be retrieved from the compressed file. To decompress the

11

compressed data, we can get a closer approximation of the original file. Lossy Compression is

generally used for image, audio, video[14]. The classification hierarchy of data compression is

represented in Fig. 2.1.

Figure 2-1 Method for Data compression [17]

2.2.1 Lossless Compression

In lossless data compression, the integrity of the data is preserved. The original data and the

decompressed data after lossless compression are the same because, for the methods under this

subcategory, the compression and decompression algorithms are exact inverses of each other: no

part of the data is lost in the process[1].

The Lossless compression methods mean receiving the data without loss. The initial data might

be retrieved exactly from the data compressed. It is used in various fields that can't ensure any

variation between the original data. The main lossless compression techniques includes Run

length encoding, Huffman encoding, LZW coding and Shannon Fanon algorithm[19].

12

2.2.1.1 The Run-Length Compression Technique

Run-length encoding is probably the simplest method of compression. It can be used to compress

data made of any combination of symbols. It does not need to know the frequency of occurrence

of symbols and can be very efficient if data is represented as 0s and 1s [15].

The general idea behind this method is to replace consecutive repeating occurrences of a symbol

by one occurrence of the symbol followed by the number of occurrences. The method can be

even more efficient if the data uses only two symbols in its bit pattern and one symbol is more

frequent than the other[15]. The algorithm works as follows [14]:

a) Pick the first character from source string.

b) Append the picked character to the destination string.

c) Count the number of subsequent occurrences of the picked character and append the

count to destination string.

d) Pick the next character and repeat steps b) to d) if end of string is NOT reached.

According to Grain and Chakraborty [10] the general run-length-algorithm is presented as

follows in algorithm 2.1

 count = 0

 REPEAT

 get next symbol

 if the symbol equals the previous one

 count = count + 1

 UNTIL (symbol different to next one)

 IF count > 1

 GOTO step one

Algorithm 2-1 run-length-algorithm

2.2.1.2 Shannon – Fano algorithm

Shannon – Fano algorithm was named by its developer Shannon and Fano [20]. It is used to

encode messages depending upon their probabilities. It allots a smaller number of bits for highly

probable messages and more number of bits for rarely occurring messages. The algorithm of

Shannon – Fano is presented as follows:

13

For a given list of symbols and their frequency or probability table.

1. Sort the table according to the frequency of symbols, with the most frequently occurring

symbol at the top.

2. Divide the table into two halves with the total frequency count of the upper half being as

close to the total frequency count of the bottom half as possible.

3. Assign the upper half of the list a binary digit ‘0’ and the lower half a ‘1’.

4. Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and

adding bits to the codes until each symbol has become a corresponding leaf on the tree.

Generally, Shannon-Fano coding does not guarantee that an optimal code is generated. Shannon

– Fano algorithm is more efficient when the probabilities are closer to inverses of powers of

2[14]. Details of Shannon – Fano algorithm is presented in blow algorithm. 2.2.

Procedure Shannon-Fano ()

 count source units

 sort source units to non-decreasing order

 SF-Split (S)

 output (count of symbols, encoded tree, symbols)

 write output

 end procedure

 procedure SF-Split(S)

 if (|S|>1) then

 divide S to S1 and S2 with about same count of units

 add 1 to codes in S1

 add 0 to codes in S2

 SF-Split(S1)

 SF-Split (S2)

 End if

 End procedure

Algorithm 2-2 Shannon – Fano encoding algorithm

2.2.1.3 The Huffman Compression Technique

The Huffman coding algorithm [21], is named after its inventor, David Huffman, who developed

this algorithm as a student in a class on information theory at MIT in 1950. It is a more

successful method used for text compression. The Huffman coding technique assigns shorter

14

codes to symbols that occur more frequently and longer codes to those that occur less frequently.

Before we can assign bit patterns to each symbol, we assign each symbol a weight based on its

frequency of use in the document.

The Huffman algorithm is simple and can be described in terms of creating a Huffman code tree.

The procedure for building this tree is presented as follows[21]:

1. Start with a list of nodes, where each node corresponds to a symbol in the alphabet.

2. Sort the list in ascending order and select two nodes with the lowest weight from the list.

3. Create a parent node for these two nodes selected and the weight is equal to the weight of

the sum of two merged child nodes.

4. Remove the two child nodes from the list and the parent node is added to the list of

nodes.

5. Repeat the process starting from step-2 until only a single tree remains.

6. After building the Huffman tree, the algorithm creates a prefix code for each symbol

from the alphabet simply by traversing the binary tree from the root to the node, which

corresponds to the symbol. It assigns 0 for a left branch and 1 for a right branch

The algorithm used in Huffman Compression is summarized as follows in algorithm 2.3

 procedure Huffman ()

 Split the source document into distinct symbols

 count frequencies of single symbol (source units)

 sort symbols into non-decreasing sequence

 create a leaf node (symbol, frequency c, left = NULL, right = NULL) of the tree for each symbol

 while (|F|>=2) do

 pop the first two nodes (u1, u2) with the lowest frequencies from sorted queue

 create a node evaluated with sum of the chosen units, successors are chosen units

 insert new node into queue

 end while

 node evaluate with way from root to leaf node (left son 1, right son 0)

 create output from coded input symbols

 end procedure

Algorithm 2-3 step by step procedure followed by Huffman encoding [21]

15

2.2.1.4 Lempel-Ziv Compression Technique

Ziv and Lempel have presented their dictionary-based scheme in 1977 for lossless data

compression [22]. Today this technique is much remembered by the name of the authors and the

year of implementation of the same.

The Lempel-Ziv (LZ) compression method is among the most popular algorithms for lossless

compression, the code that the LZ algorithm outputs can be of any arbitrary length, but it must

have more bits in it than a single character. The first 256 codes (when using eight-bit characters)

are by default assigned to the standard character set. The remaining codes are assigned to strings

as the algorithm proceeds[23]. LZ encoding is an example of a category of algorithms called

dictionary-based encoding. The idea is to create a dictionary (a table) of strings used during the

communication session. If both the sender and the receiver have a copy of the dictionary, then

previously encountered strings can be substituted by their index in the dictionary to reduce the

amount of information transmitted. There are two concurrent events: building an indexed

dictionary and compressing a string of symbols. The algorithm extracts the smallest substring

that cannot be found in the dictionary from the remaining uncompressed string. It then stores a

copy of this substring in the dictionary as a new entry and assigns it an index value. Compression

occurs when the substring, except for the last character, is replaced with the index found in the

dictionary. The process then inserts the index and the last character of the substring into the

compressed string [22]. Here under in algorithm 2.4 the steps followed by Lempel-Ziv

compression is shown

procedure LZ

 fill view from input

 while (view not empty) do

 find longest prefix p of view starting in coded part

 i := position of p in window

 j := length of p

 X := first char after p in view

 output(i,j,X)

 add j+1 chars

 end while

end procedure

Algorithm 2-4 The steps followed in LZ compression [22]

16

The blow Table 2.1 shows comparison of various compression coding schemes.

Table 2-1: Comparison of various coding schemes.

Coding Feature
Compression

Type
Versions Advantages Applications

Huffman

coding[21]
Entropy based Lossless

Minimum variance

Huffman code. Length

Limited Huffman code.

Adaptive non-binary.

Golomb-rice coding,

Tunstall code

Effective in all file

formats

ZIP, ARG, JPEG,

MPEG, PICZ1P

Arithmetic

coding[20]
Entropy based

Lossy and

Lossless

Adaptive arithmetic

coding Binary

arithmetic coding

Flexibility
JPEG, multimedia

applications

Fractal[17]
Block based

coding

Lossy

compression
-

Suitable for textures

and natural images
Live video broadcasting

RLE[15]
Employs in high

redundant data

Lossless

coding
- Faster TIFF, BMP, PDF and fax

Scalar and Vector

Quantization[14]

Represents

larger set of

values to a

smaller set

Lossless and

Lossy
- Less complexity

BWT

compression[10]
Block sorting Lossless -

No need to store

additional data for

compression

Bzip2

LZ coding[22] Dictionary based
Lossless

coding
LZ77, LZ78, LZW

Compress all kinds

of data

TIFF, G1F, PDF, Gzip, ZIP,

V.42, Deflate and PNG

2.2.2 Lossy compression technique

In information technology, lossy compression or irreversible compression is the class of data

encoding methods that uses inexact approximations and partial data discarding to represent the

content. These techniques are used to reduce data size for storing, handling, and transmitting

content. The amount of data reduction possible using lossy compression is much higher than

through lossless techniques[24].

Well-designed lossy compression technology often reduces file sizes significantly before

degradation is noticed by the end-user. Even when noticeable by the user, further data reduction

may be desirable for real-time communication, to reduce transmission times, or to reduce storage

needs[24]. Nowadays there are different lossy compression techniques; the most widely used one

for image compression are JPEG compression.

17

2.2.2.1 JPEG Compression Techniques

JPEG is a commonly used method of lossy compression for digital images, particularly for those

images produced by digital photography. The degree of compression can be adjusted, allowing a

selectable tradeoff between storage size and image quality. JPEG typically achieves 10:1

compression with little perceptible loss in image quality[24].

JPEG uses a lossy form of compression based on the discrete cosine transform (DCT). This

mathematical operation converts each frame/field of the video source from the spatial (2D)

domain into the frequency domain. A perceptual model based loosely on the human psych visual

system discards high-frequency information, i.e. sharp transitions in intensity, and color hue. In

the transform domain, the process of reducing information is called quantization[24]. In simpler

terms, quantization is a method for optimally reducing a large number scale (with different

occurrences of each number) into a smaller one, and the transform-domain is a convenient

representation of the image because the high-frequency coefficients, which contribute less to the

overall picture than other coefficients, are characteristically small-values with high

compressibility. The quantized coefficients are then sequenced and losslessly packed into the

output bit stream. Nearly all software implementations of JPEG permit user control over the

compression ratio (as well as other optional parameters), allowing the user to trade off picture-

quality for smaller file size. In embedded applications (such as miniDV, which uses a similar

DCT-compression scheme), the parameters are pre-selected and fixed for the application.

Discrete Cosine Transform

The ideas behind JPEG compression come from an engineering background. Electrical and

sound waves can be represented as a series of amplitudes over time. Discrete cosine transforms

(DCT) is one of the basic building blocks for JPEG. The discrete cosine transform was first

applied to image compression in Ahmed, Natarajan and Rao’s pioneering work [25]. Another

important aspect of the DCT is the ability to quantize the DCT coefficients using usually

weighted quantization values.

In image transformation, a continuous tone image can be represented by a series of amplitudes,

for each color component, over 2-dimensional space. Discrete cosine transform is used to discard

higher frequency information that has little visual effect on the image. For the still image

18

representation, the frequencies here are referring to spatial frequencies rather than time

frequencies.

2.3 Amharic Writing System

The Ethiopic Script

At about the beginning, South-Arabian Semitic migrated from Habashat on the Arabian coast

across to Africa and founded a kingdom there with its capital at Axum. The immigrants called

themselves Ge’ez, which means the ‘emigrants’ [26]. Besides, according to Feren [27] the name

Ge’ez comes from the South Arabian people, the Agazyān, who crossed the Red Sea and settled

in North Ethiopia and along the Red Sea coast.

The Ge'ez or Ethiopic script possibly developed from the Sabaean/Minean script. The earliest

known inscriptions in the Ge'ez script date to the 5th century BC. At first the script represented

only consonants. Vowel indication started to appear in 4th century AD during the reign of king

Ezana, though might have developed at the earlier date[28].

As described by [29]Notable Features of Ge'ez writing system are the following

 Type of writing system: abugida

 Writing direction left to right in horizontal lines.

 Each symbol represents a syllable consisting of a consonant plus a vowel. The basic signs

are modified in a number of different ways to indicate the various vowels.

 There is no standard way of transliterating the Ge'ez script into the Latin alphabet.

Ge'ez, the classical language of Ethiopia is still used as a liturgical language by Ethiopian

Christians and the Beta Israel Jewish community of Ethiopia[28].

Amharic is the national working language of Ethiopia, has about 27 million speakers. It is

spoken mainly in North Central Ethiopia. There are also Amharic speakers in a number of other

countries, particularly in Egypt, Israel and Sweden[28].

19

2.3.1 The Amharic Writing

Amharic is written using a writing system called fidel - ፊደል ("alphabet", "letter", or "character")

adapted from Ge'ez (the liturgical language of the Ethiopian Orthodox Church) language. In

Amharic writing system, there are Amharic characters, numeric and punctuation marks. Amharic

characters were represented by computer using Unicode. Unicode provides a unique number for

every character, no matter what the platform, no matter what the program, no matter what the

language [30]. Ethiopic characters (fidel - ፊደል) have more than 380 Unicode representations

including punctuations and special characters (U+1200- U+137F)[29].

2.3.1.1 Amharic Characters

There are 33 basic characters, each of which has seven forms called orders depending on which

vowel is to be pronounced in the syllable. The seven orders were representing seven vowel

sounds. Therefore, these 33 basic characters with their seven forms will give 7*33 syllable

patterns (syllographs), or fidels.

Amharic writing system has of thirty-three core characters. The thirty-three characters occur in

one basic form and six other forms known as orders, as shown in Table 2.2. These orders are

derived from the basic forms by more or less regular modification [29]. The seven orders of the

Ethiopic represent the different sounds of a consonant- vowel combination known as syllabic.

Table 2-2: Amharic Characters

Geéz Kaéb Salis Rabé Hamis Sadis Sabé

ሀ ሁ ሂ ሃ ሄ ህ ሆ

ለ ሉ ሊ ላ ሌ ል ሎ

ሐ ሑ ሒ ሓ ሔ ሕ ሖ

መ ሙ ሚ ማ ሜ ም ሞ

ሠ ሡ ሢ ሣ ሤ ሥ ሦ

ረ ሩ ሪ ራ ሬ ር ሮ

ሰ ሱ ሲ ሳ ሴ ስ ሶ

ሸ ሹ ሺ ሻ ሼ ሽ ሾ

ቀ ቁ ቂ ቃ ቄ ቅ ቆ

በ ቡ ቢ ባ ቤ ብ ቦ

ቨ ቩ ቪ ቫ ቬ ቭ ቮ

ተ ቱ ቲ ታ ቴ ት ቶ

20

2.3.1.2 Amharic Numeration System

As shown in Table 2.3 below Amharic numeration system consists of basic single symbols for

one to ten, for multiple of ten (twenty to ninety), hundred and thousand. These numerals are

derived from the Greek numerals with some modifications. Each symbol has a horizontal stroke

below and above. There is no symbol for representing zero value in Amharic number system,

and it is not a place value system, thus arithmetic computation using this system is very difficult.

As a result, in most printed document Hindu- Arabic numerals are used.

Table 2-3: Amharic Numeric System

Ethiopic Arabic Ethiopic Arabic Ethiopic Arabic

1 ፩ 11 ፲ ፩ 30 ፴

2 ፪ 12 ፲ ፪ 40 ፵

3 ፫ 13 ፲ ፫ 50 ፶

4 ፬ 14 ፲ ፬ 60 ፷

5 ፭ 15 ፲ ፭ 70 ፸

6 ፮ 16 ፲ ፮ 80 ፹

7 ፯ 17 ፲ ፯ 90 ፺

8 ፰ 18 ፲ ፰ 100 ፻

9 ፱ 19 ፲ ፱ 1,000 ፼

10 ፲ 20 ፳

2.3.1.3 Amharic Punctuation Marks

There are about 17 punctuation marks in Amharic writing system [12]. These punctuation marks

are shown in Table 2.4 blow:

Table 2-4: Amharic Punctuation Marks

Amharic Punctuation Marks Symbol Description

ሁለት ነጥብ ፡ word delimiters

አራት ነጥብ ፡፡ sentence delimiters (the equivalent of the full stop)

 ነጠላ ሠረዝ ፣ the equivalent for comma

ድርብ ሠረዝ ፤ the equivalent of semi-colon

21

Word delimiter (ሁለት ነጥብ) is most commonly used in historic documents. However,

nowadays, in computer writing style it is common to use a space as a word separator instead of

using “፡” (ሁለት ነጥብ) [12]. There are also some borrowed symbols; ‗? ‗ (question mark), ‗!

‘(Exclamation mark), arithmetic operators such as ‗+ ‘, ‘-‗, ‘*‘, ‘/ ‘, brackets (‗ (‗, ‘) ‘),

quotation marks (―, ‖), etc).

2.3.2 Amharic Printed Documents

There are a number of Amharic computer fonts available these days for Amharic writing system.

'Power Geez', 'Visual Geez', and ‘Nyala’ are some of the commonly used fonts in computer

printed Amharic documents. An Amharic word written in different fonts is shown in Table 2.5

below.

Table 2-5: Different Amharic Font Types

Amharic Word Font Type

›=ƒÄåÁ Geez-1

›=ƒÄåÁ Geez -2

›=ƒÄåÁ Geez-3

x!T×ùÃ Visual Geez 2000 Main Font

From the above example, we can see that words belonging to the same class but printed using

different fonts greatly vary both in shape, width, height and line thickness

2.4 Overview of PDF file format

The PDF file format was first introduced in 1990 as a way to reliably view, print, and share

information with other people[30]. PDF was a simplification and evolution of the ageing Adobe

PostScript page description language. Whereas Postscript is actually a programming language

primarily used to drive laser printers, PDF has been designed specifically for exchanging

documents to be rendered on screens. Thus, PDF is an elaborated descriptive format allowing

each page to be rendered independently. On the contrary, PostScript needs a dedicated interpreter

executing a program and containing a global state for the entire document, i.e., rendering a single

page in PostScript imposes the rendering of all the previous pages in order to obtain the current

page's state[31].

22

PDF is an elaborated page description language allowing complex documents containing text,

graphics, and images to be unfailingly reproduced, i.e., they will look exactly the same even

when rendered on different systems and physical devices (screens, printers)[30].

2.4.1 PDF File Structure

The internal structure of a PDF file is decomposed into four primary sections as illustrated in

Figure 2.5, such us header, body, cross reference table and trailer,

Figure 2-2 file structure of PDF files[9]

The Header defines the version of PDF specification for example, "%PDF-1.4". The body

contain the actual text and image content that will be displayed on the output. Cross-reference

table further shows a table for PDF viewers to quickly access different objects within the body.

Finally, Trailer, defines other Meta information of a PDF file that describes the location of

objects within the body and location of cross reference table.

23

Sample PDF file with its internal content organization as per the structure is depicted in the

following figure 2.6

%PDF-1.7

1 0 obj

 << /Type /Catalog

 /Pages 2 0 R

 >>

endobj

2 0 obj

 << /Type /Pages

 /Kids [3 0 R]

 /Count 1

 >>

endobj

3 0 obj

 << /Type /Page

 /Parent 2 0 R

 /MediaBox [0 0 600 400]

 /Resources << >>

 >>

endobj

xref

0 4

00000000000 65535 f

00000000010 00000 n

trailer

 << /Root 1 0 R

 /Size 4

 >>

startxref

249

%%EOF

Figure 2-3 internal content of PDF file

24

Header: The first line of the PDF specifies the version of a PDF file format. These headers are

the topmost portion of a document. It reveals the basic information of a PDF file, for example,

"%PDF-1.4", it means that this PDF format is the fourth version[30].

Body: The contents below the header and above the line xref are the body. The body of a PDF

file consists of objects that compose the contents of the document. These objects include image

data, fonts, annotations, text streams and so on. Users can also integrate invisible objects or

elements. These objects embed the interactive features in a document like animation or graphics.

A user can also implement logical structure in the document and also users make the content of a

PDF document more secure by implementing security features. One can protect the content of a

document from unauthorized printing, viewing, editing or modifying [30].

Cross-Reference Table: The Cross-Reference Table (or called xref table): The cross-reference

table consists of links to all the objects or elements in a file. It has a future that helps to navigate

to other pages or content in a document. When users update their PDF files, they will

automatically get updated in the cross-reference table. One can also trace the updated changes in

the cross-reference table. This part is the hardest part to understand. If incorrectly set, the PDF

viewer will give out errors. The cross-reference table are used for quick accessing every object

appear in the body. So, we need to give every object a cross-reference entry[30].

Trailer: The trailer contains links to cross-reference table and always ends up with "%%EOF" to

identify the end of a PDF file. The "%%EOF" is necessary for a PDF file, if this line missed, the

PDF-file is not complete and may not be processed correctly. This is not same as PostScript files.

If the last few lines of a PostScript file missed, we will still print most of the pages. The trailer

enables a user to navigate to the next page by clicking on the link provided. Trailer section gives

us the overall information of the PDF documents, it must contains a dictionary, which should

have at least two entries: /Root and /Size[30].

/Root refers to the Catalog of the body (Next section). /Size refers to the total number of entries

in the file's cross-reference table. Start xref follows by a line of a number, indicates the start

offset of the cross-reference table. i.e. the offset of the keyword xref. %%EOF indicates the end

of the file[30].

25

2.4.2 PDF Document Structure

The document structure of a PDF file consists in a series of objects hierarchically organized

within the body. These objects, most of them of dictionary type, are sorted out in page objects,

which are organized in a page tree, specified in the document catalogue, as shown in Figure 2.4.

In order to reach the document catalogue dictionary object, as specified before, you can check

the /Root value in the trailer of the file. This catalogue contains references to other objects which

provide information about the document contents, as well as information about how these

contents should be displayed[30].

Figure 2-4 Object structure of PDF file [9]

26

2.4.3 Common file representation in PDF file

File presentation of PDF depends on whether the content is text, images, graphics or other

objects in the document.

Content Streams: The graphical content (i.e., text, images, and graphics) of PDF document pages

is expressed exclusively inside dedicated PDF streams called content streams. A content stream

consists of a sequence of instructions which are used to describe the graphical elements that are

to be painted onto the page[32].

Text Representation: In PDF, the textual content is handled by text instructions defining

graphical text primitives embedded in page content streams. These text primitives are

determinate by various attributes, including a font id (that maps to a font object held in the page

resource dictionary), a font size, some character codes and their relative coordinates on the page.

Most of the time, text is represented as vector graphics and is rendered in the form of a set of

character shapes mapping character codes. Since PDF considers glyphs, i.e., character shapes, as

graphical objects, many of the text operators are handled using the graphics state and standard

painting operators[32].

Graphics Representation: A graphic, i.e., a vectoral image, is built from a sequence of paths

contained in a page content stream. Each path inherits the attributes of the current graphics state

and is itself described as a set of consecutive line segments and curves. Paths can be used for

painting strokes, filling areas, describing font glyphs, and even clipping zones[32].

Images Representation: Raster images, i.e., digital images, are most of the time embedded in

the page resources as stream objects. They are then simply referenced from the content streams

by their resource names and positioned (and resized) according to the CTM. Images can also be

referenced as external resources, but PDF recommendations discourage such practice since this

would link a PDF document with many external files[32].

Fonts Representation: PDF is able to deal with many different font formats including the so-

called simple and composite fonts. Simple fonts are limited to 256 glyphs, while composite fonts

are unlimited in their glyph space. Since file size is a key issue in PDF, fonts are frequently

reduced to subsets, describing only used glyphs. Moreover, fonts are most of the time

27

represented as compact descriptions, post-filtered by a compressing algorithm, again to reduce

the overall file size. This leads to quite complicated solutions for representing font

information[32].

Metadata and Content Structures: PDF provides various mechanisms to incorporate metadata

describing its content, such as annotations and structural information. For instance, a PDF

annotation associates a file or data such as a note, link, hyperlink, sound, or movie with a

location on the page (using the default user space). PDF annotations also provide a way to

interact with the user by means of page locations linked with mouse and keyboard events[32].

2.5 Page Layout Segmentation

Segmentation is a process of separation of an image into regions that contain pixel groups that

are similar in value[33]. It is also explained as symbolization or extraction of characters from

pixel array. It is considered as the most important part of recognition system because of the

direct dependency of correct recognition on correct segmentation of characters. It is applied after

the image filtering and other preprocessing tasks are done[34].

Segmentation occurs at two levels; on the first level, blocks of text, graphics and other parts are

separated. Then, text lines and words in the text image are located[34]. Text/graphic

segmentation and extraction of words and characters in document images are very important.

The degraded quality of documents poses different problems such as characters broken into

multiple components, text at the back of document images appearing on the front, etc., thus

making extraction of the words and characters very difficult[34] [35].

2.5.1 Text/Graphic Segmentation

Page segmentation into text and non-text components is an essential preprocessing step before

other operation and for further processing. In document images, basic shapes of text characters

are limited in number, but shapes of the non-text components including drawing, logos, graphs,

etc. are unlimited. Figure 2.3 shows the composition of a given real world document that

contains printed text, table, figure and noise.

28

Figure 2-5 composition of a given real world document

2.5.2 Text Line and Word Segmentation

According to Million[36] after text part is separated from graphics, tables and other parts, the

next step is extracting text lines and words in the image. Line segmentation is a process of

scanning horizontally text part of an image document for identifying parts that hold text line and

parts that are blank. After lines that contain text are identified, the next step is word identification

(segmentation). Identification of word boundaries requires the task of distinguishing words from

word spaces. The presence of spaces that precede or succeed a character makes it difficult to

identify a word separator from a character separator. Hence, it complicates the job of word

boundary identification as one of the challenges in word level segmentation[37].

2.6 Segmentation Techniques

Different authors categorize image segmentation techniques differently. Skarbek[38], categorize

image segmentation techniques as: pixel based, edge based, area based and physics based

29

techniques. Yatharth [36], grouped segmentation techniques into: threshold techniques, edge

based methods, region based methods and connectivity-preserving relaxation-based methods.

Cattoni[39], provide approaches for page segmentation as: Smearing based techniques,

projection profile methods, texture based (local analysis) techniques and structure based

techniques. Usually, page segmentation methods are divided into three main groups: top-down,

bottom-up and hybrid approaches[34].

2.6.1 Top-Down Techniques

Top-down techniques divide document images recursively from entire image to smaller regions.

Khurram [40] noted that for top down segmentation methods to be effective, they need to have a

prior knowledge about the document class and type (number of columns, width of margins).

Most of well-known top-down methods are XY cut, Projection Profile Methods, Whitespace

Cover, Histogram Analysis and Space Transforms Fourier transform, Hough transform [41][42].

X-Y cut algorithm also called recursive x-y cuts (RXYC) algorithm is a top-down algorithm

which partitions a document into rectangular components which represent the nodes of the tree.

It follows a tree-based approach; the root of the tree represents the entire document page and all

the leaf nodes together represent the final segmentation. The bits of the binary transformed

image are summed by this algorithm. In this manner a density graph is obtained. The low ends of

the graph stand for empty spaces that are lines in the segmented document. If the values reach a

higher point than it, the segmentation process is stopped, and the layout component is identified.

This algorithm is usable for both horizontal and vertical projections. The process is continued

until an empty line threshold is reached. At that point the segmentation algorithm ends[43].

A positive aspect of the algorithm is that the threshold controls the size of the found component.

This way, the configuration setting makes the algorithm suitable for finding paragraphs, lines or

words and many other elements of the page by simply performing an adjustment to one

parameter. More than that, the threshold controls the size of the segmented clusters which makes

the algorithm scalable. The detection of the rows, paragraphs, section and so on is therefore

possible [42]

The whitespace cover algorithm considers a collection of rectangular components as well as

another component that represents the entire page and it is a container for all the other

30

components. The main idea behind this algorithm is the maximization of the white spaces in

order to obtain the optimal page. The algorithm principle is similar to quick sort[44]. The starting

point of the algorithm is represented by a rectangular component that bounds the whole page and

a group of white rectangles are considered obstacles. One of these obstacles is chosen as a pivot.

Usually it is chosen one that is as central as possible. With this pivot the space is split into 4

components (right, left, top, down) which become candidates for being processed in the same

way recursively. Every component is tested with a quality function in order to evaluate if there is

a white space or not [42][34].

2.6.2 Bottom-Up Techniques

Bottom-up techniques start with the smallest elements (pixels), merge them recursively in

connected components or regions, and then in larger structures [38]. It uses Area Height analysis

to identify figures (big components) and extract near connected components as figure caption

candidates.

Some of the methods used here are Connected Component (CC) Analysis, Region-Growing

Methods, Docstrum, Voronoi-Diagram Based, Run Length Smoothing, Smearing, Neural

Networks and Active Contours [45] [41][46].

Connected component (CC) analysis is a bottom-up technique that scans all the pixels of

document image and recursively label them based on pixel connectivity, i.e. all pixels in the

connected component share similar pixel intensity values and are in some way connected with

each other. It uses CC area height analysis, which takes the width and height of the bounding box

of a labeled component to calculate the area in order to get some threshold value, to identify big

components and extract near connected components as figure caption candidates[47].

Voronoi-Diagram Based Algorithm: as prposed by Kise [48], Voronoi-diagram based

algorithm first extracts sample points from the boundaries of the connected components using a

sampling rate. Then, noise removal is done using a maximum noise zone size threshold, in

addition to width, height, and aspect ratio thresholds. After that a Voronoi diagram is generated

using sample points obtained from the borders of the connected components. The Voronoi edges

that pass through a connected component are deleted to obtain an area Voronoi diagram. Finally,

31

superfluous Voronoi edges are deleted to obtain boundaries of document components. An edge is

declared superfluous if it satisfies any of the following criterion[48]:

 The minimum distance d between its associated connected components is less than the

inter-character gap in body text regions.

 The minimum distance d between its associated connected components is less than the

inter-line spacing times a margin control factor, or the area ratio of the two connected

components is above an area ratio threshold.

 At least one of its terminals is neither shared by another Voronoi edge nor lies on the

edge of the document image.

The output of the algorithm consists of arbitrarily shaped regions bounded by Voronoi edges;

each Voronoi region is represented by its bounding box[48].

Docstrum: this is one of the bottom-up algorithms which is proposed by O‘Gorman[49]. This

approach is based on nearest-neighborhood clustering of connected components extracted from

the document image. O‘Gorman[49] proposed, after noise removal, the connected components

are separated into two groups, one with characters of the dominant font size and another one with

characters in titles and section headings, using a character size ratio factor. Then, K nearest

neighbors are found for each connected component. A histogram of the distance and angle of

each connected component from its K nearest neighbors is computed. The peak of the angle

histogram gives the dominant skew in the document image. This skew estimate is used to

compute within-line nearest neighbor pairs. Then, text-lines are found by computing the

transitive closure on within-line nearest neighbor pairings using a threshold. Finally, text-lines

are merged to form text blocks using a parallel distance threshold and a perpendicular distance

threshold.

2.6.3 Hybrid Techniques

There are also hybrid methods that combine and make use of both bottom-up and top-down

approaches [32], for example, connected component analysis for shape information and block

separation for background block map [36]. Hybrid methods work very well for major

text/graphic segmentation in both historical and contemporary pages (magazines, newspapers,

32

journals, etc.), but not for a very fine level segmentation of words and their individual characters

in historical books [32].

Watershed Based Image Segmentation: Watershed transformation is a powerful mathematical

morphological tool for the image segmentation [36]. The technique is more popular in the fields

like biomedical and medical image processing, and computer vision. In geography, watershed

means the edge that divides areas drained by different river systems. If image is viewed as

geological landscape, the watershed lines determine boundaries which divide image regions. The

watershed transform computes regions and edge lines (also known as watershed lines).

Watershed Segmentation adopts the concepts from the techniques such as threshold based, edge

based and region based segmentation [36]. There are mainly two classes of watershed

algorithms: the flooding based watershed algorithms and rain falling based watershed algorithms

[28].

Flooding Based Watershed Algorithms: In traditional flooding based approach of watershed

based image segmentation, image is considered as a topographic surface which contains three

different types of points: points which indicate regional minimum, points where the water falling

has highest probability to fall into a single minimum region and points where the water falling

has probability to fall into more than one such a minimum region. For regional minimum, the

groups of points satisfy second condition called watershed or catchment basin of that minimum

and the groups of point satisfy third condition makes a crest line on topographic surface termed

as a watershed line. Figure 2.5 shows an example of the watershed line and catchment basin [28].

33

Figure 2-6 Watershed Lines and Catchment Basins [28]

The basic concept of watershed algorithm used for the image segmentation is to find the

watershed lines (boundaries). Imagine, holes at each regional minimum, and water is flooded

into these holes with constant rate. The level of the water will rise in the topographic surface

uniformly. When the rising water in different catchment basins is going to merge each other,

then a dam is built to prevent merging of the water. Finally, flooding of water will reach at the

point where only top of the dams is visible. These continuous dam boundaries are called the

watershed lines [36].

Rainfalling Watershed Algorithms: Unlike traditional flooding-based algorithm, the rainfalling

algorithm extract mountain boundaries. The concept of the algorithm is that rainwater drops fall

on the mountain (topographic surface) and move to descending direction because of the gravity

until they reach to the local minimum surface. The algorithm tracks the path of water drop for

each point on the surface towards the local minimum, if raindrops pass through that point or fall

on that point. A group of points make a segment when water drops related to them flow

downwards to the same deepest location. When a point has more than one path towards the

different steepest surfaces then it can be allocated to any one of the local minimum [28].

34

2.7 Related Works

Several authors have tried to study language dependent data compression system especially for

Arabic, Hebrew, Chinese and Indian languages that are using non-Latin characters. These

research attempt to combine different compression algorithms. Some of them are listed as

follows:

Mtimet and Amiri [9] introduce new Arabic Textual Images Compression. They propose a

compression method for large Arabic text in document images. They used three steps to

accomplish the desired purpose. In the first step, which involves segmentation module, the input

image is partitioned into individual symbols. In the second step, a pattern matching technique

used to determine similar patterns. Finally, a neighborhood coding is performed to encode each

symbol. In their proposed work, they developed an algorithm for large Arabic textual image

compression. The main idea of this approach is Neighborhood coding with reduction. Based on

the extracted patterns, that can improve the pattern-matching procedure, and this lead to further

compression by Neighborhood coding. Experimental results show the proposed approach can

improve compression ratio on large Arabic textual images. The compression results satisfy the

lossless context, namely no error happens during compression. There future work will

concentrate on integrating on their approach in compound image compression framework.

On another study of Grailu and Yazdi [50] they considered Farsi/Arabic script. In the

Farsi/Arabic script contrary to the printed Latin script, letters routinely affix to each other and

produce diverse samples. Along these lines a couple of illustrations are totally/partially subsets

of a couple of others. Recognizing such circumstances and mishandling them to reduce the

amount of library models has a great effect on the weight profitability, in light of the way that the

amount of occasion of such circumstances in Farsi and Arabic substance pictures is high. Such

joining characters exist in some diverse scripts and printed style faces. Likewise, undesired

touching characters exist in some substance pictures, for instance, Latin ones. The proposed

weight methodology is not confined to simply Farsi and Arabic substance pictures.

In their proposed system three procedures were utilized the number of library models was

decreased by recognizing and precluding the completely/mostly comparative models or those

models which have a straightforward connection to one another.

35

A new viable example encoding plan was proposed for encoding a wide range of examples. The

proposed encoding plan has two operation methods of chain coding and delicate example

coordinating each of which is utilized for various types of examples. The previous is utilized for

minimal examples and the recent is utilized for scanty examples. Exchanging between these

modes is finished by a measure of info example which is equivalent to the proportion of the

example territory to the powerful length of its chain code grouping. In chain coding mode, it

utilizes a blend of chain coding, run length and 1D versatile connection-based math coding

procedures and in the delicate example coordinating mode, it utilizes the delicate example

coordinating method. They have altered and utilized the multi-image QM-coder for encoding the

arrangements of numbers.

Three distinctive levels are proposed for lossy compression each of which further expands the

compression proportion. All or some of these levels may be utilized as a part of request to

accomplish distinctive compression proportions. The main level incorporates applying some

chain code area methods, for example, exclusion of little examples and openings, oversight of

inward gaps of letters, and smoothing the limits of the examples. The second level incorporates

utilizing the specific pixel inversion system, and the third level incorporates utilizing the

proposed technique for organizing the lingering examples for encoding. These three levels cause

the proposed technique to be more adaptable than the current compression strategies or

benchmarks in light of the fact that diverse compression proportions are achievable. Exploratory

results demonstrated that the proposed system works better, as high as from 1.4–3.3 times in

lossy case and 1.2–2.7 times in lossless case at 300 dpi, than the best existing compression

routines or measures. The most extreme compression proportions were accomplished for

Farsi/Arabic scripts[9].

Garain and Debnath[10] present a new compression scheme for Indian language textual

documents images. As OCR may not be able to compress documents due to unavailability of

data set in most of the Indian language scripts and even if the data set is available, it is not

efficient enough to perform the conversion job. In this paper new compression technique

presented first time for Indian languages. The proposed compression technique is lossy in nature,

compresses document images up to readable level. This method is based on the symbolic

36

compression technique. The proposed technique has been accomplished with an efficient

segmentation-based clustering approach.

Wiseman and Gefner[51] suggested a suitable technique for Hebrew languages. This technique

includes two phases: at the first phase, morphological analysis is used to segment the text into

two files. The first file includes index values for each pattern. The second file includes the root

of the words. The second phase included compressing both files, using traditional BWT. The

Hebrew bible file had been used for testing the compression. The size of file was 260 KB.

Results showed that using the technique which had been suggested achieved 28.97% of

compression rate whereas the traditional BWT compressed this file to 40.13%.

CDIS (Compression for Document Image System) is an example based about lossless

compression framework for checked record pictures. Zhang and Danskin [52], present a

progressive lossy example occurrence position coding method which brings about a noteworthy

change in compression with no obvious artifacts. CDIS codes content positions via consequently

designing pieces of content, then transmitting the position blunders for every example. The lossy

coding so is accomplished with diminished accuracy, subject to quality guarantees. CDIS

exploits the learning of record pictures one stage further, CDIS exploits the auxiliary format of

report pictures. This framework adequately codes example groupings and positions in the picture

by coding the example positions progressively: -

 First it isolates the content picture into pieces and consequently designs the content inside

of every square by assessing every design's position.

 Then it transmits the position lapse (the contrast between the design's genuine and

assessed positions)

In almost lossless mode, CDIS packs the same test record set (single page) around 13% more

than the best past results. Better results (18% sparing) are acquired on multi-page reports. CDIS

imitates report pictures in about lossless mode. The remade picture is a rough guess to the first

picture. The nature of the remade pictures is ensured by traditionalist example coordinating and

position coding routines. CDIS's example coordinating strategy guarantees that just firmly

coordinated examples are substituted from the first pictures. Its example position coding strategy

guarantees that the position of every example is coded inside of a couple of pixels of its unique

37

position. Besides, CDIS gives the alternative to change and control the level of exactness used to

code example positions [52].

Chao and Fan[32] has developed techniques that identifies the logical components of a PDF

document Page into different logical structure regions such as text blocks, images, vector

graphics blocks and compound blocks for further PDF file manipulation. The PDF document

page is separated into three layers of text, image and vector graphic. Each layer become an

individual PDF document. Hence the logical structural component is placed in each stratum. For

text component's font, size, line spacing and color are identified. For image component the

shapes are named. For vector graphics component the object is identified. After the route object

is converted Scalable Vector Graphics (SVG) is an XML based vector image format for 2D

graphics. all separated component are combined and converted to compound component.

Most of the previous studies are done for English Arabic [2], Chinese[6], Hindus [7] and other

non-English languages to address the problem of memory management and bandwidth

utilization. But when we come to our country, with their own scripts there is no research effort to

compress PDF documents written in Amharic language. However, with the increasing published

PDF documents in Amharic to disseminate news and reports using newspapers, magazines and

webpages, there is a need to decrease the size. So as to reduce memory space requirement and

speed up transmission with the limited bandwidth. Hence this study is initiated to design an

approach for compressing Amharic PDF formats.

38

CHAPTER THREE

METHODS AND ALGORITHMS

The task of page segmentation is to divide the document image into homogeneous zones, each

consisting of only one physical layout structure (text, tables, pictures)[33]. Page segmentation

techniques also help segment text part of the image to lines, words and characters. Therefore, the

performance of compression systems highly depends on the page segmentation algorithm used.

Among a number of physical and logical page layouts this study focuses on PDF Image

segmentation, extraction and compression, also positional information about those segmented

blocks of PDF documents in order to reconstruct after the decompression. Therefore, this chapter

in particular explores architecture of the proposed approach, techniques and evaluation.

3.1 Design of the System

Figure 3.1 shows the architecture for the proposed approach. The proposed approach uses

PDFMiner python module to segment the logical and physical structure of the file and extract the

result then appended to XML or HTML file. Finally encoding the extracted output is done with

different compression algorithms such as Huffman and LZ compression.

On the other hand, the given PDF files is password protected or scanned PDFMiner can’t access

the PDF object directly. In this case the system first obtains the PDF file and converts each page

into a series of Image files. PDF elements segmentation stage detects the PDF document image

files, categorizes them into homogeneous block and stores all the information of the segmented

blocks. Segmented elements classified into text and non-text blocks. Extracted text regions faded

to tesseract OCR to recognize and extract the text file. Finally encoding the extracted output is

done with different compression algorithms.

39

Figure 3-1 Architecture of the proposed approach

The proposed approach uses page segmentation step not only for segmenting Images and column

and paragraph blocks of the original document image. It also used to extract positional

information about those segmented blocks of PDF documents in order to reconstruct after the

decompression

40

3.1.1 Preprocessing

This is the most important and crucial step that is very helpful to enhance the performance of

next segmentation and extraction steps. Major preprocessing tasks while working with scanned

PDF documents are PDF to image conversion, color space Transformation and binarization.

3.1.1.1 PDF to image conversion

To access and manipulate objects inside the PDF file we need to convert the PDF file to Image.

This study uses PDF to Image python library to convert the given Amharic PDF file to its

equivalent image format.

3.1.1.2 Color space Transformation

A color space is a method by which we can specify, create and visualize color. As humans, we

may define a color by its attributes of brightness, hue and colorfulness. Different color spaces are

better for different applications[38]. A computer may describe a color using the amounts of red,

green and blue phosphor emission required to match a color. A printing press may produce a

specific color in terms of the reflectance and absorbance of cyan, magenta, yellow and black inks

on the printing paper[53].

The converting file format in PDF to image is CMYK color mode. CMYK is a subtractive based

color space and is mainly used in printing and hard copy output. The fourth, black, component is

included to improve both the density range and the available color range (by removing the need

for the CMY inks to produce a good neutral black it is possible to used inks that have better color

reproductive capabilities). This mode is not supported by MATLAB programming language.

Hence, we need to transform the color space from CMYK to the primary color mode, RGB.

Figure 3-2 CMYK and RGB color space[53]

41

The Red, Green, Blue values are given in the range of 0..255, the red color(R) is calculated from

the cyan(C) and black(K) colors, the green color(G) is calculated from the magenta(M) and

black(K) colors, The blue color(B) is calculated from the yellow(Y) and black(K) colors. Below

is the formula of CMYK to RGB conversion[53].

 Red = 255 × (1 - Cyan ÷ 100) × (1 - Black ÷ 100)

 Green = 255 × (1 - Magenta ÷ 100) × (1 - Black ÷ 100)

 Blue = 255 × (1 - Yellow ÷ 100) × (1 - Black ÷ 100)

3.1.1.3 Binarization

The Binarization Method converts the grey scale image (0 up to 256 gray levels) in to black and

white image (0 or 1). The result of page layout segmentation highly depends upon the

binarization. The high quality binarized image can give more accuracy.

The common method used to binarize is known as thresholding. In thresholding, the grayscale or

color images are represented as binary images by picking a threshold value. There are two

categories of thresholding[54].

Global thresholding: a threshold value is selected for the entire document image which is

frequently based on an estimation of the background intensity level with that of the image using

an intensity histogram [55].

Local or adaptive thresholding: use different values for each pixel depending on the

information at different pixel points [55]. Local thresholding is commonly used in works that

involve images that are of varying level of intensities, such as pictures from satellites cameras or

scanned medical images.

3.1.2 Page Layout Segmentation

Page layout segmentation is the next step to follow after the prepressing of a PDF converted to

images and binaries. It is performed to separate text from non-text region and to store layout

information of segmented blocks. Then, the next image processing is applied over the textual

area to recognize textual data. Whereas, the information stored plays an important role in the

course of maintaining the original document image page layouts. Therefore, page layout

segmentation is an important stage of the proposed approach because the remaining stages

42

including text recognition and layout preservation heavily depends on this stage. Thus, in this

study, page layout segmentation techniques are applied to extract text regions from non-text

regions and to store column and positional information with the aim of reconstructing original

document during the decompression process.

This study explored five segmentation techniques namely: watershed transforms, run length

smoothing, connected component labeling, whitespace analysis and morphological dilution.

These techniques are experimented in different combinations Amharic PDF document.

3.1.2.1 Morphology Dilution approach

The morphology approach quantitatively describes the shape of objects in an image and has

recently attracted much attention [28]. The mathematical morphology describes such operations

by combinations of basic set operations between an image and a small object called a structuring

element. It is very attractive for this purpose because it efficiently deals with geometrical

features such as size, shape, contrast, or connectivity that can be considered as segmentation-

oriented features. One of the advantages of using morphological approach is its low

computational cost. The simplification for segmentation can be efficiently achieved by filters

based on opening and closing by partial reconstruction. The size of structuring element is

progressively decreased to allow the introduction of more local information to improve the

segmentation [28]. In this paper, considering these advantages of morphological approach, it is

used for segmenting the document PDF images.

Dilation is one of the most basic morphological operations. It is used to connect characters in

words, words in a text line, and text lines in a column by adding pixels to the boundaries of

objects in an image. The number of pixels added to the objects in an image depends on the size

and shape of the structuring element used to process the image. In the morphological dilation

operation, the state of any given pixel in the output image is determined by applying a rule to the

corresponding pixel and its neighbors in the input image. The dilation rule used to process the

pixels is; the value of output pixel is the maximum value of all pixels in the input pixel's

neighborhood. For instance, in a binary image, if any of the neighborhood pixels values are 1, the

output pixel is set to 1 and if both neighborhood values are 0, the output pixel is set to 0 [37].

43

The dilation function applies the appropriate rule to the pixels in the neighborhood and assigns a

value to the corresponding pixel in the output image by using structuring element. In figure 3.2,

the morphological dilation function sets the value of the output pixel to 1 because one of the

elements in the neighborhood defined by the structuring element is on. Structuring element is an

essential part of the dilation operation which is used to probe the input image. It is a matrix

consisting of only 0's and 1's that can have any arbitrary shape and size. It can be vertical,

horizontal, cross-shaped, multi directional. Based on its shape, structuring element determine to

what direction it increases the pixel value of an image [37].

Figure 3-3 Morphology Dilution approach

3.1.2.2 Connected Component Analysis

Connected component (CC) labeling is used in image processing to detect connected regions in

binary images. It is an algorithmic application of graph theory, where subsets of connected

components within an image are uniquely labeled based on a given heuristic [36]. Connected

components scans an image and groups its pixels into components based on pixel connectivity.

All pixels in a connected component share similar pixel intensity values and are in some way

connected with each other. Once all groups have been determined, each pixel is labeled with a

gray level or a color (color labeling) according to the component it was assigned to.

Connectivity of pixels divided in to 4 and 8 connectivity in order to find the CC of the given

image depending on its purpose. The difference between 4 and 8 CC connectivity labeling is how

the algorithm defines connected pixels. For example, for the pixel P, 4 connectivity only checks

44

the four neighbors, called direct-neighbors i.e. right, left, up and down neighbors of P whereas 8

connectivity is known as indirect-neighbors checks all the surrounding pixels around P including

diagonal pixels. The labeled pixels represent pixels that are considered as connected to the

central pixel in both approaches [36].

Once all groups have been determined, each pixel is labeled with a gray-level or color labeling

according to the component it was assigned to. Extracting and labeling of various disjoint and

connected components in an image is central to many automated image analysis applications

such as OCR systems.

There are two types of connected component labeling algorithm; one pass and two pass. The one

pass version goes through each pixel only once and for each pixel in an image, all the neighbor

pixels are tested for connectivity to label connected components and the two pass scans the

image two times. The first pass goes through each pixel and checks each pixel and using these

pixel labels, it assigns a label to the current pixel and the second pass cleans up any mess it might

have created. Two pass labeling takes high processing time and memory space than one pass.

Algorithm 3.1 shows the steps followed in one pass connected component analysis.

1. Connected-component matrix is initialized to size of image matrix.

2. A marker is initialized and incremented for every detected object in the image.

3. A counter is initialized to count the number of objects.

4. A row-major scan is started for the entire image.

5. If an object pixel is detected, then following steps are repeated until (Index!=0)

5.1. Set the corresponding pixel to 0 in Image.

5.2. A vector (Index) is updated with all the neighboring pixels of the currently set

pixels.

5.3. Unique pixels are retained and already marked pixels are removed.

5.4. Set the pixels indicated by Index to 1 in the connected-component matrix.

6. Increment the marker for another object in the image

Algorithm 3-1 One pass connected component labeling algorithm (36)

Two pass labeling scans the image two times as it has been mentioned earlier and algorithm 3.2

presents the two-pass connected component labeling algorithm [36].

First Pass:

1. Iterate through each element of the data by column, then by row (Raster Scanning)

2. If the element is not the background

45

2.1. Get the neighboring elements of the current element

2.2. If there are no neighbors, uniquely label the current element and

continue

2.3. Otherwise, find the neighbor with the smallest label and assign it to the

current element

2.4. Store the equivalence between neighboring labels

Second Pass:

1. Iterate through each element of the data by column, then by row

2. If the element is not the background

2.1. Relabel the element with the lowest equivalent label

Algorithm 3-2 Two pass connected component labeling algorithm (36)

3.1.2.3 Watershed Algorithm Based on Connected Components

Watershed algorithm based on connected components is one of the algorithms used to segment

Amharic PDF document in this study. This algorithm gives the same segmentation results as the

traditional watershed algorithm. At the same time, it has an advantage of lower complexity,

simple data structure and short execution time. It connects each pixel to its lowest neighbor pixel

and all pixels connected to same lowest neighbor pixel, make a segment [55]. In the analysis of

the objects in images it is essential that we can distinguish between the objects of interest and the

rest. This latter group is also referred to as the background. The techniques that are used to find

the objects of interest are usually referred to as segmentation techniques – segmenting the

foreground from background[55].

The basic concept of connected components-based watershed algorithm is shown in Figure 3.2.

The original 6 x 6 image has three local minimum values indicated by gray boxes (3.2a). If a

pixel is not a local minimum then it is connected to its lowest neighbors as shown by arrows in

(3.2b), where m indicates a local minimum. All components directed towards the same local

minimum make a segment and are given the same label value (3.2c)[56].

46

Figure 3-4 watershed algorithm[56]

3.1.2.4 Run Length Smoothing

The Run Length Smoothing Algorithm (RLSA) is a method that can be used for Block

segmentation and text discrimination. The method developed for the Document Analysis System

consists of two steps. First, a segmentation procedure subdivides the area of a document into

regions (blocks), each of which should contain only one type of data (text, graphic, halftone

image, etc.). Next, some basic features of these blocks are calculated[57].

The basic RLSA is applied to a binary sequence in which white pixels are represented by 0’s and

black pixels by 1’s. The algorithm transforms a binary sequence x into an output sequence y

according to the following rules[57]:

1. if the number of adjacent 0‘s is less than or equal to a predefined threshold C, then

change 0‘s in x to 1‘s in y.

2. 1‘s in x are unchanged in y.

3.1.2.5 CC width, height and area analysis

Connected components width, height and area analysis is used to identify big connected areas

like graphics, columns, titles, etc. in addition small connected elements like punctuation marks

comas, and small dots. It is an algorithm that takes the width and height of the bounding box of a

labeled component to calculate the area in order to get some threshold value. Column and

graphical areas usually have larger area (height and width) than normal text while punctuation

47

marks and dots have smaller area and height or width. Thus, finding the area of connected

component is very important for the next object extraction.

3.1.2.6 Object Classification and Extraction

3.1.2.6.1 Object Classification

Different types of regions in the image have different textural characteristics. Having the

information about the white tiles from page segmentation, the most appropriate textural property

to exploit is the white space inside regions. Furthermore, it is natural that a practical page

classification method should exploit this information instead of performing new computations on

the image data. In the proposed approach, description of the regions identified during page

segmentation is adapted to allow for efficient classification and object extraction.

 Text regions: contain a significant number of narrow white tiles. These are evenly

distributed inside the region and the white area that they describe is large in proportion to

the total area of the region.

 Graphics regions: usually contain less white space. There are more wide tiles than in text

regions. The size of the tiles may vary significantly, and they are not evenly distributed.

3.1.2.6.2 Object Extraction

The features describing the properties of each block are extracted based on its edges. The

coordinates of the edges specify the size of the block. Each extreme edges of block are defined

by considering the origin of binary image. Features such as height, area, aspect ratio, perimeter,

perimeter/height ratio, average horizontal length are extracted to differentiate the non-text block

from text block. Textual and non-textual blocks are represented by (Xmin, Ymin) and (Xmax,

Ymax). Where,

 Ymin - Left-most pixel value of column.

 Ymax - Right-most pixel value of column.

 Xmin- Left-most pixel value of row.

 Xmax - Right-most pixel value of row.

The following block features are computed for extracting the document region.

Height (H) - Height of the block is determined by subtracting the leftmost pixel from rightmost pixel of

column.

48

H=Dx = (Ymax-Ymin) +1

Width (W) - Width of the block is computed by subtracting the leftmost pixel from rightmost pixel of

row.

W=Dy = (Xmax-Xmin) +1

Area (A) - Area of the block is obtained by multiplying the height and width.

A=H*W

Non-Text Components Extraction

This stage performs extraction of non-text areas such as images, pictures and graphical areas

based on the above segmentation result. It also intended to extract implicit information from non-

textual PDF objects such as figures and images. After figure extraction from the page has been

completed, the figure block is saved in Image folder based on its page number and (x,y)

coordinate.

Text Area Extraction

In this stage extracting text areas such as text titles, paragraphs and columns based on the above

segmentation result. After text areas extraction from the page has been completed, the block is

saved in Text folder based on its page number and (x,y) coordinate and transfer to the next stage

for OCR application.

3.1.4 Text Recognition using OCR

OCR is a technology that allows you to convert scanned images of text into plain text. This study

explored three open source OCR engines namely Tesseract OCR, Finereader and FreeOCR.

These OCR engines are experimented in different combinations on real-life Amharic document

images.

3.1.4.1 Tesseract OCR

Tesseract is an open source optical character recognition (OCR) engine [7]. HP originally was

originally started it as a project [44]. Later it was modified, improved and taken over by Google

and later released as open source in year 2005. It is very portable as compared to others and

supports various platforms. Its focus is more towards providing less rejection and improved

accuracy. Currently only command base version is available but there are many projects with UI

49

built on top of it which could be forked. As of now Tesseract version 3.02 is released and

available for use. which provides support for around 139 language including Amharic. Figure 3.4

presents python code used to recognize Amharic text image using Tesseract.

for file in file_list:

 name=os.path.splitext(file)[0]

 # selecting image file type

 if file.endswith(".jpg"):

 txt=ocr(file) # calling the ocr function

 os.remove(name+".jpg")

 file = open(directory+"\\"+name+".txt",'a+', encoding="utf-8")

 #os.remove(file)

 file.write(str(txt))

print (succsess)

Figure 3-5 python code used to recognize Amharic text image using Tesseract

3.1.4.2 FineReader OCR

FineReader is produced commercially by a global company, called ABBYY, as advanced OCR

engine. The performance of FineReader has been enhanced by ABBYY for many years.

FineReader 12 supports 190 languages including Amharic script using dictionary support [58]. It

supports multi-font types, multi-size and multi-resolution images.

3.1.4.3 FreeOCR

FreeOCR is a free Optical Character Recognition engine supports different popular image file

formats. FreeOCR outputs plain text and can export directly to Microsoft Word format

3.1.5 Data Compression

After separation of graphics and text, this study applies and tested three lossless compression

algorithms namely; Huffman compression algorithm, LZW Compression algorithm and RLA

compression algorithm for the purpose of compressing all extracted textual and non-textual data.

50

3.1.5.1 The Huffman Compression Technique

Huffman's scheme uses a table of frequency of occurrence for each symbol (or character) in the

input. This table may be derived from the input itself or from data which is representative of the

input. For instance, the frequency of occurrence of letters in normal English might be derived

from processing a large number of text documents and then used for encoding all text

documents[23]. We then need to assign a variable-length bit string to each character that

unambiguously represents that character. This means that the encoding for each character must

have a unique prefix. If the characters to be encoded are arranged in a binary tree. The Huffman

algorithm is simple and can be described in terms of creating a Huffman code tree[59].

3.1.5.2 Lempel-Ziv Compression Technique

LZW compression method is simple and is dictionary based. A file is scanned for a sequence of

repetitive data occurring in the program. These sequences are stored in the dictionary within the

compressed file and references are inserted wherever the repetitive data occurs[10].

LZW compression process is simple. It replaces strings of characters with single codes. No

analysis is done of the incoming text. A new string of characters is added every time it sees to a

table of strings. Compression occurs when a single code is output instead of a string of

characters. The LZW algorithm output code may be of arbitrary length, but it must have more

bits in it than a single character[60].

3.1.5.2 Run-Length Encoding Compression Technique

Run-Length Encoding is one of the simplest compression techniques known created especially

for data with strings of repeated symbols (the length of the string is called a run). It can be used

to compress data made of any combination of symbols. It does not need to know the frequency of

occurrence of symbols and can be very efficient if data is represented as 0s and 1s (Dipperstain,

1998). The general idea behind this method is to replace consecutive repeating occurrences of a

symbol by one occurrence of the symbol followed by the number of occurrences. The method

can be even more efficient if the data uses only two symbols (for example 0 and 1) in its bit

pattern and one symbol is more frequent than the other.

51

Figure 3-6 Run length Encoding

3.2 Performance Evaluation

For measuring the performance of page segmentation and reconstruction direct mapping is used.

It determines the performance of layout segmentation and reconstruction by finding the

correspondences between detected entities and ground truth. For page column segmentation it

counts the expected correct and error segmentation using Over-segmentation. A region of the

reference is represented by two or more regions in the examined segmentation. made by the

proposed approach and calculate the segmentation accuracy percentage. The expected correct

segmentation represents the expected number of segmented blocks. Similar procedures are

followed to calculate accuracy percentage for page column and paragraph layout reconstructions.

The performance of data compression algorithms can be analyzed in several aspects. We can

measure the algorithm complexity, computational memory, speed, amount of compression and

quality of reconstructed data. The most common measure to calculate the efficiency of

a compression algorithm is degree of compression. It is defined as the ratio of total number of

bits required to store uncompressed data and total number of bits required to store compressed

data.

52

CHAPTER FOUR

EXPERIMENTATION AND ANALYSIS

The main purpose of this study is designing Amharic PDF files compression approach by

applying an effective page segmentation technique that can identify text and non-text blocks with

the aim of reconstructing those segmented blocks based on the information stored during page

segmentation and object extraction stage. The proposed techniques are integrated with Google

developed Amharic OCR systems tesseract to recognize Amharic texts from textual objects.

For the experimentation purpose, HP Intel(R) Core (TM) I7 CPU 3110M @ 2.4GHz (2 CPUs),

8GB RAM and Windows 10 Ultimate operating system were used. MATLAB™ image

processing toolbox R2019 and Python programming language using Spider development tool are

used for developing prototype and integration.

4.1 Dataset preparation

Since the goal of this research is to compress Amharic PDF files by segmenting and extracting

non-text and text object layouts of real-life PDF documents. Those documents are collected from

the popular Amharic newspapers and from different magazines that encompasses multiple

columns having graphics. Scanned PDF files from those documents are selected because they

contain a number of page layouts, they have real-life features and they are easily accessible.

Newspapers and magazines commonly have two columns page layout.

The proposed approach performance is measured on different stages. To measure the

performance of the proposed segmentation, we use direct mapping. This method counts correct

segmentation made by the proposed technique and compare it with the expected once to calculate

the accuracy in percentage. The expected correct segmentation represents the expected number

graphics, column blocks each page segmentation and reconstruction methods individually. For

measuring the performance, the test set contains real life Amharic document images with

multiple columns, such as graphics with columns and paragraphs inside.

53

The collected datasets enable to evaluate if the proposed techniques are adequate to preserving

the original layouts after decompression process. The dataset doesn’t contain Tables, handwritten

and typewritten PDF documents; rather it contains multiple column real life documents that have

graphics and a number of paragraphs inside. Table 4.1 summarizes PDF documents collections

used in this study.

Table 4-1: Summarizing PDF documents collections

PDF Name PDF Type
Documents Contain

Scanned Pages Size (MB)
Images Columns

PDF1 Magazine No No Yes 16 21

PDF2 Web document No No Yes 4 1.3

PDF3 Web document No Yes Yes 7 2.2

PDF4 News paper No Yes Yes 18 4.6

PDF5 Web document Yes No Yes 8 3.5

PDF6 News paper Yes No Yes 8 2.1

PDF7 News paper Yes No Yes 10 6.3

PDF8 Magazine Yes Yes Yes 7 3.7

PDF9 Magazine Yes Yes Yes 22 17.6

PDF10 Magazine Yes Yes Yes 7 5.6

PDF11 News paper Yes Yes Yes 13 6.9

PDF12 News paper Yes Yes Yes 11 4.4

4.2 Preprocessing

Preprocessing component performs the job of preparing the input PDF documents for

compression. to this end, different tasks are done, such as converting PDF to image, binarization

and color space transformation.

4.2.1 PDF to Image conversion

To access and manipulate objects inside the PDF file we need to convert the PDF file to Image.

This study uses PDF to Image python library to convert the given Amharic PDF file to its

equivalent image format. Figure 4.1 depicts the python code used for converting PDF to jpeg

image file format.

from wand.image import Image

Input path = "path"

Output path="output path"

54

with(Image(filename = "input path resolution=300, Output path=Output path)) as source:

 images = source.sequence

 pages = len(images)

 for i in range(pages):

 n = i + 1

 newfilename = str(n) + '.jpeg'

 Image(images[i]).save(filename=newfilename)

Figure 4-1 PDF to Image conversion

The converting file format is CMYK color mode. This mode is not supported by MATLAB

programming language. Hence, there is a need to transform the color space from CMYK to the

primary color mode, RGB.

4.2.2 Color Space Transformation

To transform the color space from CMYK to RGB, we used python code presented in figure 4.2

this simplifies further process of images using MATLAB for binarization and experimenting

different segmentation algorithms to detect text and non-text regions

from PIL import Image

import os, sys

input path = " input path

dirs = os.listdir(path)

def torgb():

 dirs2 = os.listdir(path2)

 for item in dirs:

 if item == '.jpeg':

 continue

 if os.path.isfile(path+item):

 im = Image.open(path+item)

 f, e = os.path.splitext(path+item)

 image = im.convert('RGB')

 image.save(f + '.jpeg')

torgb()

Figure 4-2 CMYK to RGB color space conversion

55

4.3.2 Binarization

Binarization is a process by which the gray scale or colored images are converted to binary

images[15]. When an image is captured, it is frequently stored in the form of pixel density value,

which means each pixel has a value between 0 and 255 for a grayscale image.

The technique used in this study is, the Otsu threshold. The Otsu threshold is popular threshold

method, to convert gray-scale image into binary image. This threshold works to minimize the

intra class variance of the black and white pixels.

In MATLAB this threshold can be found using a function called graythresh. Gray thresh

compute global image threshold using Otsu's method. The syntax is given by:

 level = graythresh (I);

where level is the global image threshold value, I is the global image.

Once the global image threshold value is obtained, binarization is accomplished by converting

pixels which have greater intensity value than global image threshold value into “1” and pixel

which have lesser intensity value than global image threshold value in to “0”. The typical

MATLAB code of binarization is given by:

bw=im2bw (I, level)

Figure 4-3 Implementation of binarization

where “I” is the global image and level in the global image threshold value for I. Im2bw is a

MATLAB function used to convert gray scale or colored image into binary image.

4.3 Page Layout Segmentation

In the proposed methods, once the PDF image is converted into binary document image, the next

stage is applying page layout segmentation to separate text from non-text region and to store

layout information of the segmented objects. Page layout segmentation is a basic stage of this

study, because the remaining stages including object extraction, compression and reconstruction

depends on this stage.

The proposed page layout segmentation techniques for separating graphics from text area,

detecting and segmenting column blocks, collecting information about segmented column and

identifying text areas from the PDF document images for further processing. Thus, page layout

reconstruction techniques maintain the original document image layout based on the information

collected in page layout segmentation stage.

56

4.3.1. Text and Graphic separation

Text/graphic segmentation in document images, which separate graphics from text area, is

crucial for the next sub-sequential stage to separating text from non-text regions enables to use

OCR for converting image into text that can optimize grater memory space requirement of PDF

file. This study explored five segmentation techniques namely: morphological dilution,

Horizontal Run Length Smoothing, watershed transforms, connected component labeling and

Components Width, Height and Area Analysis. These techniques are experimented in different

combinations on real-life Amharic PDF documents.

4.3.1.1 Morphological Dilution

The first step in the course of in textual and non-textual separation is dilation. It is used to

connect disconnected characters, word and lines by increasing the pixel values of a PDF images.

Depending on the structuring element there are different types of dilation. In this study vertical

and horizontal direction dilations are applied. figure 4.5 shows MATLAB dilution algorithm that

connects in a given image.

[dialatedIm] = Dilat(bw,tresh)

dialatedIm = bwdist(~bw) >= tresh;

Figure 4-4 Implementation of Dilation

The blow figure 4.5 shows results of experiment after applying the dilution using different

threshold values

Figure 4-5 Dilation Using Different Thresholds:

57

(a) Original image (b) Result of smaller threshold (c) Dilated by medium threshold (d) Result of

larger threshold

4.3.1.2 Horizontal Run Length Smoothing (HRLS)

Horizontal Run Length Smoothing is the other algorithm used to connect components in the

given image. The algorithm provides the same result with morphological dilation. In dilution

pixels expands in all direction (right, left, up and down) whereas, in Horizontal Run Length

Smoothing expand characters in only one direction (to the right) that is the only difference of the

two algorithms

Figure 4-6 Implementation of Horizontal Run Length Smoothing

However, as it is observed from Figure 4.7 below the result of both algorithms (Dilation and

HRLS) to segment words is the same in our document collection.

a

Original image(a)

58

HRLS connecting characters(b)

Dilation connecting characters(c)

Figure 4-7 Dilation and HRLS Connected Words

In the proposed approach Dilation is used because the MATLAB built in function for Dilation is

faster and easier to implement than HRLS algorithm and both performed equally in our

document collection.

4.3.1.3 Connected Components Labeling

After applying morphological dilution, the next step is connected component analysis.

Connected components (CC) labeling algorithm is applied to identify and label each connected

component in a given binary image. MATLAB built-in method bwconncomp() and bwlabel() are

used to identify connected component and to label them in a given binary image respectively. In

this study 4 connectivity of pixel are used to identify connected components. figure 4.3 shows

CC algorithm that identifies connected components in a given image.

Connected components (CC) labeling algorithm which identify and label each connected

component in a given binary image is implemented using MATLAB built-in method

bwconncomp (). The code used to implement CC is given in Listing 4.1.

[cc,num] = ConnectedComp(bw)

cc = bwconncomp(bw,4) % using 4 connectivity

num=cc.NumObjects;

Figure 4-8 Implementation of Connected Components

Figure 4-10 shows results of experiment after applying the connected component analysis

59

Figure 4-9 Experimental result connected component segmentation

(a) Original image (b) connected component texts regions (c) connected component non text

regions

4.3.1.4 Watershed Segmentation

Watershed algorithm is implemented using MATLAB built-in function WaterSh(). The

algorithm segments document images to word images when integrated with dilation or HRLS

The code below Figure 4. 11 is used to apply watershed algorithm.

function [Segmented] = WaterSh(bw)

Segmented = watershed(bw);

Figure 4-10 Implementation of Watershed

The blow figure 4.12 shows results of experiment after applying the Watershed Segmentation

Figure 4-11 Experimental result Watershed Segmentation

(a) Original image (b) water shade segmentation of non-text regions

60

4.3.1.5 Connected Components Width, Height and Area Analysis

Components width, height and area analysis is used to identify big connected elements like

images, graphics, logos, etc. and small connected elements like punctuation marks and small

dots. Images and graphics usually have larger area and height or width than normal text while

punctuation marks and dots have smaller area and height or width. Once connected components

are extracted, it is used to identify big connected elements like graphics, column, etc. and small

connected elements like punctuation marks and small dots. Graphics and Images usually have

larger height, width and area than normal text while punctuation marks, dots and others have

smaller area as well as height and width. Thus, a threshold value in order to separate text from

graphics is set by taking the fact that graphics have larger area than text. The width and height of

the bounding box are used to compute the area for each component and saved on array size info

to compare the results. This study adopts a threshold value of 8000 from previse study[61],

which is found to be a better threshold value. Detail implementation is shown in figure 4.13.

size_info = [];

cc = 1;

forcnt = 1:num

x = Ibox(:,cnt);

size_info (cc,1) = x(3,:,1);

size_info (cc,2) = x(4,:,1);

size_info (cc,3) = x(3,:,1) * x(4,:,1);

cc = cc + 1;

if (size_info(cnt,3) >8000)

rectangle ('position',Ibox(:,cnt),'edgecolor','r');

end

end

Figure 4-12 analysis for Text\Graphics separation

Figure 4.14 shows result of experiment after applying the text/graphics separation techniques,

morphological dilation, connected component analysis and components Width, Height and Area

Analysis

61

Figure 4-13 Experimental result after applying the proposed text/graphics separation approach.

4.3.1.6 Experimental Results for text/graphics separation

To choose whether connected component or watershed best perform when integrated with

Dilation and connected components Area, Height and width analysis, on different type of PDF

documents, the blow experiments are conducted on different PDF documents.

Real life PDF documents collected for this study has a total number of 12 PDF documents with

different pages sizes. From the total datasets eight of the PDF documents have graphics content

inside. The blow tables Table 4.2 and Table 4.3 shows the CC or Watershed best perform when

integrated with Dilation and connected components Area, Height and width analysis

performance of the text/graphics separation proposed in this study.

62

Table 4-2: Experimental result of the proposed text/graphics separation using connected

component with Dilation and connected components Area, Height and width analysis techniques

PDF Name Pages Correctly Segmented Erroneously Segmented Accuracy (%)

PDF1 16 11 5 68.75

PDF2 4 4 0 100.00

PDF3 7 6 1 85.71

PDF4 18 14 4 77.78

PDF5 8 6 2 75.00

PDF6 8 7 1 87.50

PDF7 10 8 2 80.00

PDF8 7 5 2 71.43

PDF9 22 16 6 72.73

PDF10 7 5 2 71.43

PDF11 13 10 3 76.92

PDF12 11 8 3 72.73

Average 78.33

Table 4-3: Experimental result of the proposed text/graphics separation using watershed

segmentation with Dilation and connected components Area, Height and width analysis

techniques

PDF Name Pages
Correctly

Segmented

Erroneously

Segmented
Accuracy%

PDF1 16 9 7 56.25

PDF2 4 4 0 100.00

PDF3 7 5 2 71.43

PDF4 18 12 6 66.67

PDF5 8 5 3 62.50

PDF6 8 5 3 62.50

PDF7 10 8 2 80.00

PDF8 7 5 2 71.43

PDF9 22 17 5 77.27

PDF10 7 5 2 71.43

PDF11 13 8 5 61.54

PDF12 11 8 3 72.73

Average 71.15

The above tables Table 4.2 and Table 4.3 shows the result of integrating connected component

algorithm with components Area, Height and width analysis and Dilation result better result than

Watershed implementation. Therefore, the integration of connected component, with Dilation

and connected component Area, Height and Width analysis, is proposed. The result indicates that

the proposed text and non-textual separation technique based on connected component labeling

works better on real life PDF documents to separate graphics from text and on average 78.33 %

63

accuracy rate achieved. However, the algorithm failed to recognize smaller graphics which have

smaller area below the threshold value set.

The algorithm works well in identifying connected components. However, parts of broken fonts

and disconnected figure elements are considered as different components.

A serious challenge in some documents is a problem that arises due to underlines. Underlines

that appear in the middle of a text region as shown in figure 3.15. These underlines are

segmented as graphical components and are removed from the set of text components. Moreover,

in some situations where text characters are attached to the underline, not only the underline

disappear from the text region, it takes some characters with it and leaves large gaps in the

middle of a text region. This has a negative effect on our region detection stage when it happens.

Figure 4-14 Effect of Underlines in segmentation:

Another challenge irregular shaped images with non-rectangular shaped text blocks may result in

loss of some text. In this case, image might be misinterpreted as text. figure 3.15 shows the effect

of irregular shaped images.

Figure 4-15 Effect of irregular shaped images

64

4.4.2 Column Block Segmentation

After separating text area from graphics, the next step in layout segmentation is column block

detection and segmentation. Document images might contain different column blocks. So, it is

important to detect and segment those regions for the next OCR process. For text/graphics

separation, this study proposed morphological dilation and CC labeling for column block

detection. But, in order to keep the white space between the column blocks during column block

segmentation vertical dilation is applied. Implementation of vertical dilution detail is shown in

figure 4.17 blow.

textRegions = bwconvhull(textRegions, 'objects');

textRegions = bwareafilt(textRegions, [, inf]);

se = strel('line', ,);

Verticald = imdilate(textRegions,se);

Figure 4-16 Implementation of vertical dilution

Then the area of connected component analyzed in order to find a threshold value to identify

column block employed. Figure 4.18 shows a MATLAB algorithm to implement CC width,

height and area analysis.

size_info = [];

sumArea = 0;

forcnt = 1:num

 component_area = component_width * component_height;

 size_info (cnt,1) = component_width;

 size_info (cnt,2) = component_height;

 size_info (cnt,3) = component_area;

 sumArea = sumArea + component_area;

end

maxArea = max(size_info);

forcnt = 1:num

x = Ibox(:,cnt);

if (size_info (cnt,2) >maxArea(1,2)/4 &&size_info (cnt,1) >maxArea(1,1)/4

 size_info (cnt,1) >maxArea(1,1)/4)

 rectangle('position',Ibox(:,cnt),'edgecolor','r');

end

end

Figure 4-17 Analysis for Text column segmentation

65

Andualem[61] conducted an iterative experiment, and proposed the height and width of labeled

connected component which are greater than one fourth of the maximum area are considered as

column block of an image document. Figure 4.19 shows the result of connected pixels after

dilation algorithm is performed that connects characters, words and text lines in the same

column.

Figure 4-18 Experimental result after the proposed Text column segmentation applied.

As we can see from the above vertically dilated image (figure 4.19 (b)), the vertical dilation

algorithm connects all the pixels only in vertical direction so that the space between the two

columns is kept. Once the dilation process is done CC labeling analysis is applied and labels all

the connected component regions. Then the area of connected component analyzed in order to

extract the segmented text region to the next OCR stage.

4.4.2.1 Experimental results for column layout segmentation

Most of Amharic PDF documents such as newspapers and magazine have more than two column

layouts. However, Thus, the proposed algorithm tested on PDF documents which have up to four

numbers of columns. The blow table 4.4 shows the excremental result of the proposed approach

column layout segmentation.

66

Table 4-4 The performance of the proposed column blocks segmentation techniques

PDF

Name
Pages Documents contain column

Correctly

Segmented

Erroneously

Segmented
Accuracy%

PDF3 7 2 7 0 100.00

PDF4 18 3 16 2 88.89

PDF8 7 3 6 1 85.71

PDF9 22 2 20 2 90.91

PDF10 7 4 7 0 100.00

PDF11 13 3 10 3 76.92

PDF12 11 3 9 2 81.82

Average 89.18

The experimental result shows that the proposed technique works fine for any number of

columns with on average accuracy of 89.1%. However, the proposed approach erronsly segment

paragraphs as a column when the whitespace between two consecutive paragraphs is larger. It

also merged different blocks of columns as one when it failed to keep the whitespace between

the columns. The experiment showed that using larger thresholds will result in merged words

and using small threshold will result in over segmentation. Another challenge is broken titles.

Figure 4.20 shows this problem in part of a document image. The title on this page is divided

into six parts when there is enough empty space around.

Figure 4-19 Effect of broken titles

4.4.3 PDF Objects Extraction

After all PDF images segmentation is performed PDF Image objects extraction process is started

based on the output of segmentation process. In order to extract each text and non-text region the

proposed approach applies the bounding box (x,y) coordinates for each objects.

L = {S1, Sn}, where L and S represent layout and segment respectively

67

A segment is a pixel collection encapsulated within a bounding box defined by its lower left and

upper right corner pixels:

S = (P1, P2), where S and P represent segments and pixels accordingly

Each pixel is defined by a coordinate pair:

P = (x, y)

Based on this structure, in the proposed approach object extraction is done through the following

steps:

 computing the bounding box for the connected components

 finding all edge pixels of the bounding box

 calculate maximum y, minimum y, maximum x and minimum y coordinate values,

whereas (max Y, min X) and (min Y, Max X) will be the left upper and the right lower

corner values of the segmented image

Based on the above coordinate the object is cropped from the original RGB PDF Image.

4.4.3.1 Non-Text Components Extraction

This stage performs extracting non text areas such as images, pictures and graphical areas based

on the above segmentation result. Figure 4.21 shows the source code use to extract non text

components.

max(max(Textlabel)); % This Command gives us the maximum objects detected.

mkdir([‘Output path', savefilename,'\\Text']);

pagefolderColumens=['C Output path ', savefilename,'\Text'];

measurements2 = regionprops(BW3, 'Area', 'BoundingBox');

allAreas2 = [measurements2.Area];

% Crop out each word

for blob = 1 : length(measurements2)

 % Get the bounding box.

 thisBoundingBox = measurements2(blob).BoundingBox;

 % Crop it out of the original gray scale image.

 thisWord = imcrop(rgbImage, thisBoundingBox);

 x=fix(thisBoundingBox(1));

 y=fix(thisBoundingBox(2));

 FileName = sprintf('%d, %d.jpg', x, y);

 fullFileName = fullfile(pagefolderColumens, FileName);

 imwrite(thisWord, fullFileName);

68

end

Figure 4-20 the source code used to extract non text components

Experimental results of image extraction from PDF file is presented blow in figure 4.22

Figure 4-21 Experimental results of image extraction from PDF file

After non text regions extraction from the page has been completed, the image is appended to its

own folder with proper naming for easy identification during reconstruction.

4.4.3.2 Textual Components Extraction

After non textual objects extracted the next steps is extracting textual objects from the above

page layout segmentation. The output of this stage is used for text recognition by applying

Tesseract. Like the non text abjects, the text block is appended to its own folder and the

information collected in page layout segmentation stage is stored for the application of next

reconstruction of the original image. Implementation detail used for text region extraction is

shown in figure 4.23

max(max(Textlabel));

mkdir([‘Output path', savefilename,'\\Text']);

pagefolderColumens=['C Output path ', savefilename,'\Text'];

measurements2 = regionprops(BW3, 'Area', 'BoundingBox');

allAreas2 = [measurements2.Area];

% Crop out each word

for blob = 1 : length(measurements2)

 % Get the bounding box.

 thisBoundingBox = measurements2(blob).BoundingBox;

 % Crop it out of the original gray scale image.

 thisWord = imcrop(rgbImage, thisBoundingBox);

 x=fix(thisBoundingBox(1));

69

 y=fix(thisBoundingBox(2));

 FileName = sprintf('%d, %d.jpg', x, y);

 fullFileName = fullfile(pagefolderColumens, FileName);

 imwrite(thisWord, fullFileName);

end

Figure 4-22 Implementation detail used for text region extraction

4.4 OCR Application

Once the text region is detected and separated from non-text region, the next step is recognizing

the text regions. In this study to get a better text recognition three OCR engines are tested

namely: tesseract OCR, FineReader OCR and FreeOCR.

4.4.1 Text recognition Using tesseract OCR

Python built-in method pytesseract () is used to perform tesseract OCR process as shown blow in

figure 4.24.

for file in file_list:

 name=os.path.splitext(file)[0]

 # selecting image file type

 if file.endswith(".jpg"):

 txt=ocr(file) # calling the ocr function

 os.remove(name+".jpg")

 file = open(directory+"\\"+name+".txt",'a+', encoding="utf-8")

 #os.remove(file)

 file.write(str(txt))

print ("Image Conversion completed")

Figure 4-23 Use of tesseract OCR for Amharic text recognition

4.4.2 Text recognition Using FineReader OCR

Python implementation of FineReader OCR is presented on figure 4.24

def process (self, binary):

 hocr = ""

 with tempfile.NamedTemporaryFile(delete=False) as tmp:

 tmp.close()

 with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as btmp:

70

 btmp.close()

 self.write_binary(btmp.name, binary)

 self.set_image_dpi(btmp.name)

 args = self.get_command(tmp.name, btmp.name)

 self.logger.debug("Running: '%s'", " ".join(args))

 proc = sp.Popen(args, stderr=sp.PIPE)

 err = proc.stderr.read()

 if proc.wait() != 0:

 return "!!! %s CONVERSION ERROR %d: %s !!!" % (

 os.path.basename(self.binary).upper(),

 proc.returncode, err)

 hocr = utils.hocr_from_abbyy(tmp.name)

 os.unlink(tmp.name)

 os.unlink(btmp.name)

 utils.set_progress(self.logger, self.progress_func, 100, 100)

 return hocr

Once the extracted textual object is recognized using OCR it is removed from the folder to

minimize the size of the extracted objects.

4.4.3 Text recognition Using FreeOCR

FreeOCR is a free Optical Character Recognition Software for Windows and supports scanning

from most Twain scanners and can also open most scanned PDF's and multi-page Tiff images as

well as popular image file formats. FreeOCR outputs plain text and can export directly to

Microsoft Word format.

4.4.1.4 Experimental result for OCR Recognition

Table 4.5 presents performance of the different OCR engines to recognize texts from segmented

text blocks.

71

Table 4-5: Performance of the three OCR Engines

PDF file Text Blocks

Tesseract OCR

(%)

FineReader

OCR(%) FreeOCR(%)

PDF1 16 97.37 92.11 92.11

PDF2 4 85.35 88.24 82.35

PDF3 7 82.78 77.78 72.22

PDF4 18 95.45 81.82 86.36

PDF5 8 93.33 93.33 86.67

PDF6 8 90.91 81.82 86.36

PDF7 10 90.32 83.87 87.10

PDF8 7 87.50 80.36 82.14

PDF9 22 96.18 91.72 95.54

PDF10 7 82.00 64.00 68.00

PDF11 13 96.15 91.03 93.59

PDF12 11 93.51 88.31 88.31

Average 90.90 84.53 85.06

From the above Table shows that the tesseract provides better recognition accuracy of 90.9% for

extracted text blocks. This is due to the preprocessing in tesseract OCR engines is better than the

other two OCR engines. Therefore, tesseract OCR integration for this study proposed.

4.5 Encoding

After all of the above stages are completed the final stage of the proposed approach is encoding

all of the extracted non-text objects and the OCR generated textual files. The proposed approach

applied LZW, Huffman Compression and RLE algorithms for encoding.

All Compression algorithms is implemented using Python. The algorithm encodes and

compresses all extracted data and appended to .hc file format.

4.5.1 Compression using Huffman Compression

Huffman coding [24] is based on the frequency of occurrence of a data item (pixel in images).

The principle is to use a lower number of bits to encode the data that occurs more frequently.

Codes are stored in a Code Book which may be constructed for each image or a set of images. In

all cases the code book plus encoded data must be transmitted to enable decoding. The code

shown blow in figures shows implementation of Huffman Compression.

def main():

Assign the name of the directory to zip

 dir_name = "file path"

72

 # Call the function to retrieve all files and folders of the assigned directory

 filePaths = retrieve_file_paths(dir_name)

 # printing the list of all files to be zipped

 # print('The following list of files will be zipped:')

 for fileName in filePaths:

 print(fileName)

 # writing files to a zipfile

 zip_file = huffman.huffman(dir_name+'.hc', 'w')

 with zip_file:

 # writing each file one by one

 for file in filePaths:

 zip_file.write(file)

 print(dir_name+'.zip file is created successfully!')

Call the main function

if __name__ == "__main__":

 main()

Figure 4-24 Implementation of Huffman compression

4.5.2 Compression using LZW Compression

Python implementation detail used for LZW compression is shown on blow figure 4.25

def main ():

for symbol in data:

 string_plus_symbol = string + symbol # get input symbol.

 if string_plus_symbol in dictionary:

 string = string_plus_symbol

 else:

 compressed_data.append(dictionary[string])

 if(len(dictionary) <= maximum_table_size):

 dictionary[string_plus_symbol] = dictionary_size

 dictionary_size += 1

 string = symbol

if string in dictionary:

 compressed_data.append(dictionary[string])

storing the compressed string into a file (byte-wise).

73

out = input_file.split(".")[0]

output_file = open (out + ".lzw", "wb")

for data in compressed_data:

 output_file.write(pack('>H',int(data)))

output_file.close()

file.close()

Figure 4-25 Implementation of Huffman compression

4.5.2 Compression using RLE Compression

Python implementation detail used for LZW compression is shown on blow figure 4.26

def encode(string):

 if string == '':

 return ''

 i = 0

 count = 0

 letter = string[i]

 rle = []

 while i <= len(string) - 1:

 while string[i] == letter:

 i+= 1

 count +=1

 if i > len(string) - 1:

 break

 if count == 1:

 rle.append('{0}'.format(letter))

 else:

 rle.append('{0}{1}'.format(count, letter))

 if i > len(string) - 1:

 break

 letter = string[i]

 count = 0

 final = ''.join(rle)

 return final

Figure 4-26 Implementation of RLA compression

Several experiments had been performed to Study of efficiency LZW, Huffman compression and

RLA Techniques in Amharic PDF documents. Experimental result of the three compression

algorithms presented on the blow table 4.6.

74

Table 4-6: Experimental result of the three compression algorithms

File

Name

Original

Size

Proposed Approach using

Huffman

Proposed Approach Using

LZW
Proposed Approach Using RLE

Size After

Compression(

mb)

Performance

(%)

Size After

Compression

(mb)

Performance

(%)

Size After

Compression(mb)
Performance (%)

PDF1 21 3 85.71 2.3 89.05 2.1 90.00

PDF2 1.3 0.5 61.54 0.8 38.46 0.9 30.77

PDF3 2.2 0.7 68.18 0.7 68.18 1.3 40.91

PDF4 4.6 0.9 80.43 0.7 84.78 0.7 84.78

PDF5 3.5 1.5 57.14 1.8 48.57 1.2 65.71

PDF6 2.1 1.1 47.62 1.5 28.57 1.2 42.86

PDF7 6.3 4.2 33.33 4.6 26.98 3.9 38.10

PDF8 3.7 1.2 67.57 1.2 67.57 1.2 67.57

PDF9 17.6 9.2 47.73 7.8 55.68 1.8 89.77

PDF10 5.6 3.2 42.86 4.3 23.21 3.7 33.93

PDF11 6.9 3.2 53.62 4.5 34.78 4 42.03

PDF12 4.4 1.3 70.45 0.6 86.36 1.1 75.00

Average 2.5 59.68 2.57 54.35 1.93 58.45

From the above experiment we find that every data has decreased from its original size. The

performance of the data compressor depends on the content of the extracted files, the different

images contained in it, and symbols frequencies. From the above experiment, it is noted that

compression efficiency of LZW is effective for textual segmented, and it give better results than

Huffman and RLA compression. Huffman compression is better compression result for extracted

objects containing both textual and non-textual objects. After testing those techniques on

different files of different sizes, we propose that Huffman compression overall performance

gives better result for all categories of the Amharic PDF file.

4.6 Decompression and Reconstruction

In order to use a compressed file when it’s needed, we must first decompress it. After the

decompression the original PDF file is reconstructed.

4.6.1 Decompression

Any compression algorithm will not work unless a means of decompression is also provided due

to the nature of data compression. The proposed approach decompression process has been

75

designed such that when an already compressed file (.hc file) from the above process is located

and chosen to be decompressed, the compression technique that the proposed approach applies

Huffman and LZW decompression algorithm for the purpose decompressing the compressed file.

4.6.2 Reconstruction

The proposed approach is also reconstructing the original PDF file after decompression.

the following steps are followed to reconstruct the original PDF file.

1. Decompose the compressed data and obtain the extracted file with their own coordinates.

2. According to the (x, y) coordinates, the proposed approach put in their position text and

images.

3. The above step iterates over the entire pages of the PDF file.

Figure 4.27 presents reconstruction of text and non-text regions into original position for viewing

to users.

def createImageText():

 dirs = len(os.walk(path).__next__()[1])

 for i in range(1,dirs+1):

 img = np.zeros([3300,2550,3],dtype=np.uint8)

 img.fill(255)

 cv2.imwrite(outpath + str(i) + '.jpeg',img)

 image = Image.open(outpath + str(i) + '.jpeg')

 filelistall = path + str(i) + '/Text/'

 dirs2 = os.listdir(filelistall)

 for item in dirs2:

 textfile=open(filelistall+item, "r", encoding='utf-8')

 contents =textfile.read()

 font = ImageFont.truetype('C:/Users/HP ADMIN/Desktop/matlab code/gfzemen.ttf', 25)

 f, e = os.path.splitext(os.path.basename(filelistall+item))

 x, y = [x.strip() for x in f.split(',')]

 x2 = int(x)

 y2 = int(y)

 image = Image.open(outpath + str(i) + '.jpeg')

 d = ImageDraw.Draw(image)

 location = (x2, y2)

 text_color = (100, 100, 200)

 d.text(location, contents, fill=text_color, font=font)

 #image.paste(croped, (x2, y2))

76

 image.save(outpath + str(i) + '.jpeg', quality=100)

createImageText()

Figure 4-27 presents reconstruction of text and non-text regions

Sample experimental result of the proposed reconstruction step is shown in figure 4.28

Figure 4-28 Experimental result after the original Image and constructed image after

decompression

The proposed layout reconstruction technique properly reconstructs extracted blocks which are

correctly segmented in terms of their physical coordinates. That means, the performance of the

proposed technique is heavily depending on the extent to which the page segmentation method

properly detects column and paragraph block.

4.6.3 Experimental result for PDF document reconstruction

Page column and paragraph reconstruction of the proposed technique uses the stored information

from page segmentation stage to reconstruct the segmented blocks. Table 4.8 and Table 4.9

presents performance of the proposed column and paragraph block reconstruction.

77

Table 4-7: Experimentation result of the proposed reconstruction techniques from the whole test

PDF files

Experiment Result Decompression and PDF Reconstruction

From the whole test PDF files

No of pages Correctly reconstructed Erroneously reconstructed Accuracy (%)

PDF1 16 10 6 62.50

PDF2 4 4 0 100.00

PDF3 7 6 1 85.71

PDF4 18 12 6 66.67

PDF5 8 4 4 50.00

PDF6 8 6 2 75.00

PDF7 10 9 1 90.00

PDF8 7 5 2 71.43

PDF9 22 18 4 81.82

PDF10 7 5 2 71.43

PDF11 13 8 5 61.54

PDF12 11 8 3 72.73

Average 74.07

The above experimental result shows layout reconstruction from the whole test PDF files which

includes wrongly segmented because to reconstruct the image it uses the positional information

from in page layout segmentation.

Table 4-8: Experimentation result of the proposed reconstruction techniques from correctly

segmented PDF files

Experiment Result Decompression and PDF Reconstruction

From the Correctly segmented PDF files

No of pages Correctly reconstructed Erroneously reconstructed
Accuracy

(%)

PDF1 11 10 1 90.91

PDF2 4 4 0 100.00

PDF3 6 6 0 100.00

PDF4 14 12 2 85.71

PDF5 6 4 2 66.67

PDF6 7 7 0 100.00

PDF7 8 7 1 87.50

PDF8 5 5 0 100.00

PDF9 16 16 0 100.00

PDF10 5 5 0 100.00

PDF11 10 8 2 80.00

PDF12 8 8 0 100.00

Average 92.57

78

The experimental result shows that the proposed PDF layout reconstruction techniques depends

on the page segmentation stage. It accurately reconstructs column block layouts that are correctly

segmented in terms of the number. Because the reconstruction process only focuses on the

number of segmented layout block, it doesn’t reconstruct column layouts based on their width

size. As a result, the reconstructed column layouts have equal width size

4.7 Experimental result of the proposed compression approach

Based on the implementation and test results, this study proposed page segmentation and

compression method that integrates some MATLAB and Python functions which are based on

morphological dilation, CC Labeling, and CC height, width and area analysis algorithms. The

procedure of the proposed page layout segmentation and compression techniques is presented in

figure 4.27.

Figure 4-29 The proposed page segmentation & compression approach for Amharic PDF

documents

79

We experimented the proposed approach on different PDF documents data sets containing in total of about 12 different PDF files they

contain different objects inside. Performances of the approach were evaluated by computing the compression ratio compering with

existing commercial compression tools. Table 4.7 shows the compression performance of the proposed approach with compared to

existing popular compression systems.

Table 4-9: Performance of proposed approach compared with existing popular compression systems

The experimental result shows that the proposed compression approach using Huffman shows better performance than existing

commercial compression systems. From the experimented PDF files, the proposed compression approach is effective for extracted

objects containing more textual objects.

File

Name

Original

Size(mb)

Compression Using 7Z Compression Using Zip Compression Using GZip
Proposed Approach using

Huffman

Size After

Compression(mb)

Performance

(%)

Size After

Compression(mb)

Performance

(%)

Size After

Compression(mb)

Performance

(%)

Size After

Compression(mb)

Performance

(%)

PDF1 21.00 20.10 4.29 20.60 1.90 19.50 7.14 3 85.71

PDF2 1.30 1.10 15.38 1.30 0.00 1.10 15.38 0.5 61.54

PDF3 2.20 2.10 4.55 2.10 4.55 2.10 4.55 0.7 68.18

PDF4 4.60 4.50 2.17 4.40 4.35 4.60 0.00 0.9 80.43

PDF5 3.50 3.30 5.71 3.30 5.71 3.40 2.86 1.5 57.14

PDF6 2.10 2.10 0.00 2.00 4.76 2.00 4.76 1.1 47.62

PDF7 6.30 6.00 4.76 6.10 3.17 6.10 3.17 4.2 33.33

PDF8 3.70 3.50 5.41 3.60 2.70 3.60 2.70 1.2 67.57

PDF9 17.60 17.40 1.14 17.40 1.14 17.60 0.00 9.2 47.73

PDF10 5.60 5.50 1.79 5.40 3.57 5.30 5.36 3.2 42.86

PDF11 6.90 6.70 2.90 6.30 8.70 6.60 4.35 3.2 53.62

PDF12 4.40 4.10 6.82 4.30 2.27 4.30 2.27 1.3 70.45

Average 6.60 6.37 4.58 6.40 3.57 6.35 4.38 2.5 59.68

80

4.8 Findings and challenges

This study attempts to compress a PDF documents by applying effective page layout

segmentation in addition reconstructs column and paragraph blocks using the information stored

during page segmentation stage. This study explored five segmentation techniques namely:

morphological dilution, Horizontal Run Length Smoothing, watershed transforms, connected

component labeling and Components Width, Height and Area Analysis and experiments on

different real-life PDF documents. It performs better to identify textual and not-textual blocks.

In general, page layout reconstruction is depending on the page segmentation stage. One of the

challenges in this study is the existence of black shade in scanned PDF documents. Dark shades

often introduced to PDF document images while scanning. The shade hides part of text and

connected to characters nearby in document images. While trying to remove such shade as

background by increasing the threshold value it highly degrades features of characters in the

image. Figure 4.29 below shows the effect of the existence of black shade thresholding and

segmentation.

Figure 4-30 The Effect of Thresholding in the Presence of Shadow

Although the technique proposed in this study performs well in column block segmentation.

However, it segments text with large font sizes such as page titles and heading as part of images

because it mainly focuses on size to identify images, graphics and columns.

This study applies LZW and Huffman compression algorithm to compress the segmented and

extracted objects, the given PDF document contains more textual files inside it performs better

compression result.

81

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

In this study an attempt is made to minimize the size of the Amharic PDF files which is a gap

observed in current popular compression software’s. For this purpose, page layout segmentation

is developed to detect and store information of text and non-text areas as well as text columns.

Various researches for non-English languages have been conducted in the course of developing

textual image compressions.

Data Compression is particularly useful in communication because it enables devices to transmit

or store the same amount of data in fewer bits. Data Compression is also widely used in File

Storage and Distributed Systems, Backup utilities, Spreadsheet applications and Database

Management Systems. This thesis is also to add an approach that improved and optimal data

compression that will make the use of computers more effective in maximizing memory space

and data transmission bandwidth.

5.1 Conclusions

The main objective of this study is compressing the content of the Amharic PDF files by

applying effective page segmentation and extraction technique that is capable of identifying non-

text objects, text column and text blocks of a page in real life Amharic PDF documents. Towards

achieving this goal, recursive page layout segmentation is performed to detect, and store object

information that is captured from the PDF files.

To simplify compression of Amharic PDF file, the proposed approach is separating text from

non-text regions. This is done by applying page layout segmentation techniques; namely

connected component with Dilation and connected components Area, Height and width analysis

Based on the experiment on the average 78.3% accuracy rate is achieved by the proposed

approach. also, page column segmentation is done using vertical dilution followed by connected

component analysis. The proposed technique accurately identified column layout with an

accuracy rate of 89.1%, thereby all coordinate information’ about column block is stored for

reconstructing stage.

82

Finally, the extracted objects are compressed using LZW, Huffman and RLE compression

algorithms. The proposed approach experimented on different PDF documents and compresses

the extracted objects with compression ratio of less than 50%, which is better compression result

than existing commercial existing compression tools such as ZIP, 7Z and winRAR.

The proposed approach also capable of reconstructing the compressed data after decompression.

Based on the stored layout coordinate information the original document image non text blocks

and textual columns reconstructed on the average with 74% accuracy rates. From correctly

segmented block the proposed techniques 92% accuracy rates. However, reconstructs equal font

size color of textual contents which is font size equals to 12 and block color even the sentence is

heading or page titles. Because the reconstruction process only focuses on the coordinate

information stored on segmented layout blocks, it doesn’t reconstruct in terms of the font size

and color.

The major challenges that the proposed approach faces include segmenting PDF documents with

a large number of graphics and also detecting paragraph blocks when every lines of a paragraph

have equal length, a large gap between two consecutive paragraphs, the presence of tiny pixels

on a whitespace that separate two different column blocks. In addition, the proposed approach

captured large font sizes considers them as image regions.

5.2 Recommendations

This Study tried to segment PDF layout and attempt to compress internal content of Amharic

PDF files. Based on the finding of the study, the following recommendations are formulated to

future research direction.

 Real life PDF documents have different physical and logical layouts such as table,

graphics, header, footer, etc. Hence, future studies can explore on table and other layouts

of real-life PDF document preservation.

 The page segmentation technique segments text with large font sizes as part of images or

graphics because it mainly focuses on size (Area, Height and Width) to identify images,

graphics, tables, etc. Therefore, further researches to improve segmentation need to be

conducted.

83

 Developing adaptive page segmentation algorithm which can identify different blocks of

a page intelligently should be one of the future research area to consider.

 This study reconstructs equal font size color of textual contents which is font size equals

to 12 and block color even the sentence is heading or page tiles. Thus, reconstructing text

font size and font color based on its information should be one of future research

direction to consider.

 PDF Document images might have overlapping columns. Thus, developing page column

segmentation algorithm that can handle columns with different width and overlapping

columns is a future research area need to consider.

 The proposed study adopts google tesseract OCR for Amharic textual documents

recognition; However, the recognition accuracy depends on the quality of document

future researches also need to explore on a better recognition algorithm in the course of

developing applicable Amharic OCR.

 Skew detection and correction are not included in the proposed study, Thus, to increase

the segmentation and recognition accuracy there is a need to apply skew detection and

correction.

84

References

[1] G. M. and D. Bryant, Data Compression, Fourth Edi. California State University: British

Library Cataloguing in Publication Data, 2006.

[2] Adobe Reader [Online]. Available: https://acrobat.adobe.com/us/en/acrobat/about-adobe-

pdf.html.

[3] A. Nazemi, I. Murray, and D. A. Mcmeekin, “Layout Analysis for Scanned PDF and

Transformation to the Structured PDF Suitable for Vocalization and Navigation,”

Internnational Journnal Hum. Comput. Interact., vol. 7, no. 1, pp. 162–171, 2014.

[4] P. Laptev, “Method for Effective PDF Files Manipulation Detection,” University Of

Tartu, 2017.

[5] J. Mtimet and H. Amiri, “Arabic textual images compression approach,” Procedia

Comput. Sci., vol. 35, pp. 118–126, 2014.

[6] W. J. Teahan, R. Mcnab, and I. H. Witten, “A Compression-based Algorithm for Chinese

Word Segmentation,” Int. J. Appl. Sci. Eng., 2000.

[7] S. V Khangar and L. G. Malik, “Compression Method for Handwritten Document Images

in Devnagri Script,” vol. 3, no. 3, pp. 4305–4309, 2012.

[8] F. Informatik and D. Keysers, “Document Layout Analysis,” Int. Conf. Pattern Recognit.,

vol. 6, no. September 2012.

[9] J. Mtimet and H. Amiri, “Arabic textual images compression approach,” Procedia

Comput. Sci., vol. 35, pp. 118–126, 2014.

[10] U. Garain, M. P. Chakraborty, and B. Chanda, “Lossless compression of textual images: A

study on indic script documents,” Proc. - Int. Conf. Pattern Recognit., vol. 3, no.

September 2014, pp. 806–809, 2006.

[11] A. S. Incorporated, PDF Reference, 3rd ed. New York: Adobe Portable Document

Format, 2000.

[12] M. Rossi, W. Hui, and J. Bragge, “The design science research process : A model for

producing and presenting information systems research,” J. Manag. Inf. Syst., no.

February, 2006.

[13] C. R. Kothari, “Research Methodology: Methods and Techniques,” in IEEE Transactions

on Knowledge and Data Engineering (TKDE)., 2004, pp. 1–4.

[14] S. R. Kodituwakku and U. S. Amarasinghe, “Comparison of Lossless Data Compression

Algorithms,” Indian J. Comput. Sci. Eng., vol. 1, no. 4, pp. 416–425, 2001.

[15] B. Souley, P. Das, and S. Tanko, “A Comparative Analysis of Data Compression

Techniques,” Int. J. Appl. Sci. Eng., vol. 2, no. 10, pp. 63–82, 2014.

85

[16] S. K. Chachra, Z. Xue, S. Antani, D. Demner-fushman, and G. R. Thoma, “Extraction and

Labeling High-resolution Images from PDF Documents,” J. Comput. Sci. Eng., 2009.

[17] D. Salomon, Data Compression The Complete Reference FourthEdition, vol. 53, no. 9.

2007.

[18] I. Akman, H. Bayindir, S. Ozleme, Z. Akin, and S. Misra, “Lossless Text Compression

Technique Using Syllable Based Morphology,” Int. Arab J. Inf. Technol., no. January,

2011.

[19] D. Measures, “Lossy Compression Algorithms,” J. Comput. Sci. Eng., 2003.

[20] C. E. SHANNON, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol.

27, no. April 1928, pp. 379–423, 1948.

[21] D. HUFFMAN, “A Method for the Construction of Minimum-Redundancy Codes,” Int.

Work. Doc. Anal. Syst., 1948.

[22] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” vol. I,

no. 3, 1977.

[23] Z. M. Alasmer, B. M. Zahran, B. A. Ayyoub, and M. A. Kanan, “A Comparison between

English and Arabic Text Compression,” vol. 6, no. 3, pp. 111–119, 2013.

[24] D. Measures, “Chapter 8 Lossy Compression Algorithms,” 2003.

[25] R. Dqg W R, “Discrete Cosine Transform,” in Discrete Cosine Transform, 2006.

[26] H. Jensen, “Sign, Symbol and Script: An Account of Man’s Efforts to Write,” in Sign,

Symbol and Script: An Account of Man’s Efforts to Write, 3rd ed., G. A. and U. Ltd, Ed.

London, England.: Allen and Unwin Ltd, 1969.

[27] A. Feren, “Writing and Literature in Classical Ethiopic (Ge’ez),” in Literatures in African

Languages, 1985.

[28] S. Ager, “Ge’ez script.” [Online]. Available on: http://www.omniglot.com/writing.html

[29] H. Hi, “Typing in Amharic,” in Typing in Amharic, 1998.

[30] A. S. Incorporated, PDF Reference, 3rd ed. New York: Adobe Portable Document

Format, 2000.

[31] C. Stahl, S. Young, D. Herrmannova, R. Patton, and J. Wells, “DeepPDF : A Deep

Learning Approach to Analyzing PDFs,” Int. Conf. Comput. Lin- guistics, vol. 4, 2014.

[32] C. Paper, H. Chao, S. Alliance, and J. Fan, “Layout and Content Extraction for PDF

Documents Layout and Content Extraction for PDF Documents,” Hewlett-Packard Lab.,

no. May, 2014.

[33] T. Tran, I. Na, and S. Kim, “Separation of Text and Non-text in Document Layout

Analysis using a Recursive Filter,” vol. 9, no. 10, pp. 4072–4091, 2015.

86

[34] T. Pavlidis and J. Zhou, “Page segmentation and classification,” CVGIP Graph. Model.

Image Process., vol. 54, no. 6, pp. 484–496, 1992.

[35] E. Haneda, S. Member, and C. A. Bouman, “Text Segmentation for MRC Document

Compression Text Segmentation for MRC Document Compression,” Int. Res. J. Eng.

Technol., 2012.

[36] C. Science and M. Meshesha, “Recognition and Retrieval from Document Image

Collections Thesis submitted in partial ful llment of the requirements for the degree of

International Institute of Information Technology,” no. August, 2008.

[37] M. Javed, P. Nagabhushan, and B. B. Chaudhuri, “Extraction of Line Word Character

Segments Directly from Run Length Compressed Printed Text Documents,” Comput. Vis.

Pattern Recognit., no. March, 2014.

[38] and K. Skarbek, W., Koschan, A., Bericht, T., Veroffentlichung, Z., “Color Image

Segmentation: A Survey,” 1994.

[39] R Cattoni et, “Geometric Layout Analysis Techniques for Document Image

Understanding: a Review.,” ICT-IRST Trento, Italy,.

[40] K. K., “Recognition. Analysis and Retrieval of Historical Document Images.,” Universite

Paris Descarte, Paris .

[41] T. Randen and H. John, “Segmentation of text / image documents using texture

approaches 1 Introduction,” in International Conference on Acoustics, Speech & Signal

Processing, 1999.

[42] 2006., “Algorithms for Image Segmentation,” Birla Institute of Technology and Science.

[43] A. O. Shigarov and R. K. Fedorov, “Simple Algorithm Page Layout Analysis,” Pattern

Recognit. Image Anal., vol. 21, no. 2, pp. 324–327, 2011.

[44] F. Shafait, D. Keysers, and T. M. Breuel, “Performance comparison of six algorithms for

page segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 3872 LNCS, pp. 368–379, 2006.

[45] J. L. Fisher, S. C. Hinds, and D. P. D’Amato, A Rule-based System for Document Image

Segmentation, vol. 1. 1990.

[46] S. Mandal, S. P. Chowdhury, A. K. Das, and B. Chanda, “Automated Detection and

Segmentation of Table of Contents Page from Document Images,” in International

Conference on Document Analysis and Recognition, 2003, no. Icdar.

[47] K. Schwenk and F. Huber, “Connected Component Labeling algorithm for very complex

and high-resolution images on an FPGA platform,” High-Performance Comput. Remote

Sens. V, vol. 9646, p. 964603, 2015.

[48] K. Kise, “Segmentation of page images using the area Voronoi diagram.,” Comput. Vis.

Image Understanding, vol. 70(3):, pp. 7370–382.

87

[49] L. O‘Gorman., “The document spectrum for page layout analysis.,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 15, 1993.

[50] H. Grailu, M. Lotfizad, and H. Sadoghi-Yazdi, “Farsi and arabic document images lossy

compression based on the mixed raster content model,” Int. J. Doc. Anal. Recognit., vol.

12, no. 4, pp. 227–248, 2009.

[51] Y. Wiseman and I. Gefner, “Conjugation-based compression for Hebrew texts,” ACM

Trans. Asian Lang. Inf. Process., vol. 6, no. 1, pp. 1–10, 2007.

[52] N. Zhang and J. M. Danskin, “A pattern-based lossy compression scheme for document

images,” Int. J. Intell. Comput. Inf. Sci., vol. 8, no. June, pp. 221–233, 1996.

[53] A. Ford and A. Roberts, Colour Space Conversions, vol. 1998. 1998.

[54] R. Sharma and R. Sharma, “Image Segmentation Using Morphological Operation for

Automatic Region Growing,” Int. J. Comput. Sci. Inf. Technol., vol. 4, no. 6, pp. 5686–

5692, 2014.

[55] P. Vartak, V. Mankar, A. Prof, and H. V. P. M. College, “Morphological Image

Segmentation Analysis,” Int. J. Comput. Sci. Appl., vol. 6, no. 2, pp. 161–165, 2013.

[56] S. Ruparelia, “Implementation of Watershed Based Image Segmentation Algorithm in

FPGA,” Stuttgart University, 2012.

[57] A. P. Borlepwar, S. R. Borakhade, and M. S. B. Pradhan, “Run Length Smoothing

Algorithm,” Int. J. Adv. Res. Sci. Eng., vol. 06, no. 09, pp. 766–771, 2017.

[58] C. Boiangiu, C. Avatavului, M. Prodan, and I. I. Bucur, “Combining Tessract and Asprise

to Improve OCR Text,” no. June, 2019.

[59] D. HUFFMAN, “A Method for the Construction of Minimum-Redundancy Codes *,” Int.

Work. Doc. Anal. Syst., 1948.

[60] Y. Qinghui, N. Xiujun, and Y. Qingfei, “Implementation of LZW Data Lossless

Compression Algorithm Based on VB,” no. Iccse, pp. 37–44, 2016.

[61] A. Ayidagne, “Page Column and Paragraph Layouts Segmentation and Reconstruction for

Recognizing Real Life Documents,” Addis Abeba University, 2016.

88

Appendix I: Amharic Characters

Geéz Kaéb Salis Rabé Hamis Sadis Sabé

ሀ ሁ ሂ ሃ ሄ ህ ሆ

ለ ሉ ሊ ላ ሌ ል ሎ

ሐ ሑ ሒ ሓ ሔ ሕ ሖ

መ ሙ ሚ ማ ሜ ም ሞ

ሠ ሡ ሢ ሣ ሤ ሥ ሦ

ረ ሩ ሪ ራ ሬ ር ሮ

ሰ ሱ ሲ ሳ ሴ ስ ሶ

ሸ ሹ ሺ ሻ ሼ ሽ ሾ

ቀ ቁ ቂ ቃ ቄ ቅ ቆ

በ ቡ ቢ ባ ቤ ብ ቦ

ቨ ቩ ቪ ቫ ቬ ቭ ቮ

ተ ቱ ቲ ታ ቴ ት ቶ

ቸ ቹ ቺ ቻ ቼ ች ቾ

ኀ ኁ ኂ ኃ ኄ ኅ ኆ

ነ ኑ ኒ ና ኔ ን ኖ

ኘ ኙ ኚ ኛ ኜ ኝ ኞ

አ ኡ ኢ ኣ ኤ እ ኦ

ከ ኩ ኪ ካ ኬ ክ ኮ

ኸ ኹ ኺ ኻ ኼ ኽ ኾ

ወ ዉ ዊ ዋ ዌ ው ዎ

ዐ ዑ ዒ ዓ ዔ ዕ ዖ

ዘ ዙ ዚ ዛ ዜ ዝ ዞ

ዠ ዡ ዢ ዣ ዤ ዥ ዦ

የ ዩ ዪ ያ ዬ ይ ዮ

ደ ዱ ዲ ዳ ዴ ድ ዶ

ጀ ጁ ጂ ጃ ጄ ጅ ጆ

ገ ጉ ጊ ጋ ጌ ግ ጎ

ጠ ጡ ጢ ጣ ጤ ጥ ጦ

ጨ ጩ ጪ ጫ ጬ ጭ ጮ

ጰ ጱ ጲ ጳ ጴ ጵ ጶ

ጸ ጹ ጺ ጻ ጼ ጽ ጾ

ፀ ፁ ፂ ፃ ፄ ፅ ፆ

ፈ ፉ ፊ ፋ ፌ ፍ ፎ

ፐ ፑ ፒ ፓ ፔ ፕ ፖ

89

Appendix II: Sample Codes

PDF to Image

import os

from wand.image import Image

filename = "PDF Path"

OUTPUT_FOLDER="Out put Path"

with(Image(filename = filename, resolution=300)) as source:

 images = source.sequence

 pages = len(images)

 for i in range(pages):

 n = i + 1

 newfilename = str(n) + '.jpeg'

 Image(images[i]). save(filename=OUTPUT_FOLDER+newfilename)

Color Space Change to RGB

#!/usr/bin/python

from PIL import Image

import os, sys

path = "Image Path

dirs = os.listdir(path)

def torgb():

 dirs = os.listdir(path)

 for item in dirs:

 if item == '.jpeg':

 continue

 if os.path.isfile(path+item):

 im = Image.open(path+item)

 f, e = os.path.splitext(path+item)

 image = im.convert('RGB')

 image.save(f + '.jpeg')

torgb()

Pre-Processing Process

% Get the dimensions of the image.

[rows, columns, numberOfColorChannels] = size(rgbImage);

% Enlarge figure to full screen.

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0.05 1 0.95]);

% Get a gray scale version

grayImage = rgb2gray(rgbImage);

% Get a mask of the colored images, which have high range.

level = graythresh (grayImage);

binaryImage =im2bw (I, level)

% Do an opening to break connections of text to photo.

binaryImage = imopen(binaryImage, ones(10));

% Fill in holes.

binaryImage = imfill(binaryImage, 'holes');

% Filter out blobs smaller than 50 pixels by 50 pixels.

Dilation function

function [dialatedIm] = Dilat(bw,tresh)

90

%Apply dilation using bwdist() with a given threshold

dialatedIm = bwdist(~bw) >= tresh;

Connected components function

function [cc,num] = ConnectedComp(bw)

%Extracting connected components to variable cc %using 4 connictivity

cc = bwconncomp(bw,4)

%storing number of connected components num=cc.NumObjects;

Extracting Images using bounding Box

% removing objects containing fewer than 100 pixels using bwareaopen function.

BW2 = bwareaopen(photoRegion, 100);

% find both black and white regions

stats = [regionprops(BW2)];

% show the image and draw the detected rectangles on it

imshow(BW2);

label=bwlabel(BW2); % Finds out the independent objects and labels them.

max(max(label)); %maximum objects detected.

mkdir([new path]);

pagefolderImages=[newpath2];

measurements = regionprops(photoRegion, 'Area', 'BoundingBox');

allAreas = [measurements.Area];

% Crop out each word

for blob = 1 : length(measurements)

 % Get the bounding box.

 thisBoundingBox = measurements(blob).BoundingBox;

 % Crop it out of the original gray scale image.

 thisWord = imcrop(rgbImage, thisBoundingBox);

 x=fix(thisBoundingBox(1));

 y=fix(thisBoundingBox(2));

 FileName = sprintf('%d, %d.jpg', x, y);

 fullFileName = fullfile(pagefolderImages, FileName);

 imwrite(thisWord, fullFileName);

end

Extracting Text Areas using bounding Box

% removing objects containing fewer than 100 pixels using bwareaopen function.

BW3 = bwareaopen(textRegions, 100);

% find both black and white regions

stats2 = [regionprops(BW3);regionprops(not(BW3))];

% show the image and draw the detected rectangles on it

imshow(BW3);

Textlabel=bwlabel(BW3); % Finds out the independent objects and labels them.

max(max(Textlabel)); % This Command gives us the maximum objects detected.

mkdir([textpath']);

pagefolderColumens=[textpath'];

measurements2 = regionprops(BW3, 'Area', 'BoundingBox');

allAreas2 = [measurements2.Area];

% Crop out each word

for blob = 1 : length(measurements2)

 % Get the bounding box.

 thisBoundingBox = measurements2(blob).BoundingBox;

91

 % Crop it out of the original gray scale image.

 thisWord = imcrop(rgbImage, thisBoundingBox);

 x=fix(thisBoundingBox(1));

 y=fix(thisBoundingBox(2));

 FileName = sprintf('%d, %d.jpg', x, y);

 fullFileName = fullfile(pagefolderColumens, FileName);

 imwrite(thisWord, fullFileName);

end

OCR function For Textual Areas

def createImageText():

 dirs = len(os.walk(path1).__next__()[1]) # finding number of images

 for i in range(1,dirs+1):

 path = ("outputpath")

 def ocr(file_to_ocr):

 im = Image.open(path+"\\"+file_to_ocr)

 txt=pytesseract.image_to_string((im), lang="Amh")

 return txt

 file_list = os.listdir(path) # file names in list (not sorted)

 directory = os.path.join(path) # path for storing the text file

 # function to sort the file names in order of numerical value

 def atoi(text):

 return int(text) if text.isdigit() else text

 def natural_keys(text):

 return [atoi(c) for c in re.split('(\d+)', text)]

 file_list.sort(key=natural_keys)

 for file in file_list:

 name=os.path.splitext(file)[0]

 # selecting image file type

 if file.endswith(".jpg"):

 txt=ocr(file) # calling the ocr function

 file = open(directory+"\\"+name+".txt",'a+',encoding="utf-8")

 file.write(str(txt))

 os.remove(path+name+".jpg") # removing the image after it converted to text

if file.endswith(".jpg"):

 print("Image Conversion completed")

createImageText()

Compression function

Huffman compression

def compress(self):

 filename, file_extension = os.path.splitext(self.path)

 output_path = filename

 with open(self.path, 'r+',encoding="utf8") as file, open(output_path, 'wb',) as output:

 text = file.read()

92

 text = text.rstrip()

 frequency = self.make_frequency_dict(text)

 self.make_heap(frequency)

 self.merge_nodes()

 self.make_codes()

 encoded_text = self.get_encoded_text(text)

 padded_encoded_text = self.pad_encoded_text(encoded_text)

 b = self.get_byte_array(padded_encoded_text)

 output.write(bytes(b))

 print("Compressed")

 return output_path

LZW compression

for symbol in data:

 string_plus_symbol = string + symbol # get input symbol.

 if string_plus_symbol in dictionary:

 string = string_plus_symbol

 else:

 compressed_data.append(dictionary[string])

 if(len(dictionary) <= maximum_table_size):

 dictionary[string_plus_symbol] = dictionary_size

 dictionary_size += 1

 string = symbol

if string in dictionary:

 compressed_data.append(dictionary[string])

storing the compressed string into a file (byte-wise).

out = input_file.split(".")[0]

output_file = open(out + ".hc", "wb")

for data in compressed_data:

 output_file.write(pack('>H',int(data)))

output_file.close()

file.close()

Reconstruction Function

def createImageText():

 dirs = len(os.walk(path).__next__()[1])

 for i in range(1,dirs+1):

 img = np.zeros([3300,2550,3],dtype=np.uint8)

 img.fill(255)

 cv2.imwrite(outpath + str(i) + '.jpeg',img)

 image = Image.open(outpath + str(i) + '.jpeg')

 filelistall = path + str(i) + '/Text/'

 dirs2 = os.listdir(filelistall)

 for item in dirs2:

 textfile=open(filelistall+item, "r", encoding="utf8")

 contents =textfile.read()

93

 font = ImageFont.truetype('path//nyala.ttf', 40)

 f, e = os.path.splitext(os.path.basename(filelistall+item))

 x, y = [x.strip() for x in f.split(',')]

 x2 = int(x)

 y2 = int(y)

 image = Image.open(outpath + str(i) + '.jpeg')

 d = ImageDraw.Draw(image)

 location = (x2, y2)

 text_color = (100, 100, 200)

 d.text(location, contents, font= font, fill=text_color)

 #image.paste(croped, (x2, y2))

 image.save(outpath + str(i) + '.jpeg', quality=100)

createImageText()

def createImage():

 dirs = len(os.walk(path).__next__()[1])

 for i in range(1,dirs+1):

 image = Image.open(outpath + str(i) + '.jpeg')

 filelistall = path + str(i) + '/Images/'

 size2 = len([f for f in os.listdir(filelistall)if os.path.isfile(os.path.join(filelistall, f))])

 if size2==0:

 print("");

 else:

 dirs2 = os.listdir(filelistall)

 for item in dirs2:

 croped = Image.open(filelistall+item)

 f, e = os.path.splitext(os.path.basename(filelistall+item))

 x, y = [x.strip() for x in f.split(',')]

 x2 = int(x)

 y2 = int(y)

 image = Image.open(outpath + str(i) + '.jpeg')

 image.paste(croped, (x2, y2))

 image.save(outpath + str(i) + '.jpeg', quality=100)

createImage()

	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Chapter One INTRODUCTION
	1.1 Background
	1.2 Statement of the Problem
	1.3 Objective of the Study
	1.3.1 General objective
	1.3.2 Specific objectives

	1.4 Methodology
	1.4.1. Study design
	1.4.2 Dataset collection and preparation
	1.4.3 Implementation tool
	1.4.4 Evaluation procedure

	1.5 Scope and limitation of the study
	1.6 Significance of the study
	1.7 Organization of the Study

	Chapter Two LITERATURE REVIEW
	2.1 Overview
	2.2 Data Compression Techniques
	2.2.1 Lossless Compression
	2.2.2 Lossy compression technique

	2.3 Amharic Writing System
	2.3.1 The Amharic Writing
	2.3.2 Amharic Printed Documents

	2.4 Overview of PDF file format
	2.4.1 PDF File Structure
	2.4.2 PDF Document Structure
	2.4.3 Common file representation in PDF file

	2.5 Page Layout Segmentation
	2.5.1 Text/Graphic Segmentation
	2.5.2 Text Line and Word Segmentation

	2.6 Segmentation Techniques
	2.6.1 Top-Down Techniques
	2.6.2 Bottom-Up Techniques
	2.6.3 Hybrid Techniques

	2.7 Related Works

	Chapter Three METHODS AND ALGORITHMS
	3.1 Design of the System
	3.1.1 Preprocessing
	3.1.2 Page Layout Segmentation
	3.1.4 Text Recognition using OCR
	3.1.5 Data Compression

	3.2 Performance Evaluation

	Chapter Four EXPERIMENTATION AND ANALYSIS
	4.1 Dataset preparation
	4.2 Preprocessing
	4.2.1 PDF to Image conversion
	4.2.2 Color Space Transformation
	4.3.2 Binarization

	4.3 Page Layout Segmentation
	4.3.1. Text and Graphic separation
	4.4.2 Column Block Segmentation
	4.4.3 PDF Objects Extraction

	4.4 OCR Application
	4.4.1 Text recognition Using tesseract OCR
	4.4.2 Text recognition Using FineReader OCR
	4.4.3 Text recognition Using FreeOCR

	4.5 Encoding
	4.5.1 Compression using Huffman Compression
	4.5.2 Compression using LZW Compression
	4.5.2 Compression using RLE Compression

	4.6 Decompression and Reconstruction
	4.6.1 Decompression
	4.6.2 Reconstruction
	4.6.3 Experimental result for PDF document reconstruction

	4.7 Experimental result of the proposed compression approach
	4.8 Findings and challenges

	Chapter Five
	CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations

	References
	Appendix I: Amharic Characters
	Appendix II: Sample Codes

