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Abstract 

Cyber security is the study of all aspects of communication security and privacy, and it is 

dedicated to protecting computer systems from attacks that compromise the hardware, 

software, or information. A Structured Query Language Injection is one of the most common 

cyber security attacks on the database of a web application. The attack is a common and 

dominating type of major web application assault, as well as one of the most serious cyber 

security threats in which hackers gain access to data. A hacker could simply gain 

unauthorized access to the web application's underlying database, giving them complete and 

total control of the system. Many methods and approaches for preventing Structured Query 

Language Injection Attacks have been developed by several researchers. A deep learning 

Convolutional Neural Network was used to create a model to prevent Structured Query 

Language Injection Attacks in this study. In this study, the primary data was collected from 

Kaggle (SQL injection attack dataset) and it contains a total of 4,199 number SQL injection 

attacks query and normal text. the data splitting used is 80%-20%  for training and testing 

respectively Furthermore, 90%-10% of data partitioning has experimented. The experiment 

conducted suggests the 80%-20% data splitting achieved a good result, In addition, the 

proposed model was built using five different scenarios in the experiment. The scenarios have 

different parameters and hyperparamter values. Finally, according to the classification metrics 

report, the proposed model has a 97% accuracy in detecting and preventing Structured Query 

Injection Attacks while testing with unseen data. Finally, the proposed model produced 

promising results when tested on an unknown dataset.  

 

 

 

Keywords: Convolutional Neural Networks, Structured Query Language Injection Attack, 

Cyber Security, Structured Query Language 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Cybersecurity is just the study of all elements relating to the security and privacy of 

communications. Cybersecurity is committed to securing computer systems from assaults that 

may compromise the hardware, software, or information. Permitting unauthorized usage may 

lead to leaking sensitive information and causing harm or disruption [1]. Thus it requires an 

action or process, capacity, or state through which information stored within computer 

systems should be secured and/or defended against harm, unlawful use, alteration, or 

exploitation [2].  

Structured Query Language (SQL) is a program used to organize, manage, and extract 

information from a computer database. In truth, SQL only works with one form of database, 

known as a relational database, and it also allows a user to determine the structure and 

organization of the stored data and also as the connections between the recorded data items. 

SQL allows a user or application software to obtain and utilize stored data from the database. 

It also lets a user or an application program modify the database via inserting new data, 

deleting old data, and changing previously stored data. SQL is a complete language for 

operating and communicating with a database administration system [3]. 

Structured Query Language Injection (SQLI)  is just a sort of attack in which the attacker 

obtains access by entering simple SQL code into a web form input box gaining access to alter 

data as necessary [4]. An assailant can take full use of this weakness to send direct orders to 

the underlying database of a web application to lose functionality or confidentiality [5]. 

Structured Query Languages Injection Attacks (SQLIA) is a method through which hackers 

obtain access to data, as well as a common and dominating type of major web application 

assault [6]. A hacker may simply acquire unlawful access to the underlying database of the 

web application, acquiring complete control over the system [6]. Researchers have developed 

many ways of preventing this issue [7] [8] [9] 
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However, there is still a research gap regarding SQLIA. For instance the research by Abay. et 

al. [7] Work didn’t address various parameters to analyze SQL injection attacks. Mamdouh 

Alenezi et al. [8] Work didn’t address the overhead rate of detection and the rate of false 

positives is not also examined. Nanang. [9] Work didn’t address, the model that has been 

created is not evaluated because of the limited dataset. Therefore, in this research, an SQLIA 

Prevention model to prevent SQLIA using a deep learning algorithm is proposed.  

1.2. Motivation 

SQLIAs include access to a database without authorization, extraction of information from a 

database, modification of an existing database, the elevation of user privileges, or the cause of 

an application malfunction. At Unity University on January 21, 2020, SQLIA happened, and 

this attack caused a serious problem in the centralized database. The attackers use SQLI to 

gain access to information kept in the database server and modify database information, 

access sensitive data, and all student grades, and attendance lists generated by a system for 

one semester were lost. Therefore, we wanted to develop a model by using deep learning that 

will prevent SQLIAs. 

1.3. Statement of the Problems  

Several projects have been completed in recent years to solve or overcome SQLI problems. 

Musaab Hasan et al. [10], proposed a model to prevent SQLIAs, they have developed a 

model using a heuristic-based machine learning approach. In this study, they integrated the 

advantages of dynamic and static analysis with a machine learning approach. It was decided 

to use a well-studied dataset that contained all possible SQL statements. MATLAB was used 

to develop the model in a study. They used 23 various machine learning classifications to 

train the dataset and test it. The top five of the 25 classifiers are then selected going to depend 

on the outcomes of the actual positive and actual negative rates. After the classification 

learners completed the training, they checked the precision of each classifier. To get 93.8% 

they employed the five most effective and accurate classifiers. To improve system 

performance, they should include non-injected SQL statements in their dataset and 

investigate and test additional functions. The drawback of this work is small test dataset is 

used. 
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In QI LI. et al. [11], proposed a technique based on an adaptable deep forest algorithm for 

identifying sophisticated SQLI attempts. To concatenate the inputs of each layer, the average 

of the previous outputs was collected and combined with the raw feature vector. As a result, 

deep forest structures are more optimal for this study. After that, they devised a strategy 

referred to as the Adobos-based deep forest model. According to experimental data, the 

suggested detection model SQLI consists of two steps. Offline classes and online testing were 

in two phases. A total of ten thousand SQL injection samples were gathered. UNION query, 

executer SQL instructions, error-based injection, and blind injection were among the features 

collected from various datasets. The drawback of this work is for large –that scale of data it 

doesn’t perform very well and it has lower computational efficiency and better detection 

accuracy on fewer samples  

The author Krit Kamtuo et al. [12] proposed avoiding server-side SQLI through machine 

learning. According to this paper, the much more widely known is SQLI security 

vulnerability in online applications discovered by the US National Security Agency. This 

framework was created to extract SQL instructions from data and was created to allow 

getting SQL statements out of a dataset and mark the dataset as an input attribute. Input 

attributes are passed to the machine learning model to predict SQL injection. This study 

describes machine learning models, research approaches, and plans. According to the author, 

variables that receive user-supplied values input are dependent, so there is a risk of SQL 

injection if hostile SQL statements as user input are mixed with the basic task. By training the 

model with 1100 samples, the author was able to find out which instructions needed to be 

avoided and eliminate such weaknesses. This framework needs to improve its ability to detect 

and predict SQL injection web-based applications by validating SQL syntax. How to detect 

and block SQLI. 

SQLIAs impact many businesses, hence this research work focus on SQLIA prevention. 

Given the prior research's limitations such that it is not further studied on SQLIAs and 

examines these attacks depending on many aspects as well as due to the limits of the dataset 

they have, evaluating the model that has been created is challenging. In this research, we 

propose robust deep learning or a machine learning technique for preventing SQLIAs. The 

research work attempt to address the following research questions. 

RQ1: How to develop a SQL injection prevention model using deep learning methods? 
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RQ2: What is the effectiveness of the SQLI prevention model? 

1.4. Objective  

1.4.1.  General Objective  

The general objective of this study is to develop an SQLIA prevention model via a deep 

learning technique 

1.4.2.  Specific Objectives  

To meet the overall purpose of the study, the following specific objectives are developed. 

 To conduct a literature review on SQLI detection and prevention methods 

 To select an appropriate methodology and tool to build an SQLI prevention model  

 To identify deep learning techniques to design prevent SQLI preventing model 

 To assess the model’s performance using benchmark datasets 

1.5. Methods  

1.5.1.  Literature Review 

Examine further literature on this topic to better understand SQLIA injection attacks and 

clarify specific solutions to the problem. Criticism of related works will help to obtain the 

necessary information concerning a specific subject and determine the most appropriate 

strategy and tools to address the identified challenge. The literature review method 

concentrates more on the SQLI prevention using various methods such as machine learning 

which will give us a better understanding and expertise and helps to keep the research going 

as planned. As a result, books and scientific publications are reviewed more deeply. 

1.5.2. Data collection 

Our approach is machine learning-based and it necessitates a vast amount of data to finish the 

task. The SQLIA sample dataset that we are going to utilize was obtained from Kaggle's 

website [13]. 



5 

 

1.5.3. Prototype Development 

Certain components are needed to develop a prototype to fill the research gap. Various 

approaches have been evaluated to build machine learning models that help prevent SQLIAs. 

Machine learning models that help prevent SQLIAs have been studied using a variety of 

methods. Python is a computer programming language utilized in the implementation of 

recommended model algorithms. 

1.5.4. Testing and Model Evaluation  

The study utilizes assessment metrics, such as accuracy, to assess the effectiveness of the 

suggested model. The Accuracy metric assesses how well our model works with the data. 

1.6. Scope and Limitation 

This research focuses on strategies to prevent SQLIA. As previously stated, SQLI is a cyber 

assault used to obtain control of a database and steal data from it. This study focused on 

preventing some types of SQLIAs and insider exploitation attacks in a DBMS environment 

by developing a valid framework. The limitation of this investigation is the fact that dozens 

of cyber security threats, of which this research paper deals only with SQLIA prevention 

against databases. Researchers believe that the main limitation is not having sufficient cyber 

security experience to carry out investigations at the level we should be. 

1.7. Significance of the Study 

The application of this thesis work could potentially be used to protect all types of data 

against theft and damage, so companies would not have to worry about unauthorized users 

accessing their data. Furthermore, it increases the detection and catches rate for threats by 

stopping them before they reach the database, and also this application contributes to greater 

safety services in the organizations, as it provides greater security and protects the 

organizations' data. To sum up, it maintains and supports all the mechanisms that prevent 

SQL Injection attacks. 
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1.8. Structure of the Thesis 

This document is composed of six sections. Chapter two is about works of literature review 

and related works this contains a survey of SQLIAs mitigation in many articles, a 

dissertation, and previous work on this particular topic and then Chapter three presents the 

proposed model, and its components then Chapter four presents the implementation and 

experimental result of the proposed system and also describes the overall approach, research 

design/methods, data collection methods, and procedures, experimentation methodologies, 

and techniques, validity, and reliability are all discussed in this section. Chapter five focuses 

on the conclusion of the study according to the findings as well as provides possible 

recommendations for future SQLI prevention using other approaches and algorithms. 
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CHAPTER TWO 

LITERATURE REVIEWS AND RELATED WORKS 

2.1  Introduction 

In this chapter, cyber security, SQLIA, how SQLI works, several forms of SQLIAs, 

protection of multiple kinds of SQLIA, and machine learning techniques including 

supervised, unsupervised, decision trees, and deep learning, and explain the related works of 

other scholars on SQLIA will be discussed in depth. 

2.2  Cyber Security  

A set of procedures aimed at safeguarding a customer's or organization’s digital environment 

and responsible for methodologies used to secure organizations, applications, and information 

from unapproved access. Shielded from digital dangers by a web-associated framework 

containing equipment, programming, and information [14]. cyber security is Measures 

undertaken that secure computer systems from illegal access or attack or actions taken to 

preserve an individual, organization, or country and their computer information against 

internet-based crime or cyber-attacks or the state of being safe from illegal or unlawful use of 

electronic data, or the techniques used it to acquire it [15]. 

2.3 SQLIA  

If the SQL injection assault is effective, it reads sensitive information from the database alters 

the database information embeds, upgrades, and erases perform database [16]. An SQLIA 

could be a shape of injection assault in which a preset SQL command is injected into the 

information plane's input and executed [17]. 

2.4 How Does SQL Injection Work? 

First,  SQLI is defined, and then go through how SQLIA works, including the notion and 

logic behind it, how SQLIA may be used to get information from web applications, and 

finally, how to avoid SQLIA is also defined. SQLI is the best-known assault and requires a 

web application that uses a database. For example, consider the web application, which uses a 
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database. This web application may take into account user input as well as put it away in the 

database, or it may obtain information from a database and display it to the user. What occurs 

in either situation is the SQL or database query that is generated on the web application and 

sent to the database, where it is run and relevant data is written by the web application. So, 

SQLI is that it manipulates database queries to make them do something are not supposed to 

do, so modify the SQL query, inject a malicious string into it, and then force it to do 

something it is not supposed to. When the attacker changes a SQL query, and then this 

malicious query is submitted to the database, where it is run and appropriate results are 

returned. SQL may be a code infusion component for executing malicious SQL statements 

take a closer look at how SQLI works with a website that requires a passcode and user name 

for login. A lot of web applications consistently require logging in first. Examples include 

Facebook, Gmail, and Twitter. So, to obtain the features as well as functional divisions of the 

web application, you must first log in to the web application, which normally entails 

providing the Password and user name.  

Because SQLI only works on web applications that use databases, and while it is assumed 

that the details of usernames and passwords are recorded and stored in the database, the 

database and the database table containing all of the usernames and passwords are kept in the 

database. So, after entering the login information, we press the submit or login button, and 

the information is transferred to the database and cross-checked against the table If none 

exist, database clients who match that username and password can log in successfully in the 

database table, we could still problem to successfully log in. However, if such a thing exists a 

user with that username the password entered is incorrect the login is ineffective. In general, 

a login is effective if the SQL query yields some values or returns true values. If this SQL 

query produces false results, the login is invalid. 

As a result, SQLIA is a database attack that alters SQL queries so they return true, even if the 

attacker does not know the username or password. How can this be accomplished, though? 

Use a logic gate known as an OR logic gate to accomplish this. Let's start with the OR logic. 

The OR logic functions B. a and b, which accept two inputs and produce one output, are as 

follows: If both inputs are false, the outcome will then be false. If one’s inputs are correct, the 

result is genuine. If all is true, the outcome is true of inputs are true. If one’s inputs are 

genuine, the result will always be genuine, regardless of the other inputs. Last, the yield will 
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continuously be genuine if any inputs are genuine. This SQLIA feature or function has a SQL 

query, and the goal is for this SQL query to return true. As a result, we'll update the SQL 

query to something like this. 

 

Table 2.4-1: Sample SQL query 

                          Select * from the user 

              Where    

  Username = ‘’ OR 1=1- -’  

 The primary inverted coma is utilized to close the string parameter at whatever When you 

type something into a web application's input box, it's when it's handled like a string initial 

inverted comma is used to close this parameter string parameter in most circumstances, 

notably when it comes to user names and passwords, and then there's the OR function. Then 

there's the expression 1 = 1, which includes two inputs, one on the left and one on the right as 

can be seen. What we're interested in is the statement 1 = 1, which is the right side of the OR 

function, One is always equal to one, and if one of the OR function's arguments is true, the 

other input is true as well. This returns true since one is always one and that is true, hence the 

SQL query always returns true. This sign (‘’) is used to comment on the remaining SQL 

query, thus the SQLI doesn't matter after that. The SQL query will also return true if the OR 

function returns true, indicating that the login was successful. SQLI works in this manner.  

2.5 SQLIAs Type 

SQL-Infusion may be abused under a variety of various methods and can cause major 

problems. It will also be used by an aggressor to evade acknowledgments and access changes 

and erase data stored in the database SQL injection.  It is also possible to use it to carry out 

action commands in the computer system in specific situations. This could lead to a more 

malicious attack on the network behind the firewall [18]. There are multiple kinds of SQLI, 

which are detailed below. 
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 Tautology: This is a typical injection attack when the query is manipulated to 

always evaluate to true after execution. They are able to log in as administrators or 

even completely fictitious individuals after Hackers can gain access by inserting code 

into a conditional expression [19]. The main purpose of this type of attack is to access 

the application without providing a valid username or bypassing authentication to 

extract data. 

  Illegal or Logically Incorrect Queries: The blunder message produced by a 

web server contains important information for debugging. The attacker intentionally 

executes the incorrect queries to find the vulnerable parameters from the error 

message [20]. The primary goal is to find important information from the database 

based on the error message or logical error returned [21]. 

  Classic or in the band: a most popular and simplest Classic SQLI is utilized to 

take advantage of SQLIA. This is brought in-band SQL infusion when an aggressor is 

capable send off an assault and collecting results over a comparable communications 

channel [22]. 

  Error-based: In this sort of SQLIA, the attacker creates an incorrect SQL 

command statement as the attack payload and sends the system anomalous error 

information. The attack was a successful use of such a system by using this overly 

suggestive abnormal error information [23]. 

  Union Query: Attackers exploit parameter flaws to change query results This 

method could be used by an assailant to fool a program into returning data from a 

table That was not the developer's intention; the developer's primary goal is to use 

union queries to reveal sensitive data, including configuring the operator [24]. 

  Blind SQLI: An attack known as blind SQL injection involves the attacker posing 

true-false questions to a database and then determining the response based on the 

application. This approach is frequently it's when a web app is set up to show generic 

error messages but the vulnerable code has not been fixed [25]. The main purpose is 

to ask a series of logical questions about SQL statements and not to forget or hide the 

error message. 

  Buffer Overflow: These types are almost the equivalent attack, the main 

distinction is that the nearby assault is not a network assault. The buffers are 
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polluted with outside information, causing overflows and being utilized as a chance 

for pernicious activity [26]. 

 Piggy-Backed Query: it’s a kind of attack some extra SQL statements that are 

malicious are introduced into the database to the unique query at once to corrupt the 

database. This assault does now no longer alter the authentic question assertion just 

like the tautology assault, however it locations a further assertion following the SQL 

query with a semicolon [27]. The purpose of these types of attacks is to alter or steal 

data, delete or delete facts maliciously, extract data, upload or alter data, carry out 

denial of provider and execute far-off commands. 

 Stored Procedures: with this approach stored methods are helpless to assailants 

who abuse databases. Stored procedures are code that is put inside the database and 

achieved at once through the database engine [28]. Its main motive is to carry out 

command execution operations to get entry to the host working machine through an 

acting denial of service, privilege escalation, and remote commands.  

  Inference: This category might be utilized for injection-vulnerable parameters and 

subsequently retrieve data from their schema-identified database. The important 

reason is to discover injectable parameters, extract facts, and determine database 

schema [29]. 

 Alternate Encodings: attackers try and hide the inserted textual content and keep 

away from detection through protective coding strategies and automatic prevention 

strategies. This sort of assault happens when attackers use alternative encoding, 

including hexadecimal, ASCII, and Unicode to alter the injection request. The 

principal reason is to apply opportunity encodings (together with hexadecimal or 

ASCII) to cover the attacker's sample and keep away from detection [30]. 

 Conditional errors: If the WHERE articulation is correct, it limits or forces the 

database to evaluate the message that caused the error, resulting in a SQL error [31].  

 Function Call Injection: You can use program functions to run your web 

application, process database queries, make internal calls within your web application, 

and modify your application's data [32]. 

 Escape characters with proper filtering: This attack doesn't stop the user 

from writing something they don't want to write, so it's passed to the SQL statement. 
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Finally, it only creates complications for users when they’re working with SQL 

statements [33].  

  Second-Order Injection: To carry out this attack an insert command plays an 

important role. To insert the information into the database, the attacker first uses the 

user's authorization to execute the insert request. The attacker then used the data to 

control the database [34]. 

 Timing Attack: Time delay is a kind of blind SQL injection. According to the 

logic inserted, the SQL engine can execute long queues or time-delayed instructions. 

An attacker can find out by measuring the time it takes for a page to load if the 

inserted statement is true and an attacker collects information by observing the 

response time (behavior) of the database [35]. The main purpose is to use the "wait 

for" keyword to delay the outcome of the database. 

 Conditional response: Attackers gather information by monitoring the response 

time (behavior) of the database. Such an injection proves that blind SQLI is possible 

and an attacker is being allowed to plan a statement that can determine reliability 

based on the contents looking at a different situation [36]. 

 Database server vulnerabilities:  The Vulnerability will exit within the 

underlying software system, web application, or database system itself. Hackers 

usually test for SQL entry vulnerabilities by sending application input that causes the 

server to generate invalid SQL queries. The server then sends a message of failure to 

the client allowing the attacker to succeed in an SQLIA based on the error, even if 

user input is hidden [37]. 

The next stage is to avoid SQLI once grasped the fundamentals of SQLI and the many types 

of SQLI. SQLIA protection is needed to prevent cybercriminals from extracting sensitive 

data. For example, credit card numbers, deleting or altering data, deleting tables, stealing 

credentials, and inserting malicious code. The approach described here shows how to avoid 

SQLIAs [38].  

2.6 SQLIA Prevention  

The greatest danger to web managers remains SQL injection assaults, but website owners can 

take action to reduce the risk [39]. The SQLIAs prevention of methods is listed below. 
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2.6.1  Static Prevention Techniques 

These techniques are very host language-specific, depending on your domain-specific 

knowledge of how to build queries within the language to identify injection attacks. For 

SQLIA, it analyses the SQL query statement also on web applications for preventing SQLIA 

[40]. Static Prevention Techniques are classified as follows.   

2.6.1.1 Byte Code Review 

This approach tries to target a suspected source of SQLI in the application program's core 

[41].  

2.6.1.2 Parameterized Queries 

Parameterized queries are a method of precompiling SQL statements and enable you to 

clearly define parameters for executing the statements. The database will be able to 

understand the code and separate it from the input data in this manner. This coding approach 

helps prevent SQLIAs by automatically quoting user input and ensuring that the input 

provided does not change the intent. In PHP, data objects are used to store information 

(PDO). PDO has methods that make it easy to use parameterized SQL queries. It is suitable 

with a variety of databases, not only MySQL, making your code easier to read and maintain 

[42]. Parameterized Queries can be classified as follows.  

 Prepared Statements: Database programmers and database end users have been 

used to create different database queries to get results for performing tasks. Both 

perform tasks using simple and dynamic queries. The developer must specify SQL 

code and pass it as a query parameter in prepared statements and parameterized 

queries [43]. 

 PL/SQL: PL / SQL SQL syntax templates are used in this computer language. In 

the template for SQL syntax, there are only two categories of values that can be 

altered. SQL value placeholders and SQL name placeholders are two types of 

placeholders. Based on well-defined criteria, these placeholders guide avoiding 

injection into PL/ SQL. But application developers are all in charge of creating good 

code [44]. 
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 SQL Syntax Embedding: SQL is a guest language, and statements are written in 

various host languages. Neither does the host language know the guest syntax, which 

introduces an SQLI vulnerability [45].  

 SQL DOM: It pushes database connections to a series of classes that are strongly 

correlated with the database schema, and instead of handling SQL database 

connections Using JDBC, you can access it., and put those classes into text 

operations. An attempt to create a SQL statement to use [46].  

 Generic Set of Models: For preventing injection vulnerabilities in your web 

application, this is an end-to-end program transformation solution [47]. 

2.6.1.3  Access Controls Based on Roles 

The goal of this Control is for the application developer to ensure that each query is 

conducted by a role that has the least amount of access to it. As a result, SQL Injection is 

futile because the query will be incapable of causing any real harm [48]. 

2.6.1.4 Stored Procedures 

SQLI isn't constantly steady in saved procedures. Like maximum saved technique languages, 

whilst carried out securely, a few conventional saved technique programming functions 

behave like parameterized queries. SQL parameters are expected to be written down by 

developers in SQL statements that might be routinely parameterized except if the developer 

does something unusual. The distinction between an organized assertion and a saved 

technique is that the SQL code for the saved technique is described and saved inside the 

database earlier than it's referred to as is with the assistance of an application [49]. 

2.6.2 Static and Dynamic Methods 

2.6.2.1 Anomaly-Based SQLI Detection and Prevention 

This strategy sets a typical activity pattern and looks for deviations from it to determine 

whether it is an assault or intrusion [50].  
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2.6.2.2 Signature Based 

To detect known attacks, requests are matched against known attack patterns or signatures. 

This is now the most often used type of detection thanks to intrusion detection as well as web 

application firewall technologies [51].   

2.6.2.3 Code Analysis 

Code analysis approaches are ways of preventive that generate a static model based on the 

application code, which may be built or read directly from the source [52]. 

2.6.2.4 Program Query Language 

It‘s a language It gives the coder the ability to express a broad range of applications‘ specific 

code patterns and When a match is detected, the programmer can additionally define actions 

to do, such as logging important information or even rectifying an erroneous execution just 

on time [53]. 

2.6.3 Dynamic Methods 

Dynamic SQLIA prevention methods are explained and categorized as follows.   

2.6.3.1 Honey Tokens 

Honey tokens may be simply installed to help safeguard a broad range of database systems, 

and they are especially effective for detecting internal information and privacy violations 

committed by an employee. Honey tokens are put to use in the detection of harmful elements 

activities within an organization‘s particular system [54]. 

2.6.3.2 Web Requests 

Scanning HTTP requests is one method of identifying SQL injection before the data is 

transmitted to a server. 
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2.6.3.3 All User-Provided Data Is Removed 

it’s a technique that evolves escaping all the user's input either through URLs, POST method, 

or any type of input then it puts these values in the query. This is done so that the DBMS can 

distinguish between user input and the SQL command itself. So first, it takes the command so 

the DBMS knows that what it takes is the command itself and all other addition will be the 

user`s inputs. Because of this, the technique is weak compared to the remainder of the 

techniques. So it isn't prescribed to be utilized commonly in all applications aside from those 

applications that do exclude any basic information or when the danger can be ignored [55].  

2.6.3.4 Hashes 

In the database, hashed versions of login details are maintained, and direct user input is not 

utilized to build a SQL query unless the hash value matches. If the database only contains 

safe values, this assures that only safe user input is permitted [56]. 

2.6.3.5 Allow-List Input Validation 

The validation system verifies that the kind of enter that the person has entered is allowed. 

Input validation guarantees that the information type, length, and layout are correct. Only 

values that have surpassed the validation system may be used in those instances, enter 

validating is being used to validate the entries before it's far completed with the aid of 

querying. Helps save your instructions not to being placed into the entered string. It`s like 

checking who's knocking earlier than commencing the door [57]. 

2.6.3.6 Avoid Administrative Privileges Or Follow The User Access 

Principle 

 Avoid utilizing the root account while attaching your program to the database. Because an 

attacker could obtain access to the entire system this should only be done when required by 

the least privilege principle [58].  
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2.6.3.7 Web Application Firewall 

It's a secure communication protocol by checks packet data levels. More specific information 

is disclosed by inspecting the data part of packets, which is referred to as the complexity of a 

packet. The WAF is installed as a running service on the webserver or system it is intended to 

provide protection, particularly at the application layer. Its basic task is to inspect all 

incoming HTTP traffic before accepting or rejecting it based on the rules established by the 

network administrator [59]. 

2.7  Machine Learning (ML) 

ML, it’s a growing field of computing techniques targeted at enhancing human intelligence 

by learning from their observations. In the modern era of so-called big data, they are 

considered the engine. ML technologies have proved effective in many fields, including 

pattern recognition, Spaceship engineering finance entertainment computer vision [60]. The 

ML model can be categorized into ten categories according to how the algorithm is taught 

and the availability of results during the training session. These include supervised, 

unsupervised, semi-supervised, reinforcement, evolutionary, ensemble, artificial neural 

networks, instance-based, dimension reduction algorithms, and hybrid learning [61]. Some of 

these paradigms are described below Training can be partitioned into three types 

Unsupervised Supervised and Semi-supervised [62].  

2.7.1 Supervised ML 

Within the machine learning field, supervised learning has inspired a vast number of 

interests. Many supervised learning methods have been taken to the processing and analysis 

of a broad set of data. Among the most distinguishing features of supervised learning is its 

ability to use annotated training data. During categorization, labels in these case classes are 

labeled, and a variety of techniques are used in supervised learning approaches [63]. Labeled 

data is instead applied to train the network during supervised learning. Architecture like 

CNN, Residual Network, and LSTM are examples of training types supervised. 
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2.7.2 Unsupervised ML 

Unsupervised learning approaches can be utilized to use allow you to partition data that has 

never been labeled before. Only unlabeled input features are analyzed by the algorithm, 

which is designed to uncover hidden structures or relationships in the data. As just a result, 

unsupervised algorithms are extremely beneficial for tasks involving association and 

clustering [64]. These Algorithms are a helpful tool for detecting newly unknown patterns of 

multidimensional data that traditional statistical analysis may not be capable of detecting. 

When the data category is unknown, this method is appropriate. The data for training is 

unlabeled and it is a statistics-based learning approach for discovering unlabeled data's 

hidden structure [65]. Architecture like Autoencoder, Adversarial Networks, RBM, Nodes 

arranged in hexagonal or rectangular grid training type of unsupervised.  

2.7.3 Decision Tree  

It's a drawing that appears decisions and their results within the shape of a tree. Graph nodes 

represent decision rules or circumstances, while graph nodes reflect events or selections. 

Nodes and branches make up each tree. Each branch indicates a value that the node can 

expect, and each node represents an attribute inside the group to be classified [66]. 

2.7.4 Semi-Supervised ML 

It is extremely effective in application domains like imaging, information retrieval, and 

biology, which include a lot of untagged data. Because SSL is a blend of unsupervised and 

supervised, there are multiple sorts of records labeled and unlabeled records [67]. SSL works 

by merging information that was labeled and data that has not been labeled SSL has been 

proposed to solve the disadvantages of supervised learning algorithms that can use untagged 

data [68]. 

2.8 Deep Learning   

This learning is an element of Machine Learning [69]. It has had notable success in different 

domains especially the processing of natural language and it is more powerful than normal 

machine learning approaches in terms of abilities to learn and the ability to exploit datasets 
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for feature extraction. Because of its functionality, utility, and usefulness, It is commonly 

employed this learning is attracting the attention of numerous scholars. Except for 

old machine learning, this learning does not require complex feature engineering, and its 

performance typically improves as the amount of training data grows [70]. There appear to be 

plenty of deep learning techniques from which to choose and common models are described 

below. 

 Autoencoder: is mostly used to process high-dimensional data that is complex. To 

conduct dimensionality reduction, neural networks that learn features or encoding 

from a given dataset and that learn the representation in the input data set to reduce 

dimensionality and rebuild the original data set using an unsupervised technique the 

learning technique is based on a backpropagation implementation is known as 

autoencoders [71]. 

 Restricted Boltzmann Machine: It's an unsupervised generative model for 

extracting patterns from data. It's a fantastic way to learn unsupervised features. In the 

unsupervised initialization of deep learning techniques, RBMs have also been crucial 

[72]. The concept of classification isn't a required significant aspect of RBM. This is 

particularly true for data sets like pictures, videos, and sensor signals. By re-entering 

the data, these all tend to go unmarked, the RBM must also comprehend the data's 

inherent building blocks and patterns. RBMs may now be used for more interesting 

problems in a range of domains, such as image classification, texture creation, and 

medical image processing, thanks to Computational advances and the introduction of 

new learning approaches [73]. 

 CNN (Convolutional Neural Network): It's a widely used deep learning 

approach for solving complicated problems. It gets around the drawbacks of common 

machine learning techniques. In remote sensing, large data, activity recognition, audio 

scene, segmentation of MR brain images, picture classification, and object detection, 

CNN is widely employed, in face detection, speech recognition, vehicle recognition, 

and many more [74].   

 RNN (Recurrent Neural Network): It preserves a layer's output and feeds it 

again into the inputs, which can aid in forecasting the layer's outcome. The layer first 

is created using the outcome of the weights and features. Once it is generated, the 
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process of this neural network begins, which means that results from the last time step 

from one time as an outcome, each individual, neuron conducts computations as if it 

were a   memory cell from one step to the next.  Allowing this network to propagate 

by itself and remembering what information it needed for eventual use in this process 

are both necessary [75].  

 Neural network with deep learning: It is a layer that sits between ANN's 

output and input layers and may simulate a complicated nonlinear relationship. This 

neural network’s additional hidden layers aid in the compilation of features from the 

lower layer, allowing the neural network to simulate complicated data. Information 

from either the input is transferred to the output in this process feed-forwarded 

network [76]. 

 Deep Belief Networks: It's a system for deep learning whereby each pair of 

adjacent layers is paired as an RBM. A two-layer neural network is used. Nodes on 

the identical layer are still not connected, while nodes in the other layers are 

completely connected. The layer of input is being used in the train of the parameters 

of the connections between the two layers, while an output unit is utilized to make the 

input RBM will be employed for the subsequent layer [77]. Image recognition, 

understanding (NLP), retrieval of information, language processing, failure 

prediction, and other applications employ DBN significantly and this network 

develops a multilayer neural networks model to analyze the potential features of texts, 

images, and voice [78]. 

2.9 Related Works 

Deep Learning Architectures depending on the uses and types of neural networks, deep 

learning architecture is categorized into three categories classes. The first one is Generative 

Architecture in this architecture there are three different models such as Autoencoder is 

extensively being used for Facial Expression Recognition, Image Denoising, pattern 

recognition, Speech processing, Fault Diagnosis, Medical Data Analysis, and Anomaly 

Detection. Restricted Boltzmann Machines is the second mode this model is extensively 

being used for Time series forecasting, gradient approximation, and input weight 

determination. The third model is Recurrent Neural Networks this model is extensively being 

used for Document image analysis, Handwriting Recognition, Biomedical Image processing, 
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software engineering, and channel estimation. The other architecture is Discriminative 

Architecture in this architecture there are models called Convolution Neural Network and this 

model is extensively being used for Data Analysis, facial expression recognition lip-reading, 

Posture Recognition, Biomedical image processing, and Data Mining. The third architecture 

is Hybrid Architecture comprises processes that are In most hybrid systems, the generating 

components are both procedural and discrete and are used along with discriminative 

components to attain the final solution [79].  

SQLIAs have attracted a great deal of attention lately and numerous scholars have researched 

the area. The purpose of this section is to explain the related works of other scholars on 

SQLIA. 

2.10 Static Approach 

The static approach is used to locate much vulnerability. For SQL injection assaults, the static 

approach detects and prevents SQL injection assaults via way of means of studying SQL 

query statements on web applications. Numerous studies are mostly based on this strategy, 

which is described below. 

Stephen et al. [80] propose an automatic fix generation solution that replaces vulnerable 

statement-based SQL statements with protected prepared statement-based SQL statements. 

They use a conversion algorithm to preserve the logic of the statement while saving the 

statement without knowing the context. This is the reasoning behind this solution is that it can 

automatically generate fixes to protect vulnerable SQL statements without the need for 

software security expertise. The limitation of this work is that they can use conversion 

algorithms to convert large numbers of vulnerable SQL statements, but not batch SQL 

statements. The JDBC prepared statement interface does not currently allow multiple 

independent queries on the same batch prepared statement, so it cannot process batch jobs. 

And another limitation is that this work was originally intended for Java, and the concepts 

and general algorithms could be used for other languages.  

Zeinab et al. [81] proposed a tool for SQLIA to report the transformations that need to be 

performed to protect the underlying database and web application. They used static analysis, 

based on the results of the analysis, and also used new detection techniques to generate the 
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required transformations and report them as output. Discovery technology removes user input 

for SQL queries and collects some information to make run-time discovery easier and faster. 

Finally, they delivered the evaluation's findings. The downside of this task is that you can 

manually perform the conversion to increase the security of your web application, but this 

process can be tedious and needs to be automated. 

Bart et al. [82], recommended the creation of a static analysis tool to handle these web 

application input-related concerns. When utilized in the framework, they employ an abstract 

model of the source program that takes user input and dynamically produces SQL queries. 

The framework employs novel checking methods on these state machines to demonstrate or 

validate that the original application program is secure. The analysis is already in the works 

and being tested. This work limitation is that using the FSA under-approximation sub-

approach to the SQL grammar can be too restrictive to remove malicious queries from the 

presented set, and some operators like "LIKE". Is still unlikely to handle. 'And' ×'. 'The 

generated constants cause similar problems in automaton-based analysis. Finally, to 

experimentally check the tool's efficiency as a means of analysis, there is no practical 

prototype of the analysis and it has not been applied to the actual examples. 

Xiang et al. [83], proposed SAFELY, a technique of static analysis that can automatically 

produce test cases that exploit SQLI vulnerabilities in ASP.NET online applications as a 

crucial design proposal offered. The approach for calculating/estimating the satisfiability of 

string constraints is what makes this tool unique. By symbolically running an ASP.NET web 

application, SAFELY generates string equations that match a specific attack pattern. 

SAFELY, when completely built, will be capable of using source code information to find 

extremely sensitive vulnerabilities that Vulnerability scanners that operate in the background 

are known as black-box scanners Are unable to detect. The implementation of SAFELY and 

the investigation of techniques for automatically enumerating SQL WHERE clauses, when 

they are not closed, are the work's limitations. 
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2.11 Dynamic Approach 

Dynamic analysis is another approach used for detecting SQLIAs, it prevents vulnerabilities 

during program execution. Numerous studies have presented solutions based on this method. 

Dennis et al. [84], give an outline of a different way of identifying SQLIA  Dynamic 

Analysis, which detects vulnerabilities while the program is running. Introduced 4SQLi, an 

automated technique based on a collection of mutation operators that change inputs to create 

new test inputs to trigger SQLIAs, to detect SQLIA based on dynamic analysis. This could 

result in inputs including new attack patterns, boosting the chances of finding vulnerabilities.  

2.12 Hybrid Approach  

Combined Dynamic and Static Analysis would be a technique for detecting and preventing 

SQLIAs that combines the benefits of both techniques. Numerous studies have presented 

solutions based on this method. 

William et al. [85] Presented a solution named AMNESIA, which stands for analysis and 

monitoring, to neutralize SQLIA in AMNESIA detects and prevents web application 

vulnerabilities in real-time by combining dynamic and static analytics. AMNESIA creates 

several sorts of queries using static analysis. AMNESIA understands all queries before they 

are submitted to the database and tests each query against a statically created form in the 

dynamic segment. The findings of this study indicate that AMNESIA is a very useful and 

potent method for detecting and preventing SQLIA. In some cases, the technique described in 

this article could result in false negatives. False positives can happen when text parsing isn't 

precise enough, and false positives can also include malicious queries in the built-in SQL 

query model, which could be one of an attacker's malicious searches. If you can create a 

matched injection attack, this can happen. 

 

Ahmad Ghafarian [86] proposed a new method to determine how else to resist SQLIA. This 

method is a combination of dynamic and static strategies. The proposed approach suggested 

enlarging all database tables in the main phase (static) to include information that only 

includes a few symbols, including the greenback symbol. This must be done throughout the 
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stage of database design before implementation. The limitation of this paper is It isn't always 

implemented, the set of rules may be extended, and it does now no longer encompasses 

different varieties of SQLIA. 

Inyong et al. [87], proposed an original strategy for identifying SQL infusion assaults by 

contrasting static SQL inquiries and powerfully produced questions after eliminating the 

property estimations. Besides, we assessed the presence of the proposed technique by probing 

weak web applications. We additionally contrasted our technique and other discovery 

strategies and showed the effectiveness of our proposed strategy. The proposed strategy just 

eliminates the property estimations in SQL inquiries for examination, which makes it 

autonomous of the DBMS. Complex tasks, for example, parse trees or specific libraries are 

not required in the proposed strategy. The proposed strategy can't be done on web 

applications yet it can likewise be utilized on any applications associated with data sets. 

Besides, it tends to be utilized for SQL inquiry profiling, SQL question posting, and 

modularization of location programs. The limitation of this work is required for SQL infusion 

assaults as well as for other web application assaults like XSS, in light of the proposed 

technique and AI algorithms. 

Raymond et al. [88], proposed an ASSIST method for programmed query sanitization. This 

utilizes a mix of static investigation and program change to consequently find and sanitize the 

factors used to create SQL queries. They executed the technology usimg Java ptogramming 

language using a device called ASSIST to protect Java byte code (got from JSP or Servlet). 

An experiment has revealed that help works well for a suite of SQL infusion assault tests, and 

helps work with little run-time overhead.  

However,   the limitations of this work incorporate direct comparisons with other techniques, 

calculation changes to lessen potential inaccuracies, and techniques for exploring other user-

input properties (such as assignment strategies and allotment techniques). Incorporates a 

more complete assessment, like expansion. Many theoretical questions can be over-

approximated because the comparison is not performed appropriately.       

Ramya et al. [89] proposed a structure called the runtime checking framework. It is utilized in 

procedures for creating run-time screens that perform run-time monitoring of 

web applications after deployment to recognize and forestall tautology-based SQLIA. 
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With our structure, application quality and security are accomplished in the pre-arrangement 

stage, yet additionally in the post-sending stage, and the potential abuse of vulnerabilities by 

outside attackers is identified and forestalled. Additionally, the authors explained the 

assessment of the proposed method, and the outcomes acquired showed that their method 

can handle all tautology-based SQLIA successfully and that real input can access the 

information base. They will additionally utilize the proposed framework to computerize the 

whole course of developing a runtime monitor and stretch out the system to recognize and 

forestall any remaining kinds of SQLIA.   

Wang et al. [90] Depending on the kind of SQLIA, they have introduced a new way to 

identify and forestall SQL injection assaults utilizing AOP. From one viewpoint, it 

resolves these SQLIAs with assault properties by characterizing aspects and pointcuts 

and doing some validation with the Before function. In other attacks, and also a model-based 

course that uses programmatic research techniques to consistently assemble a model of a real 

SQL query and compare that model to a SQL query that has been significantly rebuilt from 

AOP. They also use contextual analysis on the simple client login page as the most effective 

method for accomplishing this as an aftereffect of this test, this technique can forestall 

web applications from all SQLIA. However, the limitation of this task is that it needs to be 

analyzed the source code.  

Emon et al. [91] The authors developed a model which is a web-based multitier architecture. 

The proposed model prevents various SQLI. The model shows its productivity by tracking 

various SQL injections, and the performance results show its applicability. The positive rate 

for most types of SQL infusion attacks is 100%. The limitation of the model is that it is very 

vulnerable to inline SQL injection attacks and requires a different approach to reduce 

execution time, which is highly susceptible to SQL injection attacks. 
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Table 2-1: Summary of SQLIA prevention using ML and DL 

Paper Objective/Purpose Methodology Research Gap 

Kevin et 

al. [92] 

Established that the 

algorithms 

experimented with, such 

as rule-based and 

decision tree algorithms, 

have achieved accuracy 

close to that of Neural 

Networks in their 

experiments and are 

much good in terms of 

time required to build 

models and execution 

time when classifying 

testing data, and have 

established that the 

algorithms. 

The data generating strategy involves 

three stages: traffic production, 

capture, and preprocessing. Rule-

based, Support Vector Machine, 

Neural Network, and Random Forest 

algorithms are employed. 

Extra data collecting, 

such as outbound traffic 

from the web application 

to the browser, Larger 

datasets should be 

collected to determine if 

this improves 

performance, as well as 

analysis of additional 

machine learning 

techniques for accuracy 

and performance, and 

adaptation of this system 

to identify other sorts of 

web-based assaults. 

Auninda 

et al. 

[93] 

Developing a method 

for successfully 

detecting and preventing 

SQLIAs, as well as 

developing a model by 

determining the 

optimum machine 

learning algorithm for 

predicting and 

preventing 

SQLIAs Attacks. This 

document offers a 

summary of the work 

plan, experimentation, 

and the results of the 

experiments. 

5 different methods were used to 

train a sample dataset to see how 

accurate and employed Logistic 

Regression, Neural Network 

Classifier, Random Forest, KNN, 

and Naive Bayes as algorithms. 

The model proposed in 

this research uses an 

ML technique to learn 

about new types of 

SQLIAs and recognize 

them in the future. 

Sonali et 

al. [94] 

The study's overall goal 

is to employ a Gradient 

Boosting Classifier method 

To categorize and detect SQLIAs, a 

gradient boosting method is used. 

There is insufficient data 

to train machine learning 

models and refine them in 
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from ensemble machine 

learning approaches to 

classify and detect SQL 

Injection threats in their 

research. 

Gradient appears to be 

A suitable learning 

strategy for reducing 

errors and providing 

more accurate 

predictions. To give 

results, the Gradient 

Boosting technique uses 

simple classifiers, 

primarily decision trees, 

in a sequential way. 

terms of usability and 

efficiency. 

  

Ines et 

al. [95] 

The following are the 

paper's main 

contributions: 

1. The SQLI attack was 

described in detail. The 

various sources, goals, 

and forms of attacks are 

defined and discussed. 

2) A classification of the 

different SQLI attack 

detection and prevention 

countermeasures are 

presented and discussed. 

3) A table evaluating the 

various potential SQLI 

attack countermeasures 

was published. 

4) Newly proposed 

solutions are outlined 

different existing countermeasures 

that were proposed to either detect or 

prevent the SQLI attack like A. 

Query-model based SQLI 

countermeasures, Obfuscation based 

SQLI countermeasures, Monitoring 

and Auditing Based SQLI 

countermeasures, Entropy-Based 

SQLI countermeasures, Ontology-

Based SQLI countermeasures, 

Machine Learning Based SQLIA 

countermeasures 

 

There are still flaws in 

their ability to deal with 

web-based threats. And 

creating a machine-

learning-based SQLI 

attack detection 

technique that can handle 

a huge number of queries 

per second. Also, there's 

a shortage of an up-to-

date and consistent 

dataset that researchers 

may use to evaluate their 

work and compare it to 

existing solutions 
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and discussed, 

like ontology 

Latchoumi 

et al. [96] 

The proposed approach 

model could have been 

used to report 

vulnerabilities in online 

applications. As a result, 

this method may reduce 

your web application's 

odds of launching 

SQLIA. Machine 

learning with SVM 

algorithms is used to 

avoid SQLIA runtime 

monitoring. 

To avoid SQLIA runtime 

monitoring, ML with SVM methods 

is applied. When the home page of 

each application is transferred to a 

test page, the answer behind this 

strategy is to detect and avoid 

SQLIA outages. 

The methodology 

provided here only works 

in a data-rich situation, 

which is insufficient for 

this research. 

Nanang 

et al. 

[97] 

The design of the 

recommended approach 

for how the SQL 

injection detector works 

using deep learning and 

transfer learning 

methodology is 

explained, as well as the 

implementation and 

results of the 

SQLi detector using AI. 

In this approach, 

transfer learning 

techniques are used to 

produce detectors. 

The SWIVEL architecture, which is 

one of TensorFlow's neural network 

models for text embedding, is used 

to create the system. 

The drawback of this 

effort is that due to the 

dataset's limitations, 

evaluating the model that 

has been constructed is 

difficult. 

Stanislva 

et al. 

[98] 

SQLI and XSS are two 

of the major code 

injection attacks in 

today's web applications 

and systems. 

CODDLE, a DL-based IDSS for 

web-based assaults is proposed in 

this work, along with numerical 

experiments on datasets for both 

SQL and XSS attacks. CODDLE's 

type encoding improves the data rate 

from around 75% to 95% accuracy, 

99.5% precision, and 92.5% recall. 

This paper does not 

employ a pre-processing 

function, instead of 

converting each query 

symbol to a char code. 

This sort of encoding is 

vulnerable to attacks that 

alter the symbol 

sequences in the injection 
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query. 

Ding et 

al. [99] 

In this study, we offer a 

non-background rule-based 

SQLi detection method 

based on an NLP model 

and deep learning 

framework, as well as a 

lightweight solution to 

SQLIA prevention based 

on conditional embedding 

and CNN and MLP. 

This research develops an 

SQLI detection system using a 

DL architecture and lexical analysis 

approaches.  The experiments were 

compared using a CNN and MLP. 

This research only 

focuses on only first-

order SQLI. Second-

order injection and 

hybrid attacks were not 

researched. 

Kevin 

Zhang 

[100] 

To create a machine 

learning-based 

classifier that can 

detect SQLI 

vulnerabilities in 

files. It also 

compares the 

effectiveness of 

traditional 

ML algorithms and 

deep learning-based 

approaches for 

detecting SQLI. 

Utilizing input data 

validation and sanitization 

aspects, machine learning was 

used to train and evaluate 

classifier models. The highest 

precision (95.4%) was 

achieved by a CNN, while the 

highest recall was achieved by 

a Multilayer Perceptron (MLP) 

model (63.7 %). 

Word2vec model did 

not perform well, 

and currently 

missing a word 

embedding model 

designed for PHP 

source code. And it 

is only limited to the 

PHP language. 

Maruf 

et al. 

[101] 

To develop a model 

for identifying 

SQLI vulnerabilities 

in a web application 

using deep learning 

by extracting 

various web 

application 

vulnerability finding 

points. 

The study compares different 

classifiers used in this study to 

see if any other machine 

learning algorithm can 

improve the neural network's 

results. An SVM, random 

forest, and Naive Bayes with 

an accuracy of 94.66 %, 97.33 

%, and 84.49 %, respectively, 

were clearly shown. 

SVM has the 

disadvantages of 

being time and 

memory-

consuming, 

difficult to choose 

the right kernel 

function, high 

algorithmic 

complexity, and 
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inability to work 

with large data 

sets.. 

Ao 

Luo et 

al. 

[102] 

To see if the 

CNN algorithm can 

be used to detect 

SQLIAs and 

compare it to a 

traditional detection 

method called Mod 

Security. 

SQL injection detection is 

based on CNN and Mod 

Security, a web application 

intrusion detection and 

prevention engine that can also 

act as a web application 

firewall (WAF). 

The paper's 

weaknesses are 

primarily focused on 

the HTTP log file, 

rather than the proper 

dataset to train on, so 

it can be said that the 

dataset's quality has 

an impact on the deep 

learning model's 

performance. 

Manav 

et al. 

[103] 

To investigate the 

numerous 

techniques for 

trying to identify 

and protect 

SQLIAs. The 

performance of five 

different 

classification 

models was 

compared 

Machine learning algorithms 

such as Naive Bayes, Decision 

trees, Support Vector 

Machines, and K-nearest 

neighbors have been tested in 

all major types of SQL attacks. 

And experiments show that 

CNN outshines other 

algorithms with 94.84 present 

accuracy, 85.67 present 

precision, and 96.56 present 

recall. 

It does not apply 

feature reduction 

techniques to study its 

impact on 

performance 

measures, and it does 

not expand the dataset 

by adding other types 

of SQL injection 

attacks as and when 

more types of queries 

arise in the future. 

Jothi et 

al. [104] 

It would be able to 

sense any and all 

injection 

techniques. The 

model will handle 

all of the feature 

Researchers accomplished a 

cross-validated accuracy of 98 

% with a precision of 98 % 

and a recall of 97 % using the 

MLP model. 

The model only uses 

single-word 

tokenization and 

excludes N-gram 

models. The spatial 

and temporal features 
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extraction and 

selection. The client 

will only have to 

type the text. 

of SQLI are not 

learned using CNN-

based architecture. 

Tonmoy 

[105] 

A DL framework 

for sensing SQLI 

weaknesses in web 

services and making 

a tool that can tell 

you which web 

applications are 

vulnerable to SQLI 

and which aren't. 

A unique data set is generated, 

followed by data collection, 

pre-processing, and feature 

selection, all of which were 

then fed into a deep learning 

model. A tool has been 

developed to detect 

SQLI vulnerabilities 

automatically. 

This work does not 

dig into deeper a web 

application to invent a 

more efficient way to 

detect the attack and 

find an efficient 

solution to prevent 

that attack 

Jiabao 

et al. 

[106] 

To identify web 

attacks in the HTTP 

request protocol, a 

CNN and LSTM 

network architecture 

was introduced. 

SQLI, XSS, and 

other script 

injection attacks are 

examples of 

anomalous requests 

to be detected. 

This study compares the 

combined performance of 

LSTM and CNN with other 

traditional methods such as 

Multinomial Naive Bayes 

(NB), Linear Support Vector 

Machine (Linear SVM), 

Neural Network (NN), k-

Nearest Neighbour (kNN), and 

Decision Tree (DT) and with  

0.989 %Precision and 0.988 % 

recall 

The CNN and LSTM 

methods are resistant 

to varying dropout 

rates. Moreover, when 

the rate is greater than 

0.3, performance 

increases slowly. 

Huafeng 

et al. 

[107] 

This paper's purpose 

is to find 

SQLI attacks in 

network traffic using 

deep learning. 

It uses deep learning to train 

the sample data in order to 

detect SQL injection attacks, 

and researchers compared 

different algorithms such as 

LSTM, MLP, CNN, and DBN 

to find that the DBN model 

More data is needed 

in this study to 

improve the model's 

accuracy. 
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had the best accuracy rate of 

0.9603. 

Ming 

et al. 

[108] 

Using just a specially 

built CNN, a 

DL approach for 

detecting Web 

attacks. 

The experiments shown on the 

dataset HTTP 

DATASET show that the 

designed CNN performs well 

and achieves satisfactory 

results in detecting Web 

attacks, with an accuracy of 

96.49%. 

It only focused on 

detecting the server-

side attacks only. And 

the method in this 

article only focuses on 

detecting Web attacks 

hidden in URLs 

Yong 

et al. 

[109] 

SQL query strings 

first were 

syntactically 

evaluated into the 

tokens, and then the 

likelihood ratio test 

was used to construct 

a word vector of 

SQL tokens, before 

training an LSTM 

model with 

sequences of token 

word vectors. 

A tool called WOVSQLI 

describes and develops SQLIA 

based on the   LSTM and 

word2vec of SQL 

tokens neural networks. 

Experiment results show that 

WOVSQLI can easily detect 

SQLIA with 98% accuracy. 

Future work will 

improve the model 

with a new dataset 
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CHAPTER THREE 

THE PROPOSED SQLIP MODEL 

3.1  Introduction 

This chapter focuses on the design of the proposed model and its experimental setups. To 

mention the contents on a higher level, it contains the system architecture, data sources, and 

how the data is collected and processed. Following that the proposed model design and 

detailed descriptions of the features, how the feature is extracted, and how the prevention of 

SQL injection attack is performed in the proposed deep learning model. 

3.2 System Architecture 

The system architecture begins with data collection and then encodes and converts the data to 

CSV file format. Following that the dataset is split into training, validation, and testing set. 

The training and validation set follow a data preprocessing and selecting the best features are 

part of the data preparation phase. Following that the preprocessed dataset is fed to the CNN 

algorithm and it extracts featured during the training phase. Based on the performance of the 

training and validation set the model evaluation technique was applied. After experimenting 

with various hyper-parameters, the model with the best performance will be chosen. Finally, 

the best model will be tested with unseen data using the testing phase. The system 

architecture of the study is depicted in  Figure 3-1.  

 

Figure 3.2-1: System architecture 
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3.3 Dataset Preparation  

The goal of data preparation is to use the data as it exists and then clean up what has been 

done, the way to proceed is to. Data preparation refers to the process of removing outliers and 

creating a more uniform distribution. It also includes cleaning and standardizing data. 

Cleansing is done by replacing missing values with their averages or other relevant values, 

which is one of the most important steps in any machine learning or other research. 

One of the most important steps in any machine learning task is understanding the problem 

domain and the data that will be used in the process. The data preparation process we have 

followed in the following sections includes activities like data collection, data and business 

understanding, dataset description, and data formatting. Next, feature selection and the data 

pre-processing stage are followed by applying data cleaning. 

3.3.1 Data Collection 

In this study, the primary data was collected from Kaggle (SQL injection attack dataset). The 

data was prepared manually, and it contains a total of 4,199 number SQL injection attacks 

query and normal text. The dataset has been prepared by collecting different SQL injection 

queries, and it has been labeled as class ‘SQLI ‘ and ‘NORMAL‘. The statistics of the dataset 

and the sample data of each class are depicted in Figure 3-2 and Figure 3-3 respectively.  

 

Figure 3.3-1: Distribution of dataset 
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3.3.2 Understanding SQLI Data  

Before taking any steps, the main activity in any machine learning task is data understanding. 

It begins with gaining initial insights into the data and the problem domain. Later, it proceeds 

on to other tasks such as evaluating the quality of the data, missing values, and outliers that 

could have an impact on the machine learning final result. Understanding the data aids in 

identifying useful and interesting insights into the data that will be used to develop a 

hypothesis for the hidden or unknown information. 

3.3.3 Business Process Understanding  

Understanding the overall process and procedures that are undertaken in the problem domain 

is at the heart of what business understanding is all about. This can be obtained through a 

variety of methods, including observations, document analysis, and discussions with domain 

experts. Understanding the problem domain aids in gaining a better understanding of the data 

that will be handled, as it provides insight into what is happening and why. In this study, 

problem domain data is gathered from open-source dataset sources derived from various SQL 

injection sources. In general, the dataset contains two types of data categories: SQL injection 

queries and normal text.  

3.3.4 Data Formatting  

The dataset was prepared by collecting different SQL injection attacks, which were collected 

from different websites. The collected SQL attacks were merged and preprocessed to train 

using different machine learning and deep learning algorithms. Finally, the merged Microsoft 

Excel file was converted to CSV (Comma Separated Values), which was then used for 

training and testing. 

Figure 3.3-2: Sample dataset 
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3.4 Algorithm Selection  

Deep learning makes things easier than conventional machine learning algorithms because it 

makes feature extraction and other preprocessing tasks automatic. In this study, CNN  

algorithms selected deep learning to build a proposed model, which is best for text-based 

classification and other problems. Several works of literature claim that CNN is best for 

classification and detection problems, which yields the best result and it is a state-of-the-art 

performance having enough data and optimal hyper-parameters. In summary, a convolutional 

neural network model has the potential to automatically prevent SQL injection attacks.  

In this study, the proposed model was built from a model from the scratch without applying 

different CNN architecture types like XLNet, ERNIE, and Text-to-Text Transfer 

Transformer. Additionally, the components, parameters, and hyperparameters of the proposed 

model are explained in the coming sections. 

3.5 Feature Selection  

Feature selection is an essential iterative process for selecting the best features or removing 

variables that do not assist the model in mapping the relationship between the data variables 

and the target outcomes. To accurately identify the best parameters that represent the whole 

problem and achieve the objective of the study, the best features must be identified. The 

expected outcome of the algorithms, based on the problem, is fully dependent on the quality 

of the selected input features. Reducing highly unrelated features will increase the amount of 

time it takes to train the model, improve performance, and minimize the complexity of the 

algorithm [110]. 

After identifying the best parameters and attributes of the SQLI data, the more relevant 

features were selected to build a model that would prevent SQLI from using a deep learning 

approach. Moreover, features that are not relevant to this research objective were removed 

from the collected SQLI data to learn and map the features or train the machine learning 

algorithms based on the dataset prepared and labeled by open source.  
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3.6 Data Splitting   

The data collected were classified into three categories: training, validation, and testing. 

Training, which is used to train the model, and test, which is used to test the model that was 

not discovered during training. The validation set is used to evaluate the performance of the 

model created during training and is frequently used to fine-tune model parameters to achieve 

the best model performance.  Then, the test set is used to test the proposed model with unseen 

data. In this study, the data splitting used is 80%-20%  for training and testing respectively. 

Furthermore, 90%-10% of data partitioning has experimented. The experiment conducted 

suggests the 80%-20% data splitting achieved a good result.  

3.7 Feature Extraction 

The term feature extraction refers to the process of transforming raw data into numerical 

features and processing the resulting features while preserving the information in the original 

data set [111]. It yields better results than applying machine learning directly to the raw data. 

The main advantage of deep learning over traditional machine learning is the ability of the 

feature extraction stage to be done automatically by the CNN algorithm without the need for 

domain experts. Since deep learning has the potential to derive complex characteristics, it has 

a significant advantage over traditional machine learning, which has a limited ability to learn 

[112]. 

 

Figure 3.3-3: Feature extraction ML and DL 
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3.8 SQLIA Prevention via Classification 

The proposed SQLIA deep learning model has three convolutional layers, and three pooling 

layers (MaxPooling), except the final layer of the CNN architecture the activation function 

used, is ‘relu’. The final layer used the ‘Sigmoid’ activation function. Based on the 

components of the proposed model, the SQLIA was successfully prevented by identifying the 

given query as ‘Normal’ or ‘SQLIA’. Figure 3-5 presents the proposed model architecture. 

 

 

 

 

3.9 The Proposed Model Components  

The proposed model has different components of the CNN algorithm. The SQLIA model was 

built depending on the components. Here, the descriptions of the components of the proposed 

model are explained. The components and the total number of parameters used in the 

proposed model are depicted in Figure 4-4. 

3.9.1 Convolutional Layer 

The convolutional layer is one of the main blocks of Convolutional neural networks which is 

composed of mathematical operations and convolution is a special form of linear operation. 

Pixel values that are processed in (2d) two-dimensional and grid (number arrays and a narrow 

grid) parameters are represented by mammogram images or usually, digital images, called the 

kernel, and an optimizable function extractor is implemented at the image location, making 

the processing of images extremely effective by CNN. As the layers feed their production to 

the next layers, the features that are extracted are hierarchically and increasingly complex. To 

Figure 3-4: The Proposed SQLIAP model 
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refine the parameters, optimization algorithms such as the backpropagation and gradient 

descent algorithm are used and the kernel is carried out to minimize the gap between the 

outputs and the ground truth labels [113]. 

3.9.2 Pooling Layer 

This layer enables for downsampling operation that enables a reduction in the number of 

learning parameters and several output channels are the same as the number of input channels 

[114]. This layer enables the extraction of main features in some spatial locations, to manage 

and control overfitting in the network. The filter size, stride, and padding are hyperparameters 

in pooling operations, and there are no learnable parameters in pooling layers. Instead, 

pooling operators are deterministic, usually measuring the items in the pooling window by 

either the maximum or the average value, these operations are called maximum pooling (max 

pooling for short) and average pooling, respectively [115].  

Max pooling is the most widely used pooling operation with a filter size of P x Q and with 

strides to downsample the dimension of feature maps. The depth of the feature map is not 

changed but the height and the width are changed and Max Pooling takes the maximum value 

out of each sub matrix of a activation map and differentiates it into matrices [116]. 

3.9.3 Fully Connected Layers  

This is the classification layer that calculates the score of each class of the extracted Features 

of a convolutional layer in the next steps and the last layer feature maps are represented as 

vectors with scalar values that are passed to the fully linked layers and It guarantees that any 

neuron within previous layers is linked to each subsequent layer [117]. 
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CHAPTER FOUR 

IMPLEMENTATION & EVALUATION 

4  Introduction 

This chapter discusses experiments to design and develop the SQLI prevention model and 

evaluate the proposed model via evaluation metrics. In addition, the experimental scenarios 

were explored using different parameters and hyper-parameter to build the proposed model. 

4.1 Tools and Experiment Setup  

There are currently many deep learning frameworks available. Among those deep learning, 

frameworks are TensorFlow, Keras, and PyTorch, which are the most widely used ones. 

These three are favored by data scientists and deep learning beginners. There is no hard and 

fast rule on which deep learning frameworks should be chosen, but considering some of the 

conditions for selecting a framework would be beneficial and appropriate. Here some of the 

deep learning frameworks are explained. 

Keras: Is a Python API that can be used with CNTK, TensorFlow, or Theano is available. 

Keras assists machine learning researchers in rapidly turning an idea into a product. In this 

study, the Keras API was used on top of TensorFlow. The following are some of the API's 

advantages. 

 Easier to use and extensible 

 Support both CPU and GPU 

 Support CNN and RCNN 

TensorFlow: This is a well-known machine learning and data science framework. Many 

libraries, tools, and resources are available through the API, making it easier for researchers 

to develop and deploy machine learning applications. Furthermore, the API's simplicity 

makes it simple for developers to train and build a model. 
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Pytorch: Is a Torch-based open-source machine learning platform for Python. PyTorch was 

developed by Facebook's AI team and is used for natural language processing and a variety of 

machine learning projects. 

Google Collaboratory: This is a Google cloud tool that allows users to write and run 

programs or texts in their browser without needing to configure anything. The tool has 

unrestricted GPU and TPU access. Furthermore, the Google Colab implementation is simple 

to share across multiple platforms. "Colab Notebook" is a Google collaboration tool that 

allows you to write code and text in an interactive environment. In this study, the Google 

Colab was configured with a GPU hardware accelerator and the notebook server was hosted 

within the environment. In summary, Colab’s Notebook looks like the famous Jupyter 

Notebook with an additional bonus feature which has: 

 Access CPU and GPU 

 Stored data in a Google drive 

 Has a huge library for machine learning, deep learning, data science, and other fields 

 Easy to share with other colleagues 

 The python code used by Colab can execute anywhere 

draw.io: This is an online tool for drawing flow charts, and it provides a variety of symbols 

and templates that enable users to create usage case flow charts, activity diagrams, network 

diagrams, floor plans, charts, mind maps, infographics, and several. Furthermore, this tool is 

quite simple, and it can export the final diagram in PNG, JPEG, PDF, and other formats. 

Mendeley: is a desktop application that serves as a PDF reader while also allowing users to 

cite documents in the form of IEEE, APA, and other formats. The tool automatically loads all 

citation information that you provide, unlike Microsoft Word, and this is much faster than 

having to type it in yourself. 
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4.2 Evaluation Techniques 

After the model is trained with a given set of data, model evaluation is the technique used to 

determine the degree of accuracy and efficiency of the model. A computational problem, 

such as classification and detection, uses evaluation metrics such as accuracy, precision, 

recall, and F1-score to predict which class instance belongs to which class. Those metrics 

were computed using classification metrics and provided information about a model's results 

in each class. All of the metrics listed above are determined based on the confusion matrix 

value, i.e. TP (True Positive), TN (True Negative), FP (False Positive), FN (False Negative). 

 

Figure 4-2: Evaluation metrics 

 

 

 

Figure 4-1: Software tools and implementations 
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Where: 

TN:  stands for True Negative which shows the number of negative examples 

classified accurately 

TP: indicates the number of positive examples classified accurately 

FP: shows False Positive value, i.e., the number of actual negative examples 

classified as positive 

FN: False Negative value which is the number of actual positive examples classified 

as negative 

i. Accuracy: Answers the question about how often the model predicts the classes correctly 

i.e. SQLI and NORMAL. 

Equation 1: Accuracy metrics 

Accuracy = 
     

           
 

ii. Precision: It gives insight into how often a positive value prediction is correct. Example: 

Predicting SQLI, how often the prediction precisely predicts. 

Equation 2: Precision metrics 

Precision=
  

     
 

iii. Recall: Also known as sensitivity it describes how sensitive the classifier is while 

detecting positive instances. 

Equation 3: Recall metrics 

Recall=
  

     
 

iv. F1-Score: This is the harmonic mean of the precision and recall, and the lowest value of 

the F1-score is 0.  
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Equation 4: F1-score metrics 

F1-Score=
 

 

      
 

 

        

 

4.3 Hyper parameter Selection & Experimental Scenarios 

4.3.1 Hyper parameter Selection 

Hyperparameters are the variables that are used to build a model in a neural network. An 

optimal hyperparameter value must be configured before building a robust deep learning 

model. The optimization algorithm, learning rate, loss function, number of epochs, and batch 

size are the CNN algorithm‘s hyperparameters. There is no set rule for configuring 

hyperparameters of a given model, and different configurations can be used depending on the 

computational problem. Because it requires multiple experiments and there is no general 

formula for setting good hyperparameters, hyperparameter tuning is a time-consuming task 

[119]. In this study, the hyperparameter value was determined through a series of 

experiments. Below is the definition of some hyperparameters and their value is mentioned. 

Finally, the summary of hyperparameter values is summarized in Table 5-1. 

Optimization algorithm: it allows the model to learn faster and perform better. There 

are a variety of optimization methods, including Adam and RMSprop, which were tested at 

learning rates of 0.01. When training a neural network, choosing the correct optimization 

algorithm is crucial. 

The Learning Rate: the value of a neural network is also a tunable hyperparameter. This 

value of a neural network is used to train a neural network with a value between 0.0 and 1.0 

is usually specified.  

A slow learning rate necessitates multiple training epochs and weight changes, whereas a fast 

learning rate necessitates a rapid change in the training epoch. Choosing a learning rate that is 

neither too high nor too low is one of the most difficult aspects of creating a neural network 

model. After several rounds of testing, a learning rate of 0.01 was chosen to build the 

proposed model. 
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Loss Function: A loss function, also known as a cost function.  Let y denote the actual 

output, 𝑦 =predicted output, and K= number of classes. Then, 𝑦 − 𝑦  was calculated utilizing a 

cost function called cross-entropy (CE). Binary cross-entropy is used for binary classification 

problems. In this study, a binary CE was used to build the proposed model because two 

classes exist. 

Number of Epochs: Count how many times the neural network has been exposed to 

training data. According to the proposed model, the optimal number of epochs discovered 

through experimentation is 10. 

Batch Size: The batch size refers to the number of subsamples sent to the network for 

parameter updates. Batch size is set to 32, 64, 128, and so on by default. Batch sizes of 32 

and 64 were used for experimentation. 

Activation Function: This is a function responsible to fire or not firing a neuron based on 

some inputs. The proposed model uses a nonlinear activation function termed ReLU after 

each convolution layer. The ReLU activation function is applied in a variety of machine 

learning problems since it does not suffer from the vanishing gradient problem and leads to 

faster computations [105]. Additionally, Sigmoid and Softmax activation functions have been 

experimented with for the last layer activation function. 

Table 4-1: Hyperparamter value summary 

Hyper parameters Value 

Optimization algorithm Adam 

Learning rate 0.01 

Activation fun (Last 

layer) 

Sigmoid 

Loss function Binary cross-entropy 

Epoch 10 

Batch size 32 

Dense layer (neuron) 256 

4.4 Experimental Scenarios 

The process of building a deep learning model requires repetitive experimentations because 

the optimal value of the parameter and hyperparameter have a great impact on the 
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performance. To select the best-performing model of CNN, five scenarios were used for 

experimentation. The scenarios used for experimentation are generalized as follows. 

Scenario 1: Setting the dense layer (neuron) to 256 

Table 4-2: Experimental scenario #1 

Optimization algorithm Adam  

 

 

Scenario #1 

 

Learning rate 0.01 

Activation fun (Last layer) Sigmoid 

Loss function Binary cross-entropy 

Epoch 10 

Batch size 32 

Dataset splitting 80%-20% 

Dense layer (neuron) 256 

Output  

Execution time 563.301 sec  

Training accuracy 0.9761 

Validation accuracy 0.9773 

Testing accuracy 0.9772 

Scenario 2: Configuring activation function (Softmax), number of epochs (20), and Dense 

layer neuron (64) 

Table 4-3: Experimental scenario #2 

Optimization algorithm Adam  

 

 

Scenario #2 

 

 

         Scenario #2 

Learning rate 0.01 

Activation fun (Last layer) Softmax 

Loss function Binary cross-entropy 

Epoch 20 

Batch size 32 

Dataset splitting 80%-20% 

Dense layer (neuron) 64 

Output  

Execution time 68.124 sec  

Training accuracy 0.260 

Validation accuracy 0.301 

Testing accuracy 0.301 
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Scenario 3: Setting optimization algorithm (RMSprop), Activation Function (Sigmoid), 

Epoch (10). 

Table 4-4: Experimental scenario #3 

Optimization algorithm RMSprop  

Learning rate 0.01 

Activation fun (Last layer) Sigmoid 

Loss function Binary cross-entropy 

Epoch 10 

Batch size 32 

Dataset splitting 80%-20% 

Dense layer (neuron) 64 

Output         Scenario #3 

Execution time 605.537 sec  

Training accuracy 0.970 

Validation accuracy 0.958 

Testing accuracy 0.958 

Scenario 4: Setting data splitting 90%-10% (training and testing) 

Table 4-5: Experimental scenario #4 

Optimization algorithm Adam  

 

 

        Scenario #4 

 

Learning rate 0.01 

Activation fun (Last layer) Sigmoid 

Loss function Binary cross-entropy 

Epoch 10 

Batch size 32 

Dataset splitting 90%-10% 

Dense layer (neuron) 64 

Output  

Execution time 623.470 sec  

Training accuracy 0.977 

Validation accuracy 0.978 

Testing accuracy 0.978 

Scenario 5: Setting the data splitting (90%-10%) with an epoch size of 20. 
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Table 4-6: Experimental scenario #5 

Optimization algorithm Adam  

 

 

Scenario #5 

 

     Scenario #5 

Learning rate 0.01 

Activation fun (Last layer) Sigmoid 

Loss function Binary cross-entropy 

Epoch 20 

Batch size 32 

Dataset splitting 90%-10% 

Dense layer (neuron) 64 

Output  

Execution time 1153.151sec  

Training accuracy 0.978 

Validation accuracy 0.978 

Testing accuracy 0.978 

4.5 Experiment Results Discussion 

All of the tests were conducted using the Google Colab cloud editor with the GPU accelerator 

turned on. Because it offers free GPU and RAM, both of which are critical for deep learning 

research. As mentioned in the hyperparameter selection sub-section, the study experimented 

on five scenarios with different parameters, hyperparameter values, and cases. Although 

some of the scenarios have nearly equal training, validation, and testing accuracy, the 

execution time varies. The scenarios with the shortest execution times were chosen.  

The five scenarios assisted to select the best performing SQLI model. Among five cases, the 

first scenario (Scenario #1) achieved a score of 0.98% testing accuracy with an execution 

time of 563.301 sec which is a promising result. Then, the model was evaluated using the 

evaluation metrics mentioned in the earlier section. The optimal hyperparameter and the 

evaluation metrics of the proposed model are described as follows. 

 

Figure 4-3: Scenario #1 Evaluation value 
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Figure 4-4: Confusion metrics for scenario #1 

 

Figure 4-5: Accuracy calculation code snipet 

 Accuracy : 0.977 

 

Figure 4-6: Precision calculation code snippet 

Precision : 0.933 

 

Figure 4-7: Recall calculation code snippet 

Recall: 0.996 

Table 4-7: The proposed model result summary 

Proposed Model Result Summary 

Execution time 563.301 sec 

Training accuracy 0.9761 

Validation accuracy 0.9773 

Testing accuracy 0.9772 
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Experiment Scenarios Summery  

The process of building a deep learning model requires repetitive experiments because the 

optimal value of the parameter and hyperparameter have a great impact on the performance. 

To select the best performing model of CNN given scenarios were used for experimentation. 

Table 4-8: Scenario summary 

Scenarios Scenarios 1 Scenarios 2 Scenarios 3 Scenarios 4 Scenarios 5 

Learning rate 0.1  0.01 0.01 0.01 0.01 

Activation 

Function  

Sigmoid Softmax Sigmoid Sigmoid Sigmoid 

Loss function Binary 

Cross-

entropy 

Binary Cross-

entropy 

Binary Cross-

entropy 

Binary Cross-

entropy 

Binary 

Cross-

entropy 

Epoch 10 20 10 10 20 

Batch Size 32 32 32 32 32 

Dataset Split 80 % - 20 % 80 % - 20 % 80 % - 20 % 90 % - 10 % 90 % - 10 % 

Dense Layer 256 64 64 64 64 

Output Execution 

Time  

563.301 Sec 68.1245 Sec 605.537 Sec  623.470 Sec 1153.151 

Sec 

Training 

Accuracy 

0.9761 % 0.260 % 0.970 % 0.977 % 0.978% 

Validation 

Accuracy 

0.9773 % 0.301 % 0.958 % 0.978 %  0.978 % 

Testing Accuracy 0.9772 % 0.301 % 0.958 % 0.978 % 0.978 

Scenario   1 

 

Figure 4-8: Scenario 1 visualization 
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Scenario 2 

 

Figure 4-9: Scenario 2 visualization 

Scenario 3 

 

Figure 4-10: Scenario 3 visualization 

 

 

Scenario 4 

 

Figure 4-11: Scenario 4 visulization 
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Scenario 5 

 

Figure 4-12: Scenario 5 visulization 

One of the ways to find out whether the ML or DL models are overfitted, underfitted, or 

fitted is to generate the training and validation graph. The graph provides information in a 

way that the training and validation graph has a huge graph the model most likely overfitted, 

and it required some technique to solve the problem. On the other hand, if the gap between 

the training and validation graph is small the model is most likely fitted right. Depending on 

the above definition, the proposed model is fitted right. The training and validation accuracy 

of the proposed model is depicted in below Figure.  

 

 

 

 

 

 

 

 

 
Figure 4-13: The proposed model 
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Here presented a sample test of the proposed SQLI prevention model. 

 

 

 

 

Figure 4-14: Sample testing of the proposed model 

 

 

 

CHAPTER FIVE 

CONCLUSIONS & RECOMMENDATIONS 

5.1 Introduction 

SQL injection attack is one of the major security challenges. As stated in the previous 

chapters, the SQLI attack creates a portal through which an attacker can gain direct access to 

a database server, allowing them to retrieve sensitive information. The attack can have 

varying effects depending on the database application, as well as various other possible 

effects. Hence, the proposed deep learning model is capable of preventing SQLIA prevention 

with high accuracy. 
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5.2 Conclusion 

In this study, the CNN model was built to prevent an SQLI, and the experimentation used a 

public benchmark dataset. The proposed model can be used as a tool for SQL injection 

prevention, and also having a sufficient dataset the performance of the model will improve. 

The experimentation used a CNN algorithm trained with deep learning, with different 

hyperparameter values and scenarios. Finally, the proposed model has achieved a truly 

outstanding result compared to all the other scenarios. The model has achieved an execution 

time of 563.301 sec, training accuracy of 0.9761, validation accuracy of 0.9773, and testing 

accuracy of 0.9772. 

5.3 Contributions 

There are currently large web applications that make use of a database. As a result, SQLI has 

become the most common cyber security threat. In this study, a SQL injection prevention 

model was developed that is capable of accurately detecting and classifying cyber security 

threats. The proposed work focuses on preventing attacks through the use of a deep learning 

approach, and the results are promising. Lastly, the study’s contributions are: 

i. Developing a model: Several experimental scenarios were used to test our SQLI 

prevention model. The experimentation used the state-of-the-art deep learning algorithm 

called CNN (Convolutional Neural Network). 

ii. Preparing dataset: Even though the dataset used for the model is a publicly available 

benchmark dataset, the data preprocessing and labeling was implemented on the dataset. 

5.4 Recommendations 

As mentioned in the above sections, the major web application which uses a database is 

exposed to an SQLI attack. The attack can be prevented by building a model using deep 

learning or machine learning. The challenging part of the experimentation was to get a 

sufficient dataset to train the neural network. The performance of the model depends on the 

amount of dataset because the more data the neural network trains the better to detect and 

classify the attack. 
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SQLI attack prevention can be achieved using different approaches and algorithms. 

Therefore, other researchers and students suggested exploring other deep learning algorithms 

like Ensemble learning, RCNN, and LSTM for the prevention of SQLI. In addition to this, 

hardware tools such as GPU, high-performance RAM, and CPU greatly help minimize the 

effort to train the neural network and produce a good result and A better results can also be 

derived if we combined CNN with LSTM for enhancing with the highest prediction accuracy. 
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