

DEVELOPING SQL INJECTION PREVENTION MODEL

USING DEEP LEARNING TECHNIQUE

A Thesis Presented

by

Abenezer Ketema

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Computer Science

July, 2022

ii

ACCEPTANCE

Developing SQL Injection Prevention Model Using Deep Learning

Technique

By

Abenezer Ketema

Accepted by the Faculty of Informatics, St. Mary’s University, in partial

fulfillment of the requirements for the degree of Master of Science in

Computer Science

Thesis Examination Committee:

__

Internal Examiner

Dr.Alembante Mulu

External Examiner

Dr. Melkamu Hunegnaw(PhD)

__

Dean, Faculty of Informatics

Dr.Alembante Mulu

June 23, 2022

iii

DECLARATION

I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other university, and all sources of materials used

for the thesis work have been duly acknowledged.

Abenezer Ketema

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as an advisor.

Advisor: Dr. Minale Ashager (PhD)

Signature

Addis Ababa, Ethiopia

June 23, 2022

iv

Acknowledgment

First and foremost, I would like to thank the almighty God for his divine guidance and

constant support throughout this study. I would also like to express my deepest and most

sincere gratitude to my advisor, Minale Ashagre (PhD.), for his tireless efforts in helping me

with this study. Additionally, I would like to thank him for his continuous support of my MSc

research, his patience, motivation, enthusiasm, and immense knowledge. His guidance helped

me in all aspects of my research and writing of this thesis. I could not have imagined

finishing my thesis without his support and encouragement.

I am extremely grateful to Natnael Tilahun, and Ashenafi Worku Wondimu for giving me

their comments and suggestions to complete the thesis. And I would like to thank all staff

members of St. Mary University and the Department of Computer Science in particular for

their enormous assistance. Last but certainly not least, I would like to express my deepest

gratitude to my parents for helping, supporting, and encouraging me not only within this

paperwork process but also throughout my life.

v

Table of Contents

Acknowledgment .. iv

List of Figures .. x

List of Tables .. xi

Abstract .. xii

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1. Background of the Study ... 1

1.2. Motivation ... 2

1.3. Statement of the Problems... 2

1.4. Objective ... 4

1.4.1. General Objective .. 4

1.4.2. Specific Objectives .. 4

1.5. Methods ... 4

1.5.1. Literature Review... 4

1.5.2. Data collection ... 4

1.5.3. Prototype Development ... 5

1.5.4. Testing and Model Evaluation ... 5

1.6. Scope and Limitation .. 5

1.7. Significance of the Study .. 5

1.8. Structure of the Thesis... 6

CHAPTER TWO ... 7

LITERATURE REVIEWS AND RELATED WORKS ... 7

2.1 Introduction ... 7

2.2 Cyber Security .. 7

2.3 SQLIA ... 7

2.4 How Does SQL Injection Work? .. 7

2.5 SQLIAs Type .. 9

2.6 SQLIA Prevention .. 12

vi

2.6.1 Static Prevention Techniques .. 13

2.6.1.1 Byte Code Review ... 13

2.6.1.2 Parameterized Queries ... 13

2.6.1.3 Access Controls Based on Roles ... 14

2.6.1.4 Stored Procedures .. 14

2.6.2 Static and Dynamic Methods .. 14

2.6.2.1 Anomaly-Based SQLI Detection and Prevention .. 14

2.6.2.2 Signature Based ... 15

2.6.2.3 Code Analysis .. 15

2.6.2.4 Program Query Language .. 15

2.6.3 Dynamic Methods ... 15

2.6.3.1 Honey Tokens .. 15

2.6.3.2 Web Requests .. 15

2.6.3.3 All User-Provided Data Is Removed ... 16

2.6.3.4 Hashes .. 16

2.6.3.5 Allow-List Input Validation .. 16

2.6.3.6 Avoid Administrative Privileges Or Follow The User Access Principle 16

2.6.3.7 Web Application Firewall ... 17

2.7 Machine Learning (ML) .. 17

2.7.1 Supervised ML ... 17

2.7.2 Unsupervised ML... 18

2.7.3 Decision Tree ... 18

2.7.4 Semi-Supervised ML ... 18

2.8 Deep Learning ... 18

2.9 Related Works ... 20

2.10 Static Approach ... 21

2.11 Dynamic Approach .. 23

2.12 Hybrid Approach ... 23

CHAPTER THREE ... 33

vii

THE PROPOSED SQLIP MODEL ... 33

3.1 Introduction ... 33

3.2 System Architecture .. 33

3.3 Dataset Preparation ... 34

3.3.1 Data Collection .. 34

3.3.2 Understanding SQLI Data .. 35

3.3.3 Business Process Understanding.. 35

3.3.4 Data Formatting ... 35

3.4 Algorithm Selection .. 36

3.5 Feature Selection ... 36

3.6 Data Splitting... 37

3.7 Feature Extraction ... 37

3.8 SQLIA Prevention via Classification .. 38

3.9 The Proposed Model Components .. 38

3.9.1 Convolutional Layer .. 38

3.9.2 Pooling Layer ... 39

3.9.3 Fully Connected Layers ... 39

CHAPTER FOUR ... 40

IMPLEMENTATION & EVALUATION .. 40

4 Introduction .. 40

4.1 Tools and Experiment Setup ... 40

4.2 Evaluation Techniques .. 42

4.3 Hyper parameter Selection & Experimental Scenarios ... 44

4.3.1 Hyper parameter Selection ... 44

4.4 Experimental Scenarios ... 45

4.5 Experiment Results Discussion ... 48

CHAPTER FIVE ... 53

CONCLUSIONS & RECOMMENDATIONS.. 53

5.1 Introduction ... 53

viii

5.2 Conclusion .. 54

5.3 Contributions... 54

5.4 Recommendations ... 54

Appendix.. 63

ix

List of Acronyms and Abbreviations

ANN

CONF

DBMS

:Artificial Neural Network

:Confusion

: Database Management System

DL : Deep Learning

Metr : Metrics

ML : Machine Learning

RQ : Research Questions

SQL : Structural Query Language.

SQLIA : Structural Query Language Injection Attack

SQLIAP : Structural Query Language Injection Attack Prevention

WAF : Web Application Firewall

XML : Extensible Markup Language

x

List of Figures

Figure 4-1: System architecture ... 33

Figure 4-2: Distribution of dataset ... 34

Figure 4-3: Sample dataset... 35

Figure 4-4: Feature extraction ML and DL.. 37

Figure 4-5: The Proposed SQLIAP model... 38

Figure 5-1: Software tools and implementations ... 42

Figure 5-2: Evaluation metrics... 42

Figure 5-3: Scenario #1 Evaluation value .. 48

Figure 5-4: Confusion metrics for scenario #1 .. 49

Figure 5-5: Accuracy calculation code snipet .. 49

Figure 5-6: Precision calculation code snippet .. 49

Figure 5-7: Recall calculation code snippet ... 49

Figure 5-8: Scenario 1 visualization .. 50

Figure 5-9: Scenario 2 visualization .. 51

Figure 5-10: Scenario 3 visualization .. 51

Figure 5-11: Scenario 4 visulization .. 51

Figure 5-12: Scenario 5 visulization .. 52

Figure 5-13: The proposed model .. 52

file:///C:/Users/Sinsh/Downloads/Final%20may%2017%202022%20docuemnt.docx%23_Toc103947142
file:///C:/Users/Sinsh/Downloads/Final%20may%2017%202022%20docuemnt.docx%23_Toc103947144
file:///C:/Users/Sinsh/Downloads/Final%20may%2017%202022%20docuemnt.docx%23_Toc103947145
file:///C:/Users/Sinsh/Downloads/Final%20may%2017%202022%20docuemnt.docx%23_Toc103947157

xi

 List of Tables

Table 2-1: Sample SQL query ... 9

Table 3-1: Summary of SQLIA prevention using ML and DL ... 26

Table 5-1: Hyperparamter value summary .. 45

Table 5-2: Experimental scenario #1 ... 46

Table 5-3: Experimental scenario #2 ... 46

Table 5-4: Experimental scenario #3 ... 47

Table 5-5: Experimental scenario #4 ... 47

Table 5-6: Experimental scenario #5 ... 48

Table 5-7: The proposed model result summary ... 49

Table 5-8: Scenario summary .. 50

xii

Abstract

Cyber security is the study of all aspects of communication security and privacy, and it is

dedicated to protecting computer systems from attacks that compromise the hardware,

software, or information. A Structured Query Language Injection is one of the most common

cyber security attacks on the database of a web application. The attack is a common and

dominating type of major web application assault, as well as one of the most serious cyber

security threats in which hackers gain access to data. A hacker could simply gain

unauthorized access to the web application's underlying database, giving them complete and

total control of the system. Many methods and approaches for preventing Structured Query

Language Injection Attacks have been developed by several researchers. A deep learning

Convolutional Neural Network was used to create a model to prevent Structured Query

Language Injection Attacks in this study. In this study, the primary data was collected from

Kaggle (SQL injection attack dataset) and it contains a total of 4,199 number SQL injection

attacks query and normal text. the data splitting used is 80%-20% for training and testing

respectively Furthermore, 90%-10% of data partitioning has experimented. The experiment

conducted suggests the 80%-20% data splitting achieved a good result, In addition, the

proposed model was built using five different scenarios in the experiment. The scenarios have

different parameters and hyperparamter values. Finally, according to the classification metrics

report, the proposed model has a 97% accuracy in detecting and preventing Structured Query

Injection Attacks while testing with unseen data. Finally, the proposed model produced

promising results when tested on an unknown dataset.

Keywords: Convolutional Neural Networks, Structured Query Language Injection Attack,

Cyber Security, Structured Query Language

1

CHAPTER ONE

INTRODUCTION

1.1. Background of the Study

Cybersecurity is just the study of all elements relating to the security and privacy of

communications. Cybersecurity is committed to securing computer systems from assaults that

may compromise the hardware, software, or information. Permitting unauthorized usage may

lead to leaking sensitive information and causing harm or disruption [1]. Thus it requires an

action or process, capacity, or state through which information stored within computer

systems should be secured and/or defended against harm, unlawful use, alteration, or

exploitation [2].

Structured Query Language (SQL) is a program used to organize, manage, and extract

information from a computer database. In truth, SQL only works with one form of database,

known as a relational database, and it also allows a user to determine the structure and

organization of the stored data and also as the connections between the recorded data items.

SQL allows a user or application software to obtain and utilize stored data from the database.

It also lets a user or an application program modify the database via inserting new data,

deleting old data, and changing previously stored data. SQL is a complete language for

operating and communicating with a database administration system [3].

Structured Query Language Injection (SQLI) is just a sort of attack in which the attacker

obtains access by entering simple SQL code into a web form input box gaining access to alter

data as necessary [4]. An assailant can take full use of this weakness to send direct orders to

the underlying database of a web application to lose functionality or confidentiality [5].

Structured Query Languages Injection Attacks (SQLIA) is a method through which hackers

obtain access to data, as well as a common and dominating type of major web application

assault [6]. A hacker may simply acquire unlawful access to the underlying database of the

web application, acquiring complete control over the system [6]. Researchers have developed

many ways of preventing this issue [7] [8] [9]

2

However, there is still a research gap regarding SQLIA. For instance the research by Abay. et

al. [7] Work didn’t address various parameters to analyze SQL injection attacks. Mamdouh

Alenezi et al. [8] Work didn’t address the overhead rate of detection and the rate of false

positives is not also examined. Nanang. [9] Work didn’t address, the model that has been

created is not evaluated because of the limited dataset. Therefore, in this research, an SQLIA

Prevention model to prevent SQLIA using a deep learning algorithm is proposed.

1.2. Motivation

SQLIAs include access to a database without authorization, extraction of information from a

database, modification of an existing database, the elevation of user privileges, or the cause of

an application malfunction. At Unity University on January 21, 2020, SQLIA happened, and

this attack caused a serious problem in the centralized database. The attackers use SQLI to

gain access to information kept in the database server and modify database information,

access sensitive data, and all student grades, and attendance lists generated by a system for

one semester were lost. Therefore, we wanted to develop a model by using deep learning that

will prevent SQLIAs.

1.3. Statement of the Problems

Several projects have been completed in recent years to solve or overcome SQLI problems.

Musaab Hasan et al. [10], proposed a model to prevent SQLIAs, they have developed a

model using a heuristic-based machine learning approach. In this study, they integrated the

advantages of dynamic and static analysis with a machine learning approach. It was decided

to use a well-studied dataset that contained all possible SQL statements. MATLAB was used

to develop the model in a study. They used 23 various machine learning classifications to

train the dataset and test it. The top five of the 25 classifiers are then selected going to depend

on the outcomes of the actual positive and actual negative rates. After the classification

learners completed the training, they checked the precision of each classifier. To get 93.8%

they employed the five most effective and accurate classifiers. To improve system

performance, they should include non-injected SQL statements in their dataset and

investigate and test additional functions. The drawback of this work is small test dataset is

used.

3

In QI LI. et al. [11], proposed a technique based on an adaptable deep forest algorithm for

identifying sophisticated SQLI attempts. To concatenate the inputs of each layer, the average

of the previous outputs was collected and combined with the raw feature vector. As a result,

deep forest structures are more optimal for this study. After that, they devised a strategy

referred to as the Adobos-based deep forest model. According to experimental data, the

suggested detection model SQLI consists of two steps. Offline classes and online testing were

in two phases. A total of ten thousand SQL injection samples were gathered. UNION query,

executer SQL instructions, error-based injection, and blind injection were among the features

collected from various datasets. The drawback of this work is for large –that scale of data it

doesn’t perform very well and it has lower computational efficiency and better detection

accuracy on fewer samples

The author Krit Kamtuo et al. [12] proposed avoiding server-side SQLI through machine

learning. According to this paper, the much more widely known is SQLI security

vulnerability in online applications discovered by the US National Security Agency. This

framework was created to extract SQL instructions from data and was created to allow

getting SQL statements out of a dataset and mark the dataset as an input attribute. Input

attributes are passed to the machine learning model to predict SQL injection. This study

describes machine learning models, research approaches, and plans. According to the author,

variables that receive user-supplied values input are dependent, so there is a risk of SQL

injection if hostile SQL statements as user input are mixed with the basic task. By training the

model with 1100 samples, the author was able to find out which instructions needed to be

avoided and eliminate such weaknesses. This framework needs to improve its ability to detect

and predict SQL injection web-based applications by validating SQL syntax. How to detect

and block SQLI.

SQLIAs impact many businesses, hence this research work focus on SQLIA prevention.

Given the prior research's limitations such that it is not further studied on SQLIAs and

examines these attacks depending on many aspects as well as due to the limits of the dataset

they have, evaluating the model that has been created is challenging. In this research, we

propose robust deep learning or a machine learning technique for preventing SQLIAs. The

research work attempt to address the following research questions.

RQ1: How to develop a SQL injection prevention model using deep learning methods?

4

RQ2: What is the effectiveness of the SQLI prevention model?

1.4. Objective

1.4.1. General Objective

The general objective of this study is to develop an SQLIA prevention model via a deep

learning technique

1.4.2. Specific Objectives

To meet the overall purpose of the study, the following specific objectives are developed.

 To conduct a literature review on SQLI detection and prevention methods

 To select an appropriate methodology and tool to build an SQLI prevention model

 To identify deep learning techniques to design prevent SQLI preventing model

 To assess the model’s performance using benchmark datasets

1.5. Methods

1.5.1. Literature Review

Examine further literature on this topic to better understand SQLIA injection attacks and

clarify specific solutions to the problem. Criticism of related works will help to obtain the

necessary information concerning a specific subject and determine the most appropriate

strategy and tools to address the identified challenge. The literature review method

concentrates more on the SQLI prevention using various methods such as machine learning

which will give us a better understanding and expertise and helps to keep the research going

as planned. As a result, books and scientific publications are reviewed more deeply.

1.5.2. Data collection

Our approach is machine learning-based and it necessitates a vast amount of data to finish the

task. The SQLIA sample dataset that we are going to utilize was obtained from Kaggle's

website [13].

5

1.5.3. Prototype Development

Certain components are needed to develop a prototype to fill the research gap. Various

approaches have been evaluated to build machine learning models that help prevent SQLIAs.

Machine learning models that help prevent SQLIAs have been studied using a variety of

methods. Python is a computer programming language utilized in the implementation of

recommended model algorithms.

1.5.4. Testing and Model Evaluation

The study utilizes assessment metrics, such as accuracy, to assess the effectiveness of the

suggested model. The Accuracy metric assesses how well our model works with the data.

1.6. Scope and Limitation

This research focuses on strategies to prevent SQLIA. As previously stated, SQLI is a cyber

assault used to obtain control of a database and steal data from it. This study focused on

preventing some types of SQLIAs and insider exploitation attacks in a DBMS environment

by developing a valid framework. The limitation of this investigation is the fact that dozens

of cyber security threats, of which this research paper deals only with SQLIA prevention

against databases. Researchers believe that the main limitation is not having sufficient cyber

security experience to carry out investigations at the level we should be.

1.7. Significance of the Study

The application of this thesis work could potentially be used to protect all types of data

against theft and damage, so companies would not have to worry about unauthorized users

accessing their data. Furthermore, it increases the detection and catches rate for threats by

stopping them before they reach the database, and also this application contributes to greater

safety services in the organizations, as it provides greater security and protects the

organizations' data. To sum up, it maintains and supports all the mechanisms that prevent

SQL Injection attacks.

6

1.8. Structure of the Thesis

This document is composed of six sections. Chapter two is about works of literature review

and related works this contains a survey of SQLIAs mitigation in many articles, a

dissertation, and previous work on this particular topic and then Chapter three presents the

proposed model, and its components then Chapter four presents the implementation and

experimental result of the proposed system and also describes the overall approach, research

design/methods, data collection methods, and procedures, experimentation methodologies,

and techniques, validity, and reliability are all discussed in this section. Chapter five focuses

on the conclusion of the study according to the findings as well as provides possible

recommendations for future SQLI prevention using other approaches and algorithms.

7

CHAPTER TWO

LITERATURE REVIEWS AND RELATED WORKS

2.1 Introduction

In this chapter, cyber security, SQLIA, how SQLI works, several forms of SQLIAs,

protection of multiple kinds of SQLIA, and machine learning techniques including

supervised, unsupervised, decision trees, and deep learning, and explain the related works of

other scholars on SQLIA will be discussed in depth.

2.2 Cyber Security

A set of procedures aimed at safeguarding a customer's or organization’s digital environment

and responsible for methodologies used to secure organizations, applications, and information

from unapproved access. Shielded from digital dangers by a web-associated framework

containing equipment, programming, and information [14]. cyber security is Measures

undertaken that secure computer systems from illegal access or attack or actions taken to

preserve an individual, organization, or country and their computer information against

internet-based crime or cyber-attacks or the state of being safe from illegal or unlawful use of

electronic data, or the techniques used it to acquire it [15].

2.3 SQLIA

If the SQL injection assault is effective, it reads sensitive information from the database alters

the database information embeds, upgrades, and erases perform database [16]. An SQLIA

could be a shape of injection assault in which a preset SQL command is injected into the

information plane's input and executed [17].

2.4 How Does SQL Injection Work?

First, SQLI is defined, and then go through how SQLIA works, including the notion and

logic behind it, how SQLIA may be used to get information from web applications, and

finally, how to avoid SQLIA is also defined. SQLI is the best-known assault and requires a

web application that uses a database. For example, consider the web application, which uses a

8

database. This web application may take into account user input as well as put it away in the

database, or it may obtain information from a database and display it to the user. What occurs

in either situation is the SQL or database query that is generated on the web application and

sent to the database, where it is run and relevant data is written by the web application. So,

SQLI is that it manipulates database queries to make them do something are not supposed to

do, so modify the SQL query, inject a malicious string into it, and then force it to do

something it is not supposed to. When the attacker changes a SQL query, and then this

malicious query is submitted to the database, where it is run and appropriate results are

returned. SQL may be a code infusion component for executing malicious SQL statements

take a closer look at how SQLI works with a website that requires a passcode and user name

for login. A lot of web applications consistently require logging in first. Examples include

Facebook, Gmail, and Twitter. So, to obtain the features as well as functional divisions of the

web application, you must first log in to the web application, which normally entails

providing the Password and user name.

Because SQLI only works on web applications that use databases, and while it is assumed

that the details of usernames and passwords are recorded and stored in the database, the

database and the database table containing all of the usernames and passwords are kept in the

database. So, after entering the login information, we press the submit or login button, and

the information is transferred to the database and cross-checked against the table If none

exist, database clients who match that username and password can log in successfully in the

database table, we could still problem to successfully log in. However, if such a thing exists a

user with that username the password entered is incorrect the login is ineffective. In general,

a login is effective if the SQL query yields some values or returns true values. If this SQL

query produces false results, the login is invalid.

As a result, SQLIA is a database attack that alters SQL queries so they return true, even if the

attacker does not know the username or password. How can this be accomplished, though?

Use a logic gate known as an OR logic gate to accomplish this. Let's start with the OR logic.

The OR logic functions B. a and b, which accept two inputs and produce one output, are as

follows: If both inputs are false, the outcome will then be false. If one’s inputs are correct, the

result is genuine. If all is true, the outcome is true of inputs are true. If one’s inputs are

genuine, the result will always be genuine, regardless of the other inputs. Last, the yield will

9

continuously be genuine if any inputs are genuine. This SQLIA feature or function has a SQL

query, and the goal is for this SQL query to return true. As a result, we'll update the SQL

query to something like this.

Table 2.4-1: Sample SQL query

 Select * from the user

 Where

 Username = ‘’ OR 1=1- -’

 The primary inverted coma is utilized to close the string parameter at whatever When you

type something into a web application's input box, it's when it's handled like a string initial

inverted comma is used to close this parameter string parameter in most circumstances,

notably when it comes to user names and passwords, and then there's the OR function. Then

there's the expression 1 = 1, which includes two inputs, one on the left and one on the right as

can be seen. What we're interested in is the statement 1 = 1, which is the right side of the OR

function, One is always equal to one, and if one of the OR function's arguments is true, the

other input is true as well. This returns true since one is always one and that is true, hence the

SQL query always returns true. This sign (‘’) is used to comment on the remaining SQL

query, thus the SQLI doesn't matter after that. The SQL query will also return true if the OR

function returns true, indicating that the login was successful. SQLI works in this manner.

2.5 SQLIAs Type

SQL-Infusion may be abused under a variety of various methods and can cause major

problems. It will also be used by an aggressor to evade acknowledgments and access changes

and erase data stored in the database SQL injection. It is also possible to use it to carry out

action commands in the computer system in specific situations. This could lead to a more

malicious attack on the network behind the firewall [18]. There are multiple kinds of SQLI,

which are detailed below.

10

 Tautology: This is a typical injection attack when the query is manipulated to

always evaluate to true after execution. They are able to log in as administrators or

even completely fictitious individuals after Hackers can gain access by inserting code

into a conditional expression [19]. The main purpose of this type of attack is to access

the application without providing a valid username or bypassing authentication to

extract data.

 Illegal or Logically Incorrect Queries: The blunder message produced by a

web server contains important information for debugging. The attacker intentionally

executes the incorrect queries to find the vulnerable parameters from the error

message [20]. The primary goal is to find important information from the database

based on the error message or logical error returned [21].

 Classic or in the band: a most popular and simplest Classic SQLI is utilized to

take advantage of SQLIA. This is brought in-band SQL infusion when an aggressor is

capable send off an assault and collecting results over a comparable communications

channel [22].

 Error-based: In this sort of SQLIA, the attacker creates an incorrect SQL

command statement as the attack payload and sends the system anomalous error

information. The attack was a successful use of such a system by using this overly

suggestive abnormal error information [23].

 Union Query: Attackers exploit parameter flaws to change query results This

method could be used by an assailant to fool a program into returning data from a

table That was not the developer's intention; the developer's primary goal is to use

union queries to reveal sensitive data, including configuring the operator [24].

 Blind SQLI: An attack known as blind SQL injection involves the attacker posing

true-false questions to a database and then determining the response based on the

application. This approach is frequently it's when a web app is set up to show generic

error messages but the vulnerable code has not been fixed [25]. The main purpose is

to ask a series of logical questions about SQL statements and not to forget or hide the

error message.

 Buffer Overflow: These types are almost the equivalent attack, the main

distinction is that the nearby assault is not a network assault. The buffers are

11

polluted with outside information, causing overflows and being utilized as a chance

for pernicious activity [26].

 Piggy-Backed Query: it’s a kind of attack some extra SQL statements that are

malicious are introduced into the database to the unique query at once to corrupt the

database. This assault does now no longer alter the authentic question assertion just

like the tautology assault, however it locations a further assertion following the SQL

query with a semicolon [27]. The purpose of these types of attacks is to alter or steal

data, delete or delete facts maliciously, extract data, upload or alter data, carry out

denial of provider and execute far-off commands.

 Stored Procedures: with this approach stored methods are helpless to assailants

who abuse databases. Stored procedures are code that is put inside the database and

achieved at once through the database engine [28]. Its main motive is to carry out

command execution operations to get entry to the host working machine through an

acting denial of service, privilege escalation, and remote commands.

 Inference: This category might be utilized for injection-vulnerable parameters and

subsequently retrieve data from their schema-identified database. The important

reason is to discover injectable parameters, extract facts, and determine database

schema [29].

 Alternate Encodings: attackers try and hide the inserted textual content and keep

away from detection through protective coding strategies and automatic prevention

strategies. This sort of assault happens when attackers use alternative encoding,

including hexadecimal, ASCII, and Unicode to alter the injection request. The

principal reason is to apply opportunity encodings (together with hexadecimal or

ASCII) to cover the attacker's sample and keep away from detection [30].

 Conditional errors: If the WHERE articulation is correct, it limits or forces the

database to evaluate the message that caused the error, resulting in a SQL error [31].

 Function Call Injection: You can use program functions to run your web

application, process database queries, make internal calls within your web application,

and modify your application's data [32].

 Escape characters with proper filtering: This attack doesn't stop the user

from writing something they don't want to write, so it's passed to the SQL statement.

12

Finally, it only creates complications for users when they’re working with SQL

statements [33].

 Second-Order Injection: To carry out this attack an insert command plays an

important role. To insert the information into the database, the attacker first uses the

user's authorization to execute the insert request. The attacker then used the data to

control the database [34].

 Timing Attack: Time delay is a kind of blind SQL injection. According to the

logic inserted, the SQL engine can execute long queues or time-delayed instructions.

An attacker can find out by measuring the time it takes for a page to load if the

inserted statement is true and an attacker collects information by observing the

response time (behavior) of the database [35]. The main purpose is to use the "wait

for" keyword to delay the outcome of the database.

 Conditional response: Attackers gather information by monitoring the response

time (behavior) of the database. Such an injection proves that blind SQLI is possible

and an attacker is being allowed to plan a statement that can determine reliability

based on the contents looking at a different situation [36].

 Database server vulnerabilities: The Vulnerability will exit within the

underlying software system, web application, or database system itself. Hackers

usually test for SQL entry vulnerabilities by sending application input that causes the

server to generate invalid SQL queries. The server then sends a message of failure to

the client allowing the attacker to succeed in an SQLIA based on the error, even if

user input is hidden [37].

The next stage is to avoid SQLI once grasped the fundamentals of SQLI and the many types

of SQLI. SQLIA protection is needed to prevent cybercriminals from extracting sensitive

data. For example, credit card numbers, deleting or altering data, deleting tables, stealing

credentials, and inserting malicious code. The approach described here shows how to avoid

SQLIAs [38].

2.6 SQLIA Prevention

The greatest danger to web managers remains SQL injection assaults, but website owners can

take action to reduce the risk [39]. The SQLIAs prevention of methods is listed below.

13

2.6.1 Static Prevention Techniques

These techniques are very host language-specific, depending on your domain-specific

knowledge of how to build queries within the language to identify injection attacks. For

SQLIA, it analyses the SQL query statement also on web applications for preventing SQLIA

[40]. Static Prevention Techniques are classified as follows.

2.6.1.1 Byte Code Review

This approach tries to target a suspected source of SQLI in the application program's core

[41].

2.6.1.2 Parameterized Queries

Parameterized queries are a method of precompiling SQL statements and enable you to

clearly define parameters for executing the statements. The database will be able to

understand the code and separate it from the input data in this manner. This coding approach

helps prevent SQLIAs by automatically quoting user input and ensuring that the input

provided does not change the intent. In PHP, data objects are used to store information

(PDO). PDO has methods that make it easy to use parameterized SQL queries. It is suitable

with a variety of databases, not only MySQL, making your code easier to read and maintain

[42]. Parameterized Queries can be classified as follows.

 Prepared Statements: Database programmers and database end users have been

used to create different database queries to get results for performing tasks. Both

perform tasks using simple and dynamic queries. The developer must specify SQL

code and pass it as a query parameter in prepared statements and parameterized

queries [43].

 PL/SQL: PL / SQL SQL syntax templates are used in this computer language. In

the template for SQL syntax, there are only two categories of values that can be

altered. SQL value placeholders and SQL name placeholders are two types of

placeholders. Based on well-defined criteria, these placeholders guide avoiding

injection into PL/ SQL. But application developers are all in charge of creating good

code [44].

14

 SQL Syntax Embedding: SQL is a guest language, and statements are written in

various host languages. Neither does the host language know the guest syntax, which

introduces an SQLI vulnerability [45].

 SQL DOM: It pushes database connections to a series of classes that are strongly

correlated with the database schema, and instead of handling SQL database

connections Using JDBC, you can access it., and put those classes into text

operations. An attempt to create a SQL statement to use [46].

 Generic Set of Models: For preventing injection vulnerabilities in your web

application, this is an end-to-end program transformation solution [47].

2.6.1.3 Access Controls Based on Roles

The goal of this Control is for the application developer to ensure that each query is

conducted by a role that has the least amount of access to it. As a result, SQL Injection is

futile because the query will be incapable of causing any real harm [48].

2.6.1.4 Stored Procedures

SQLI isn't constantly steady in saved procedures. Like maximum saved technique languages,

whilst carried out securely, a few conventional saved technique programming functions

behave like parameterized queries. SQL parameters are expected to be written down by

developers in SQL statements that might be routinely parameterized except if the developer

does something unusual. The distinction between an organized assertion and a saved

technique is that the SQL code for the saved technique is described and saved inside the

database earlier than it's referred to as is with the assistance of an application [49].

2.6.2 Static and Dynamic Methods

2.6.2.1 Anomaly-Based SQLI Detection and Prevention

This strategy sets a typical activity pattern and looks for deviations from it to determine

whether it is an assault or intrusion [50].

15

2.6.2.2 Signature Based

To detect known attacks, requests are matched against known attack patterns or signatures.

This is now the most often used type of detection thanks to intrusion detection as well as web

application firewall technologies [51].

2.6.2.3 Code Analysis

Code analysis approaches are ways of preventive that generate a static model based on the

application code, which may be built or read directly from the source [52].

2.6.2.4 Program Query Language

It‘s a language It gives the coder the ability to express a broad range of applications‘ specific

code patterns and When a match is detected, the programmer can additionally define actions

to do, such as logging important information or even rectifying an erroneous execution just

on time [53].

2.6.3 Dynamic Methods

Dynamic SQLIA prevention methods are explained and categorized as follows.

2.6.3.1 Honey Tokens

Honey tokens may be simply installed to help safeguard a broad range of database systems,

and they are especially effective for detecting internal information and privacy violations

committed by an employee. Honey tokens are put to use in the detection of harmful elements

activities within an organization‘s particular system [54].

2.6.3.2 Web Requests

Scanning HTTP requests is one method of identifying SQL injection before the data is

transmitted to a server.

16

2.6.3.3 All User-Provided Data Is Removed

it’s a technique that evolves escaping all the user's input either through URLs, POST method,

or any type of input then it puts these values in the query. This is done so that the DBMS can

distinguish between user input and the SQL command itself. So first, it takes the command so

the DBMS knows that what it takes is the command itself and all other addition will be the

user`s inputs. Because of this, the technique is weak compared to the remainder of the

techniques. So it isn't prescribed to be utilized commonly in all applications aside from those

applications that do exclude any basic information or when the danger can be ignored [55].

2.6.3.4 Hashes

In the database, hashed versions of login details are maintained, and direct user input is not

utilized to build a SQL query unless the hash value matches. If the database only contains

safe values, this assures that only safe user input is permitted [56].

2.6.3.5 Allow-List Input Validation

The validation system verifies that the kind of enter that the person has entered is allowed.

Input validation guarantees that the information type, length, and layout are correct. Only

values that have surpassed the validation system may be used in those instances, enter

validating is being used to validate the entries before it's far completed with the aid of

querying. Helps save your instructions not to being placed into the entered string. It`s like

checking who's knocking earlier than commencing the door [57].

2.6.3.6 Avoid Administrative Privileges Or Follow The User Access

Principle

 Avoid utilizing the root account while attaching your program to the database. Because an

attacker could obtain access to the entire system this should only be done when required by

the least privilege principle [58].

17

2.6.3.7 Web Application Firewall

It's a secure communication protocol by checks packet data levels. More specific information

is disclosed by inspecting the data part of packets, which is referred to as the complexity of a

packet. The WAF is installed as a running service on the webserver or system it is intended to

provide protection, particularly at the application layer. Its basic task is to inspect all

incoming HTTP traffic before accepting or rejecting it based on the rules established by the

network administrator [59].

2.7 Machine Learning (ML)

ML, it’s a growing field of computing techniques targeted at enhancing human intelligence

by learning from their observations. In the modern era of so-called big data, they are

considered the engine. ML technologies have proved effective in many fields, including

pattern recognition, Spaceship engineering finance entertainment computer vision [60]. The

ML model can be categorized into ten categories according to how the algorithm is taught

and the availability of results during the training session. These include supervised,

unsupervised, semi-supervised, reinforcement, evolutionary, ensemble, artificial neural

networks, instance-based, dimension reduction algorithms, and hybrid learning [61]. Some of

these paradigms are described below Training can be partitioned into three types

Unsupervised Supervised and Semi-supervised [62].

2.7.1 Supervised ML

Within the machine learning field, supervised learning has inspired a vast number of

interests. Many supervised learning methods have been taken to the processing and analysis

of a broad set of data. Among the most distinguishing features of supervised learning is its

ability to use annotated training data. During categorization, labels in these case classes are

labeled, and a variety of techniques are used in supervised learning approaches [63]. Labeled

data is instead applied to train the network during supervised learning. Architecture like

CNN, Residual Network, and LSTM are examples of training types supervised.

18

2.7.2 Unsupervised ML

Unsupervised learning approaches can be utilized to use allow you to partition data that has

never been labeled before. Only unlabeled input features are analyzed by the algorithm,

which is designed to uncover hidden structures or relationships in the data. As just a result,

unsupervised algorithms are extremely beneficial for tasks involving association and

clustering [64]. These Algorithms are a helpful tool for detecting newly unknown patterns of

multidimensional data that traditional statistical analysis may not be capable of detecting.

When the data category is unknown, this method is appropriate. The data for training is

unlabeled and it is a statistics-based learning approach for discovering unlabeled data's

hidden structure [65]. Architecture like Autoencoder, Adversarial Networks, RBM, Nodes

arranged in hexagonal or rectangular grid training type of unsupervised.

2.7.3 Decision Tree

It's a drawing that appears decisions and their results within the shape of a tree. Graph nodes

represent decision rules or circumstances, while graph nodes reflect events or selections.

Nodes and branches make up each tree. Each branch indicates a value that the node can

expect, and each node represents an attribute inside the group to be classified [66].

2.7.4 Semi-Supervised ML

It is extremely effective in application domains like imaging, information retrieval, and

biology, which include a lot of untagged data. Because SSL is a blend of unsupervised and

supervised, there are multiple sorts of records labeled and unlabeled records [67]. SSL works

by merging information that was labeled and data that has not been labeled SSL has been

proposed to solve the disadvantages of supervised learning algorithms that can use untagged

data [68].

2.8 Deep Learning

This learning is an element of Machine Learning [69]. It has had notable success in different

domains especially the processing of natural language and it is more powerful than normal

machine learning approaches in terms of abilities to learn and the ability to exploit datasets

19

for feature extraction. Because of its functionality, utility, and usefulness, It is commonly

employed this learning is attracting the attention of numerous scholars. Except for

old machine learning, this learning does not require complex feature engineering, and its

performance typically improves as the amount of training data grows [70]. There appear to be

plenty of deep learning techniques from which to choose and common models are described

below.

 Autoencoder: is mostly used to process high-dimensional data that is complex. To

conduct dimensionality reduction, neural networks that learn features or encoding

from a given dataset and that learn the representation in the input data set to reduce

dimensionality and rebuild the original data set using an unsupervised technique the

learning technique is based on a backpropagation implementation is known as

autoencoders [71].

 Restricted Boltzmann Machine: It's an unsupervised generative model for

extracting patterns from data. It's a fantastic way to learn unsupervised features. In the

unsupervised initialization of deep learning techniques, RBMs have also been crucial

[72]. The concept of classification isn't a required significant aspect of RBM. This is

particularly true for data sets like pictures, videos, and sensor signals. By re-entering

the data, these all tend to go unmarked, the RBM must also comprehend the data's

inherent building blocks and patterns. RBMs may now be used for more interesting

problems in a range of domains, such as image classification, texture creation, and

medical image processing, thanks to Computational advances and the introduction of

new learning approaches [73].

 CNN (Convolutional Neural Network): It's a widely used deep learning

approach for solving complicated problems. It gets around the drawbacks of common

machine learning techniques. In remote sensing, large data, activity recognition, audio

scene, segmentation of MR brain images, picture classification, and object detection,

CNN is widely employed, in face detection, speech recognition, vehicle recognition,

and many more [74].

 RNN (Recurrent Neural Network): It preserves a layer's output and feeds it

again into the inputs, which can aid in forecasting the layer's outcome. The layer first

is created using the outcome of the weights and features. Once it is generated, the

20

process of this neural network begins, which means that results from the last time step

from one time as an outcome, each individual, neuron conducts computations as if it

were a memory cell from one step to the next. Allowing this network to propagate

by itself and remembering what information it needed for eventual use in this process

are both necessary [75].

 Neural network with deep learning: It is a layer that sits between ANN's

output and input layers and may simulate a complicated nonlinear relationship. This

neural network’s additional hidden layers aid in the compilation of features from the

lower layer, allowing the neural network to simulate complicated data. Information

from either the input is transferred to the output in this process feed-forwarded

network [76].

 Deep Belief Networks: It's a system for deep learning whereby each pair of

adjacent layers is paired as an RBM. A two-layer neural network is used. Nodes on

the identical layer are still not connected, while nodes in the other layers are

completely connected. The layer of input is being used in the train of the parameters

of the connections between the two layers, while an output unit is utilized to make the

input RBM will be employed for the subsequent layer [77]. Image recognition,

understanding (NLP), retrieval of information, language processing, failure

prediction, and other applications employ DBN significantly and this network

develops a multilayer neural networks model to analyze the potential features of texts,

images, and voice [78].

2.9 Related Works

Deep Learning Architectures depending on the uses and types of neural networks, deep

learning architecture is categorized into three categories classes. The first one is Generative

Architecture in this architecture there are three different models such as Autoencoder is

extensively being used for Facial Expression Recognition, Image Denoising, pattern

recognition, Speech processing, Fault Diagnosis, Medical Data Analysis, and Anomaly

Detection. Restricted Boltzmann Machines is the second mode this model is extensively

being used for Time series forecasting, gradient approximation, and input weight

determination. The third model is Recurrent Neural Networks this model is extensively being

used for Document image analysis, Handwriting Recognition, Biomedical Image processing,

21

software engineering, and channel estimation. The other architecture is Discriminative

Architecture in this architecture there are models called Convolution Neural Network and this

model is extensively being used for Data Analysis, facial expression recognition lip-reading,

Posture Recognition, Biomedical image processing, and Data Mining. The third architecture

is Hybrid Architecture comprises processes that are In most hybrid systems, the generating

components are both procedural and discrete and are used along with discriminative

components to attain the final solution [79].

SQLIAs have attracted a great deal of attention lately and numerous scholars have researched

the area. The purpose of this section is to explain the related works of other scholars on

SQLIA.

2.10 Static Approach

The static approach is used to locate much vulnerability. For SQL injection assaults, the static

approach detects and prevents SQL injection assaults via way of means of studying SQL

query statements on web applications. Numerous studies are mostly based on this strategy,

which is described below.

Stephen et al. [80] propose an automatic fix generation solution that replaces vulnerable

statement-based SQL statements with protected prepared statement-based SQL statements.

They use a conversion algorithm to preserve the logic of the statement while saving the

statement without knowing the context. This is the reasoning behind this solution is that it can

automatically generate fixes to protect vulnerable SQL statements without the need for

software security expertise. The limitation of this work is that they can use conversion

algorithms to convert large numbers of vulnerable SQL statements, but not batch SQL

statements. The JDBC prepared statement interface does not currently allow multiple

independent queries on the same batch prepared statement, so it cannot process batch jobs.

And another limitation is that this work was originally intended for Java, and the concepts

and general algorithms could be used for other languages.

Zeinab et al. [81] proposed a tool for SQLIA to report the transformations that need to be

performed to protect the underlying database and web application. They used static analysis,

based on the results of the analysis, and also used new detection techniques to generate the

22

required transformations and report them as output. Discovery technology removes user input

for SQL queries and collects some information to make run-time discovery easier and faster.

Finally, they delivered the evaluation's findings. The downside of this task is that you can

manually perform the conversion to increase the security of your web application, but this

process can be tedious and needs to be automated.

Bart et al. [82], recommended the creation of a static analysis tool to handle these web

application input-related concerns. When utilized in the framework, they employ an abstract

model of the source program that takes user input and dynamically produces SQL queries.

The framework employs novel checking methods on these state machines to demonstrate or

validate that the original application program is secure. The analysis is already in the works

and being tested. This work limitation is that using the FSA under-approximation sub-

approach to the SQL grammar can be too restrictive to remove malicious queries from the

presented set, and some operators like "LIKE". Is still unlikely to handle. 'And' ×'. 'The

generated constants cause similar problems in automaton-based analysis. Finally, to

experimentally check the tool's efficiency as a means of analysis, there is no practical

prototype of the analysis and it has not been applied to the actual examples.

Xiang et al. [83], proposed SAFELY, a technique of static analysis that can automatically

produce test cases that exploit SQLI vulnerabilities in ASP.NET online applications as a

crucial design proposal offered. The approach for calculating/estimating the satisfiability of

string constraints is what makes this tool unique. By symbolically running an ASP.NET web

application, SAFELY generates string equations that match a specific attack pattern.

SAFELY, when completely built, will be capable of using source code information to find

extremely sensitive vulnerabilities that Vulnerability scanners that operate in the background

are known as black-box scanners Are unable to detect. The implementation of SAFELY and

the investigation of techniques for automatically enumerating SQL WHERE clauses, when

they are not closed, are the work's limitations.

23

2.11 Dynamic Approach

Dynamic analysis is another approach used for detecting SQLIAs, it prevents vulnerabilities

during program execution. Numerous studies have presented solutions based on this method.

Dennis et al. [84], give an outline of a different way of identifying SQLIA Dynamic

Analysis, which detects vulnerabilities while the program is running. Introduced 4SQLi, an

automated technique based on a collection of mutation operators that change inputs to create

new test inputs to trigger SQLIAs, to detect SQLIA based on dynamic analysis. This could

result in inputs including new attack patterns, boosting the chances of finding vulnerabilities.

2.12 Hybrid Approach

Combined Dynamic and Static Analysis would be a technique for detecting and preventing

SQLIAs that combines the benefits of both techniques. Numerous studies have presented

solutions based on this method.

William et al. [85] Presented a solution named AMNESIA, which stands for analysis and

monitoring, to neutralize SQLIA in AMNESIA detects and prevents web application

vulnerabilities in real-time by combining dynamic and static analytics. AMNESIA creates

several sorts of queries using static analysis. AMNESIA understands all queries before they

are submitted to the database and tests each query against a statically created form in the

dynamic segment. The findings of this study indicate that AMNESIA is a very useful and

potent method for detecting and preventing SQLIA. In some cases, the technique described in

this article could result in false negatives. False positives can happen when text parsing isn't

precise enough, and false positives can also include malicious queries in the built-in SQL

query model, which could be one of an attacker's malicious searches. If you can create a

matched injection attack, this can happen.

Ahmad Ghafarian [86] proposed a new method to determine how else to resist SQLIA. This

method is a combination of dynamic and static strategies. The proposed approach suggested

enlarging all database tables in the main phase (static) to include information that only

includes a few symbols, including the greenback symbol. This must be done throughout the

24

stage of database design before implementation. The limitation of this paper is It isn't always

implemented, the set of rules may be extended, and it does now no longer encompasses

different varieties of SQLIA.

Inyong et al. [87], proposed an original strategy for identifying SQL infusion assaults by

contrasting static SQL inquiries and powerfully produced questions after eliminating the

property estimations. Besides, we assessed the presence of the proposed technique by probing

weak web applications. We additionally contrasted our technique and other discovery

strategies and showed the effectiveness of our proposed strategy. The proposed strategy just

eliminates the property estimations in SQL inquiries for examination, which makes it

autonomous of the DBMS. Complex tasks, for example, parse trees or specific libraries are

not required in the proposed strategy. The proposed strategy can't be done on web

applications yet it can likewise be utilized on any applications associated with data sets.

Besides, it tends to be utilized for SQL inquiry profiling, SQL question posting, and

modularization of location programs. The limitation of this work is required for SQL infusion

assaults as well as for other web application assaults like XSS, in light of the proposed

technique and AI algorithms.

Raymond et al. [88], proposed an ASSIST method for programmed query sanitization. This

utilizes a mix of static investigation and program change to consequently find and sanitize the

factors used to create SQL queries. They executed the technology usimg Java ptogramming

language using a device called ASSIST to protect Java byte code (got from JSP or Servlet).

An experiment has revealed that help works well for a suite of SQL infusion assault tests, and

helps work with little run-time overhead.

However, the limitations of this work incorporate direct comparisons with other techniques,

calculation changes to lessen potential inaccuracies, and techniques for exploring other user-

input properties (such as assignment strategies and allotment techniques). Incorporates a

more complete assessment, like expansion. Many theoretical questions can be over-

approximated because the comparison is not performed appropriately.

Ramya et al. [89] proposed a structure called the runtime checking framework. It is utilized in

procedures for creating run-time screens that perform run-time monitoring of

web applications after deployment to recognize and forestall tautology-based SQLIA.

25

With our structure, application quality and security are accomplished in the pre-arrangement

stage, yet additionally in the post-sending stage, and the potential abuse of vulnerabilities by

outside attackers is identified and forestalled. Additionally, the authors explained the

assessment of the proposed method, and the outcomes acquired showed that their method

can handle all tautology-based SQLIA successfully and that real input can access the

information base. They will additionally utilize the proposed framework to computerize the

whole course of developing a runtime monitor and stretch out the system to recognize and

forestall any remaining kinds of SQLIA.

Wang et al. [90] Depending on the kind of SQLIA, they have introduced a new way to

identify and forestall SQL injection assaults utilizing AOP. From one viewpoint, it

resolves these SQLIAs with assault properties by characterizing aspects and pointcuts

and doing some validation with the Before function. In other attacks, and also a model-based

course that uses programmatic research techniques to consistently assemble a model of a real

SQL query and compare that model to a SQL query that has been significantly rebuilt from

AOP. They also use contextual analysis on the simple client login page as the most effective

method for accomplishing this as an aftereffect of this test, this technique can forestall

web applications from all SQLIA. However, the limitation of this task is that it needs to be

analyzed the source code.

Emon et al. [91] The authors developed a model which is a web-based multitier architecture.

The proposed model prevents various SQLI. The model shows its productivity by tracking

various SQL injections, and the performance results show its applicability. The positive rate

for most types of SQL infusion attacks is 100%. The limitation of the model is that it is very

vulnerable to inline SQL injection attacks and requires a different approach to reduce

execution time, which is highly susceptible to SQL injection attacks.

26

Table 2-1: Summary of SQLIA prevention using ML and DL

Paper Objective/Purpose Methodology Research Gap

Kevin et

al. [92]

Established that the

algorithms

experimented with, such

as rule-based and

decision tree algorithms,

have achieved accuracy

close to that of Neural

Networks in their

experiments and are

much good in terms of

time required to build

models and execution

time when classifying

testing data, and have

established that the

algorithms.

The data generating strategy involves

three stages: traffic production,

capture, and preprocessing. Rule-

based, Support Vector Machine,

Neural Network, and Random Forest

algorithms are employed.

Extra data collecting,

such as outbound traffic

from the web application

to the browser, Larger

datasets should be

collected to determine if

this improves

performance, as well as

analysis of additional

machine learning

techniques for accuracy

and performance, and

adaptation of this system

to identify other sorts of

web-based assaults.

Auninda

et al.

[93]

Developing a method

for successfully

detecting and preventing

SQLIAs, as well as

developing a model by

determining the

optimum machine

learning algorithm for

predicting and

preventing

SQLIAs Attacks. This

document offers a

summary of the work

plan, experimentation,

and the results of the

experiments.

5 different methods were used to

train a sample dataset to see how

accurate and employed Logistic

Regression, Neural Network

Classifier, Random Forest, KNN,

and Naive Bayes as algorithms.

The model proposed in

this research uses an

ML technique to learn

about new types of

SQLIAs and recognize

them in the future.

Sonali et

al. [94]

The study's overall goal

is to employ a Gradient

Boosting Classifier method

To categorize and detect SQLIAs, a

gradient boosting method is used.

There is insufficient data

to train machine learning

models and refine them in

27

from ensemble machine

learning approaches to

classify and detect SQL

Injection threats in their

research.

Gradient appears to be

A suitable learning

strategy for reducing

errors and providing

more accurate

predictions. To give

results, the Gradient

Boosting technique uses

simple classifiers,

primarily decision trees,

in a sequential way.

terms of usability and

efficiency.

Ines et

al. [95]

The following are the

paper's main

contributions:

1. The SQLI attack was

described in detail. The

various sources, goals,

and forms of attacks are

defined and discussed.

2) A classification of the

different SQLI attack

detection and prevention

countermeasures are

presented and discussed.

3) A table evaluating the

various potential SQLI

attack countermeasures

was published.

4) Newly proposed

solutions are outlined

different existing countermeasures

that were proposed to either detect or

prevent the SQLI attack like A.

Query-model based SQLI

countermeasures, Obfuscation based

SQLI countermeasures, Monitoring

and Auditing Based SQLI

countermeasures, Entropy-Based

SQLI countermeasures, Ontology-

Based SQLI countermeasures,

Machine Learning Based SQLIA

countermeasures

There are still flaws in

their ability to deal with

web-based threats. And

creating a machine-

learning-based SQLI

attack detection

technique that can handle

a huge number of queries

per second. Also, there's

a shortage of an up-to-

date and consistent

dataset that researchers

may use to evaluate their

work and compare it to

existing solutions

28

and discussed,

like ontology

Latchoumi

et al. [96]

The proposed approach

model could have been

used to report

vulnerabilities in online

applications. As a result,

this method may reduce

your web application's

odds of launching

SQLIA. Machine

learning with SVM

algorithms is used to

avoid SQLIA runtime

monitoring.

To avoid SQLIA runtime

monitoring, ML with SVM methods

is applied. When the home page of

each application is transferred to a

test page, the answer behind this

strategy is to detect and avoid

SQLIA outages.

The methodology

provided here only works

in a data-rich situation,

which is insufficient for

this research.

Nanang

et al.

[97]

The design of the

recommended approach

for how the SQL

injection detector works

using deep learning and

transfer learning

methodology is

explained, as well as the

implementation and

results of the

SQLi detector using AI.

In this approach,

transfer learning

techniques are used to

produce detectors.

The SWIVEL architecture, which is

one of TensorFlow's neural network

models for text embedding, is used

to create the system.

The drawback of this

effort is that due to the

dataset's limitations,

evaluating the model that

has been constructed is

difficult.

Stanislva

et al.

[98]

SQLI and XSS are two

of the major code

injection attacks in

today's web applications

and systems.

CODDLE, a DL-based IDSS for

web-based assaults is proposed in

this work, along with numerical

experiments on datasets for both

SQL and XSS attacks. CODDLE's

type encoding improves the data rate

from around 75% to 95% accuracy,

99.5% precision, and 92.5% recall.

This paper does not

employ a pre-processing

function, instead of

converting each query

symbol to a char code.

This sort of encoding is

vulnerable to attacks that

alter the symbol

sequences in the injection

29

query.

Ding et

al. [99]

In this study, we offer a

non-background rule-based

SQLi detection method

based on an NLP model

and deep learning

framework, as well as a

lightweight solution to

SQLIA prevention based

on conditional embedding

and CNN and MLP.

This research develops an

SQLI detection system using a

DL architecture and lexical analysis

approaches. The experiments were

compared using a CNN and MLP.

This research only

focuses on only first-

order SQLI. Second-

order injection and

hybrid attacks were not

researched.

Kevin

Zhang

[100]

To create a machine

learning-based

classifier that can

detect SQLI

vulnerabilities in

files. It also

compares the

effectiveness of

traditional

ML algorithms and

deep learning-based

approaches for

detecting SQLI.

Utilizing input data

validation and sanitization

aspects, machine learning was

used to train and evaluate

classifier models. The highest

precision (95.4%) was

achieved by a CNN, while the

highest recall was achieved by

a Multilayer Perceptron (MLP)

model (63.7 %).

Word2vec model did

not perform well,

and currently

missing a word

embedding model

designed for PHP

source code. And it

is only limited to the

PHP language.

Maruf

et al.

[101]

To develop a model

for identifying

SQLI vulnerabilities

in a web application

using deep learning

by extracting

various web

application

vulnerability finding

points.

The study compares different

classifiers used in this study to

see if any other machine

learning algorithm can

improve the neural network's

results. An SVM, random

forest, and Naive Bayes with

an accuracy of 94.66 %, 97.33

%, and 84.49 %, respectively,

were clearly shown.

SVM has the

disadvantages of

being time and

memory-

consuming,

difficult to choose

the right kernel

function, high

algorithmic

complexity, and

30

inability to work

with large data

sets..

Ao

Luo et

al.

[102]

To see if the

CNN algorithm can

be used to detect

SQLIAs and

compare it to a

traditional detection

method called Mod

Security.

SQL injection detection is

based on CNN and Mod

Security, a web application

intrusion detection and

prevention engine that can also

act as a web application

firewall (WAF).

The paper's

weaknesses are

primarily focused on

the HTTP log file,

rather than the proper

dataset to train on, so

it can be said that the

dataset's quality has

an impact on the deep

learning model's

performance.

Manav

et al.

[103]

To investigate the

numerous

techniques for

trying to identify

and protect

SQLIAs. The

performance of five

different

classification

models was

compared

Machine learning algorithms

such as Naive Bayes, Decision

trees, Support Vector

Machines, and K-nearest

neighbors have been tested in

all major types of SQL attacks.

And experiments show that

CNN outshines other

algorithms with 94.84 present

accuracy, 85.67 present

precision, and 96.56 present

recall.

It does not apply

feature reduction

techniques to study its

impact on

performance

measures, and it does

not expand the dataset

by adding other types

of SQL injection

attacks as and when

more types of queries

arise in the future.

Jothi et

al. [104]

It would be able to

sense any and all

injection

techniques. The

model will handle

all of the feature

Researchers accomplished a

cross-validated accuracy of 98

% with a precision of 98 %

and a recall of 97 % using the

MLP model.

The model only uses

single-word

tokenization and

excludes N-gram

models. The spatial

and temporal features

31

extraction and

selection. The client

will only have to

type the text.

of SQLI are not

learned using CNN-

based architecture.

Tonmoy

[105]

A DL framework

for sensing SQLI

weaknesses in web

services and making

a tool that can tell

you which web

applications are

vulnerable to SQLI

and which aren't.

A unique data set is generated,

followed by data collection,

pre-processing, and feature

selection, all of which were

then fed into a deep learning

model. A tool has been

developed to detect

SQLI vulnerabilities

automatically.

This work does not

dig into deeper a web

application to invent a

more efficient way to

detect the attack and

find an efficient

solution to prevent

that attack

Jiabao

et al.

[106]

To identify web

attacks in the HTTP

request protocol, a

CNN and LSTM

network architecture

was introduced.

SQLI, XSS, and

other script

injection attacks are

examples of

anomalous requests

to be detected.

This study compares the

combined performance of

LSTM and CNN with other

traditional methods such as

Multinomial Naive Bayes

(NB), Linear Support Vector

Machine (Linear SVM),

Neural Network (NN), k-

Nearest Neighbour (kNN), and

Decision Tree (DT) and with

0.989 %Precision and 0.988 %

recall

The CNN and LSTM

methods are resistant

to varying dropout

rates. Moreover, when

the rate is greater than

0.3, performance

increases slowly.

Huafeng

et al.

[107]

This paper's purpose

is to find

SQLI attacks in

network traffic using

deep learning.

It uses deep learning to train

the sample data in order to

detect SQL injection attacks,

and researchers compared

different algorithms such as

LSTM, MLP, CNN, and DBN

to find that the DBN model

More data is needed

in this study to

improve the model's

accuracy.

32

had the best accuracy rate of

0.9603.

Ming

et al.

[108]

Using just a specially

built CNN, a

DL approach for

detecting Web

attacks.

The experiments shown on the

dataset HTTP

DATASET show that the

designed CNN performs well

and achieves satisfactory

results in detecting Web

attacks, with an accuracy of

96.49%.

It only focused on

detecting the server-

side attacks only. And

the method in this

article only focuses on

detecting Web attacks

hidden in URLs

Yong

et al.

[109]

SQL query strings

first were

syntactically

evaluated into the

tokens, and then the

likelihood ratio test

was used to construct

a word vector of

SQL tokens, before

training an LSTM

model with

sequences of token

word vectors.

A tool called WOVSQLI

describes and develops SQLIA

based on the LSTM and

word2vec of SQL

tokens neural networks.

Experiment results show that

WOVSQLI can easily detect

SQLIA with 98% accuracy.

Future work will

improve the model

with a new dataset

33

CHAPTER THREE

THE PROPOSED SQLIP MODEL

3.1 Introduction

This chapter focuses on the design of the proposed model and its experimental setups. To

mention the contents on a higher level, it contains the system architecture, data sources, and

how the data is collected and processed. Following that the proposed model design and

detailed descriptions of the features, how the feature is extracted, and how the prevention of

SQL injection attack is performed in the proposed deep learning model.

3.2 System Architecture

The system architecture begins with data collection and then encodes and converts the data to

CSV file format. Following that the dataset is split into training, validation, and testing set.

The training and validation set follow a data preprocessing and selecting the best features are

part of the data preparation phase. Following that the preprocessed dataset is fed to the CNN

algorithm and it extracts featured during the training phase. Based on the performance of the

training and validation set the model evaluation technique was applied. After experimenting

with various hyper-parameters, the model with the best performance will be chosen. Finally,

the best model will be tested with unseen data using the testing phase. The system

architecture of the study is depicted in Figure 3-1.

Figure 3.2-1: System architecture

34

3.3 Dataset Preparation

The goal of data preparation is to use the data as it exists and then clean up what has been

done, the way to proceed is to. Data preparation refers to the process of removing outliers and

creating a more uniform distribution. It also includes cleaning and standardizing data.

Cleansing is done by replacing missing values with their averages or other relevant values,

which is one of the most important steps in any machine learning or other research.

One of the most important steps in any machine learning task is understanding the problem

domain and the data that will be used in the process. The data preparation process we have

followed in the following sections includes activities like data collection, data and business

understanding, dataset description, and data formatting. Next, feature selection and the data

pre-processing stage are followed by applying data cleaning.

3.3.1 Data Collection

In this study, the primary data was collected from Kaggle (SQL injection attack dataset). The

data was prepared manually, and it contains a total of 4,199 number SQL injection attacks

query and normal text. The dataset has been prepared by collecting different SQL injection

queries, and it has been labeled as class ‘SQLI ‘ and ‘NORMAL‘. The statistics of the dataset

and the sample data of each class are depicted in Figure 3-2 and Figure 3-3 respectively.

Figure 3.3-1: Distribution of dataset

35

3.3.2 Understanding SQLI Data

Before taking any steps, the main activity in any machine learning task is data understanding.

It begins with gaining initial insights into the data and the problem domain. Later, it proceeds

on to other tasks such as evaluating the quality of the data, missing values, and outliers that

could have an impact on the machine learning final result. Understanding the data aids in

identifying useful and interesting insights into the data that will be used to develop a

hypothesis for the hidden or unknown information.

3.3.3 Business Process Understanding

Understanding the overall process and procedures that are undertaken in the problem domain

is at the heart of what business understanding is all about. This can be obtained through a

variety of methods, including observations, document analysis, and discussions with domain

experts. Understanding the problem domain aids in gaining a better understanding of the data

that will be handled, as it provides insight into what is happening and why. In this study,

problem domain data is gathered from open-source dataset sources derived from various SQL

injection sources. In general, the dataset contains two types of data categories: SQL injection

queries and normal text.

3.3.4 Data Formatting

The dataset was prepared by collecting different SQL injection attacks, which were collected

from different websites. The collected SQL attacks were merged and preprocessed to train

using different machine learning and deep learning algorithms. Finally, the merged Microsoft

Excel file was converted to CSV (Comma Separated Values), which was then used for

training and testing.

Figure 3.3-2: Sample dataset

36

3.4 Algorithm Selection

Deep learning makes things easier than conventional machine learning algorithms because it

makes feature extraction and other preprocessing tasks automatic. In this study, CNN

algorithms selected deep learning to build a proposed model, which is best for text-based

classification and other problems. Several works of literature claim that CNN is best for

classification and detection problems, which yields the best result and it is a state-of-the-art

performance having enough data and optimal hyper-parameters. In summary, a convolutional

neural network model has the potential to automatically prevent SQL injection attacks.

In this study, the proposed model was built from a model from the scratch without applying

different CNN architecture types like XLNet, ERNIE, and Text-to-Text Transfer

Transformer. Additionally, the components, parameters, and hyperparameters of the proposed

model are explained in the coming sections.

3.5 Feature Selection

Feature selection is an essential iterative process for selecting the best features or removing

variables that do not assist the model in mapping the relationship between the data variables

and the target outcomes. To accurately identify the best parameters that represent the whole

problem and achieve the objective of the study, the best features must be identified. The

expected outcome of the algorithms, based on the problem, is fully dependent on the quality

of the selected input features. Reducing highly unrelated features will increase the amount of

time it takes to train the model, improve performance, and minimize the complexity of the

algorithm [110].

After identifying the best parameters and attributes of the SQLI data, the more relevant

features were selected to build a model that would prevent SQLI from using a deep learning

approach. Moreover, features that are not relevant to this research objective were removed

from the collected SQLI data to learn and map the features or train the machine learning

algorithms based on the dataset prepared and labeled by open source.

37

3.6 Data Splitting

The data collected were classified into three categories: training, validation, and testing.

Training, which is used to train the model, and test, which is used to test the model that was

not discovered during training. The validation set is used to evaluate the performance of the

model created during training and is frequently used to fine-tune model parameters to achieve

the best model performance. Then, the test set is used to test the proposed model with unseen

data. In this study, the data splitting used is 80%-20% for training and testing respectively.

Furthermore, 90%-10% of data partitioning has experimented. The experiment conducted

suggests the 80%-20% data splitting achieved a good result.

3.7 Feature Extraction

The term feature extraction refers to the process of transforming raw data into numerical

features and processing the resulting features while preserving the information in the original

data set [111]. It yields better results than applying machine learning directly to the raw data.

The main advantage of deep learning over traditional machine learning is the ability of the

feature extraction stage to be done automatically by the CNN algorithm without the need for

domain experts. Since deep learning has the potential to derive complex characteristics, it has

a significant advantage over traditional machine learning, which has a limited ability to learn

[112].

Figure 3.3-3: Feature extraction ML and DL

38

3.8 SQLIA Prevention via Classification

The proposed SQLIA deep learning model has three convolutional layers, and three pooling

layers (MaxPooling), except the final layer of the CNN architecture the activation function

used, is ‘relu’. The final layer used the ‘Sigmoid’ activation function. Based on the

components of the proposed model, the SQLIA was successfully prevented by identifying the

given query as ‘Normal’ or ‘SQLIA’. Figure 3-5 presents the proposed model architecture.

3.9 The Proposed Model Components

The proposed model has different components of the CNN algorithm. The SQLIA model was

built depending on the components. Here, the descriptions of the components of the proposed

model are explained. The components and the total number of parameters used in the

proposed model are depicted in Figure 4-4.

3.9.1 Convolutional Layer

The convolutional layer is one of the main blocks of Convolutional neural networks which is

composed of mathematical operations and convolution is a special form of linear operation.

Pixel values that are processed in (2d) two-dimensional and grid (number arrays and a narrow

grid) parameters are represented by mammogram images or usually, digital images, called the

kernel, and an optimizable function extractor is implemented at the image location, making

the processing of images extremely effective by CNN. As the layers feed their production to

the next layers, the features that are extracted are hierarchically and increasingly complex. To

Figure 3-4: The Proposed SQLIAP model

39

refine the parameters, optimization algorithms such as the backpropagation and gradient

descent algorithm are used and the kernel is carried out to minimize the gap between the

outputs and the ground truth labels [113].

3.9.2 Pooling Layer

This layer enables for downsampling operation that enables a reduction in the number of

learning parameters and several output channels are the same as the number of input channels

[114]. This layer enables the extraction of main features in some spatial locations, to manage

and control overfitting in the network. The filter size, stride, and padding are hyperparameters

in pooling operations, and there are no learnable parameters in pooling layers. Instead,

pooling operators are deterministic, usually measuring the items in the pooling window by

either the maximum or the average value, these operations are called maximum pooling (max

pooling for short) and average pooling, respectively [115].

Max pooling is the most widely used pooling operation with a filter size of P x Q and with

strides to downsample the dimension of feature maps. The depth of the feature map is not

changed but the height and the width are changed and Max Pooling takes the maximum value

out of each sub matrix of a activation map and differentiates it into matrices [116].

3.9.3 Fully Connected Layers

This is the classification layer that calculates the score of each class of the extracted Features

of a convolutional layer in the next steps and the last layer feature maps are represented as

vectors with scalar values that are passed to the fully linked layers and It guarantees that any

neuron within previous layers is linked to each subsequent layer [117].

40

CHAPTER FOUR

IMPLEMENTATION & EVALUATION

4 Introduction

This chapter discusses experiments to design and develop the SQLI prevention model and

evaluate the proposed model via evaluation metrics. In addition, the experimental scenarios

were explored using different parameters and hyper-parameter to build the proposed model.

4.1 Tools and Experiment Setup

There are currently many deep learning frameworks available. Among those deep learning,

frameworks are TensorFlow, Keras, and PyTorch, which are the most widely used ones.

These three are favored by data scientists and deep learning beginners. There is no hard and

fast rule on which deep learning frameworks should be chosen, but considering some of the

conditions for selecting a framework would be beneficial and appropriate. Here some of the

deep learning frameworks are explained.

Keras: Is a Python API that can be used with CNTK, TensorFlow, or Theano is available.

Keras assists machine learning researchers in rapidly turning an idea into a product. In this

study, the Keras API was used on top of TensorFlow. The following are some of the API's

advantages.

 Easier to use and extensible

 Support both CPU and GPU

 Support CNN and RCNN

TensorFlow: This is a well-known machine learning and data science framework. Many

libraries, tools, and resources are available through the API, making it easier for researchers

to develop and deploy machine learning applications. Furthermore, the API's simplicity

makes it simple for developers to train and build a model.

41

Pytorch: Is a Torch-based open-source machine learning platform for Python. PyTorch was

developed by Facebook's AI team and is used for natural language processing and a variety of

machine learning projects.

Google Collaboratory: This is a Google cloud tool that allows users to write and run

programs or texts in their browser without needing to configure anything. The tool has

unrestricted GPU and TPU access. Furthermore, the Google Colab implementation is simple

to share across multiple platforms. "Colab Notebook" is a Google collaboration tool that

allows you to write code and text in an interactive environment. In this study, the Google

Colab was configured with a GPU hardware accelerator and the notebook server was hosted

within the environment. In summary, Colab’s Notebook looks like the famous Jupyter

Notebook with an additional bonus feature which has:

 Access CPU and GPU

 Stored data in a Google drive

 Has a huge library for machine learning, deep learning, data science, and other fields

 Easy to share with other colleagues

 The python code used by Colab can execute anywhere

draw.io: This is an online tool for drawing flow charts, and it provides a variety of symbols

and templates that enable users to create usage case flow charts, activity diagrams, network

diagrams, floor plans, charts, mind maps, infographics, and several. Furthermore, this tool is

quite simple, and it can export the final diagram in PNG, JPEG, PDF, and other formats.

Mendeley: is a desktop application that serves as a PDF reader while also allowing users to

cite documents in the form of IEEE, APA, and other formats. The tool automatically loads all

citation information that you provide, unlike Microsoft Word, and this is much faster than

having to type it in yourself.

42

4.2 Evaluation Techniques

After the model is trained with a given set of data, model evaluation is the technique used to

determine the degree of accuracy and efficiency of the model. A computational problem,

such as classification and detection, uses evaluation metrics such as accuracy, precision,

recall, and F1-score to predict which class instance belongs to which class. Those metrics

were computed using classification metrics and provided information about a model's results

in each class. All of the metrics listed above are determined based on the confusion matrix

value, i.e. TP (True Positive), TN (True Negative), FP (False Positive), FN (False Negative).

Figure 4-2: Evaluation metrics

Figure 4-1: Software tools and implementations

43

Where:

TN: stands for True Negative which shows the number of negative examples

classified accurately

TP: indicates the number of positive examples classified accurately

FP: shows False Positive value, i.e., the number of actual negative examples

classified as positive

FN: False Negative value which is the number of actual positive examples classified

as negative

i. Accuracy: Answers the question about how often the model predicts the classes correctly

i.e. SQLI and NORMAL.

Equation 1: Accuracy metrics

Accuracy =

ii. Precision: It gives insight into how often a positive value prediction is correct. Example:

Predicting SQLI, how often the prediction precisely predicts.

Equation 2: Precision metrics

Precision=

iii. Recall: Also known as sensitivity it describes how sensitive the classifier is while

detecting positive instances.

Equation 3: Recall metrics

Recall=

iv. F1-Score: This is the harmonic mean of the precision and recall, and the lowest value of

the F1-score is 0.

44

Equation 4: F1-score metrics

F1-Score=

4.3 Hyper parameter Selection & Experimental Scenarios

4.3.1 Hyper parameter Selection

Hyperparameters are the variables that are used to build a model in a neural network. An

optimal hyperparameter value must be configured before building a robust deep learning

model. The optimization algorithm, learning rate, loss function, number of epochs, and batch

size are the CNN algorithm‘s hyperparameters. There is no set rule for configuring

hyperparameters of a given model, and different configurations can be used depending on the

computational problem. Because it requires multiple experiments and there is no general

formula for setting good hyperparameters, hyperparameter tuning is a time-consuming task

[119]. In this study, the hyperparameter value was determined through a series of

experiments. Below is the definition of some hyperparameters and their value is mentioned.

Finally, the summary of hyperparameter values is summarized in Table 5-1.

Optimization algorithm: it allows the model to learn faster and perform better. There

are a variety of optimization methods, including Adam and RMSprop, which were tested at

learning rates of 0.01. When training a neural network, choosing the correct optimization

algorithm is crucial.

The Learning Rate: the value of a neural network is also a tunable hyperparameter. This

value of a neural network is used to train a neural network with a value between 0.0 and 1.0

is usually specified.

A slow learning rate necessitates multiple training epochs and weight changes, whereas a fast

learning rate necessitates a rapid change in the training epoch. Choosing a learning rate that is

neither too high nor too low is one of the most difficult aspects of creating a neural network

model. After several rounds of testing, a learning rate of 0.01 was chosen to build the

proposed model.

45

Loss Function: A loss function, also known as a cost function. Let y denote the actual

output, 𝑦 =predicted output, and K= number of classes. Then, 𝑦 − 𝑦 was calculated utilizing a

cost function called cross-entropy (CE). Binary cross-entropy is used for binary classification

problems. In this study, a binary CE was used to build the proposed model because two

classes exist.

Number of Epochs: Count how many times the neural network has been exposed to

training data. According to the proposed model, the optimal number of epochs discovered

through experimentation is 10.

Batch Size: The batch size refers to the number of subsamples sent to the network for

parameter updates. Batch size is set to 32, 64, 128, and so on by default. Batch sizes of 32

and 64 were used for experimentation.

Activation Function: This is a function responsible to fire or not firing a neuron based on

some inputs. The proposed model uses a nonlinear activation function termed ReLU after

each convolution layer. The ReLU activation function is applied in a variety of machine

learning problems since it does not suffer from the vanishing gradient problem and leads to

faster computations [105]. Additionally, Sigmoid and Softmax activation functions have been

experimented with for the last layer activation function.

Table 4-1: Hyperparamter value summary

Hyper parameters Value

Optimization algorithm Adam

Learning rate 0.01

Activation fun (Last

layer)

Sigmoid

Loss function Binary cross-entropy

Epoch 10

Batch size 32

Dense layer (neuron) 256

4.4 Experimental Scenarios

The process of building a deep learning model requires repetitive experimentations because

the optimal value of the parameter and hyperparameter have a great impact on the

46

performance. To select the best-performing model of CNN, five scenarios were used for

experimentation. The scenarios used for experimentation are generalized as follows.

Scenario 1: Setting the dense layer (neuron) to 256

Table 4-2: Experimental scenario #1

Optimization algorithm Adam

Scenario #1

Learning rate 0.01

Activation fun (Last layer) Sigmoid

Loss function Binary cross-entropy

Epoch 10

Batch size 32

Dataset splitting 80%-20%

Dense layer (neuron) 256

Output

Execution time 563.301 sec

Training accuracy 0.9761

Validation accuracy 0.9773

Testing accuracy 0.9772

Scenario 2: Configuring activation function (Softmax), number of epochs (20), and Dense

layer neuron (64)

Table 4-3: Experimental scenario #2

Optimization algorithm Adam

Scenario #2

 Scenario #2

Learning rate 0.01

Activation fun (Last layer) Softmax

Loss function Binary cross-entropy

Epoch 20

Batch size 32

Dataset splitting 80%-20%

Dense layer (neuron) 64

Output

Execution time 68.124 sec

Training accuracy 0.260

Validation accuracy 0.301

Testing accuracy 0.301

47

Scenario 3: Setting optimization algorithm (RMSprop), Activation Function (Sigmoid),

Epoch (10).

Table 4-4: Experimental scenario #3

Optimization algorithm RMSprop

Learning rate 0.01

Activation fun (Last layer) Sigmoid

Loss function Binary cross-entropy

Epoch 10

Batch size 32

Dataset splitting 80%-20%

Dense layer (neuron) 64

Output Scenario #3

Execution time 605.537 sec

Training accuracy 0.970

Validation accuracy 0.958

Testing accuracy 0.958

Scenario 4: Setting data splitting 90%-10% (training and testing)

Table 4-5: Experimental scenario #4

Optimization algorithm Adam

 Scenario #4

Learning rate 0.01

Activation fun (Last layer) Sigmoid

Loss function Binary cross-entropy

Epoch 10

Batch size 32

Dataset splitting 90%-10%

Dense layer (neuron) 64

Output

Execution time 623.470 sec

Training accuracy 0.977

Validation accuracy 0.978

Testing accuracy 0.978

Scenario 5: Setting the data splitting (90%-10%) with an epoch size of 20.

48

Table 4-6: Experimental scenario #5

Optimization algorithm Adam

Scenario #5

 Scenario #5

Learning rate 0.01

Activation fun (Last layer) Sigmoid

Loss function Binary cross-entropy

Epoch 20

Batch size 32

Dataset splitting 90%-10%

Dense layer (neuron) 64

Output

Execution time 1153.151sec

Training accuracy 0.978

Validation accuracy 0.978

Testing accuracy 0.978

4.5 Experiment Results Discussion

All of the tests were conducted using the Google Colab cloud editor with the GPU accelerator

turned on. Because it offers free GPU and RAM, both of which are critical for deep learning

research. As mentioned in the hyperparameter selection sub-section, the study experimented

on five scenarios with different parameters, hyperparameter values, and cases. Although

some of the scenarios have nearly equal training, validation, and testing accuracy, the

execution time varies. The scenarios with the shortest execution times were chosen.

The five scenarios assisted to select the best performing SQLI model. Among five cases, the

first scenario (Scenario #1) achieved a score of 0.98% testing accuracy with an execution

time of 563.301 sec which is a promising result. Then, the model was evaluated using the

evaluation metrics mentioned in the earlier section. The optimal hyperparameter and the

evaluation metrics of the proposed model are described as follows.

Figure 4-3: Scenario #1 Evaluation value

49

Figure 4-4: Confusion metrics for scenario #1

Figure 4-5: Accuracy calculation code snipet

 Accuracy : 0.977

Figure 4-6: Precision calculation code snippet

Precision : 0.933

Figure 4-7: Recall calculation code snippet

Recall: 0.996

Table 4-7: The proposed model result summary

Proposed Model Result Summary

Execution time 563.301 sec

Training accuracy 0.9761

Validation accuracy 0.9773

Testing accuracy 0.9772

50

Experiment Scenarios Summery

The process of building a deep learning model requires repetitive experiments because the

optimal value of the parameter and hyperparameter have a great impact on the performance.

To select the best performing model of CNN given scenarios were used for experimentation.

Table 4-8: Scenario summary

Scenarios Scenarios 1 Scenarios 2 Scenarios 3 Scenarios 4 Scenarios 5

Learning rate 0.1 0.01 0.01 0.01 0.01

Activation

Function

Sigmoid Softmax Sigmoid Sigmoid Sigmoid

Loss function Binary

Cross-

entropy

Binary Cross-

entropy

Binary Cross-

entropy

Binary Cross-

entropy

Binary

Cross-

entropy

Epoch 10 20 10 10 20

Batch Size 32 32 32 32 32

Dataset Split 80 % - 20 % 80 % - 20 % 80 % - 20 % 90 % - 10 % 90 % - 10 %

Dense Layer 256 64 64 64 64

Output Execution

Time

563.301 Sec 68.1245 Sec 605.537 Sec 623.470 Sec 1153.151

Sec

Training

Accuracy

0.9761 % 0.260 % 0.970 % 0.977 % 0.978%

Validation

Accuracy

0.9773 % 0.301 % 0.958 % 0.978 % 0.978 %

Testing Accuracy 0.9772 % 0.301 % 0.958 % 0.978 % 0.978

Scenario 1

Figure 4-8: Scenario 1 visualization

51

Scenario 2

Figure 4-9: Scenario 2 visualization

Scenario 3

Figure 4-10: Scenario 3 visualization

Scenario 4

Figure 4-11: Scenario 4 visulization

52

Scenario 5

Figure 4-12: Scenario 5 visulization

One of the ways to find out whether the ML or DL models are overfitted, underfitted, or

fitted is to generate the training and validation graph. The graph provides information in a

way that the training and validation graph has a huge graph the model most likely overfitted,

and it required some technique to solve the problem. On the other hand, if the gap between

the training and validation graph is small the model is most likely fitted right. Depending on

the above definition, the proposed model is fitted right. The training and validation accuracy

of the proposed model is depicted in below Figure.

Figure 4-13: The proposed model

53

Here presented a sample test of the proposed SQLI prevention model.

Figure 4-14: Sample testing of the proposed model

CHAPTER FIVE

CONCLUSIONS & RECOMMENDATIONS

5.1 Introduction

SQL injection attack is one of the major security challenges. As stated in the previous

chapters, the SQLI attack creates a portal through which an attacker can gain direct access to

a database server, allowing them to retrieve sensitive information. The attack can have

varying effects depending on the database application, as well as various other possible

effects. Hence, the proposed deep learning model is capable of preventing SQLIA prevention

with high accuracy.

54

5.2 Conclusion

In this study, the CNN model was built to prevent an SQLI, and the experimentation used a

public benchmark dataset. The proposed model can be used as a tool for SQL injection

prevention, and also having a sufficient dataset the performance of the model will improve.

The experimentation used a CNN algorithm trained with deep learning, with different

hyperparameter values and scenarios. Finally, the proposed model has achieved a truly

outstanding result compared to all the other scenarios. The model has achieved an execution

time of 563.301 sec, training accuracy of 0.9761, validation accuracy of 0.9773, and testing

accuracy of 0.9772.

5.3 Contributions

There are currently large web applications that make use of a database. As a result, SQLI has

become the most common cyber security threat. In this study, a SQL injection prevention

model was developed that is capable of accurately detecting and classifying cyber security

threats. The proposed work focuses on preventing attacks through the use of a deep learning

approach, and the results are promising. Lastly, the study’s contributions are:

i. Developing a model: Several experimental scenarios were used to test our SQLI

prevention model. The experimentation used the state-of-the-art deep learning algorithm

called CNN (Convolutional Neural Network).

ii. Preparing dataset: Even though the dataset used for the model is a publicly available

benchmark dataset, the data preprocessing and labeling was implemented on the dataset.

5.4 Recommendations

As mentioned in the above sections, the major web application which uses a database is

exposed to an SQLI attack. The attack can be prevented by building a model using deep

learning or machine learning. The challenging part of the experimentation was to get a

sufficient dataset to train the neural network. The performance of the model depends on the

amount of dataset because the more data the neural network trains the better to detect and

classify the attack.

55

SQLI attack prevention can be achieved using different approaches and algorithms.

Therefore, other researchers and students suggested exploring other deep learning algorithms

like Ensemble learning, RCNN, and LSTM for the prevention of SQLI. In addition to this,

hardware tools such as GPU, high-performance RAM, and CPU greatly help minimize the

effort to train the neural network and produce a good result and A better results can also be

derived if we combined CNN with LSTM for enhancing with the highest prediction accuracy.

56

References

[1] W. PETROS and K. ELHAM, "Cyber Security in the Quantum Era," COMMUNICATIONS OF THE ACM, vol.

62, no. 4, April 2019.

[2] D. Craigen, N. Diakun-Thibault and a. R. Purse, "Defining Cybersecurity," Technology Innovation Management

Review, October 2014.

[3] "SQL: The Complete Reference," James R. Groff and Paul N. Weinberg, 1999.

[4] "https://www.fortinet.com/resources/cyberglossary/sql-injection".

[5] A. Tajpour, S. Ibrahim and M. Masrom, "SQL Injection Detection and Prevention Techniques," University

Technology Malaysia,.

[6] Ali, Salih and Nabeel, "Investigation framework of web applications vulnerabilities, attacks and protection

techniques in structured query language injection attacks," Int. J. Wireless and Mobile Computing,, vol. Vol. 14,

no. No. 2, 2018.

[7] A. K.Kolhe and P. Adhikari, "A SQL Injection : Internal Investigation of Injection, Detection and Prevention of

SQL Injection Attacks," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 1,

January - 2014.

[8] M. Alenezi, M. Nadeem and R. Asif, "SQL Injection Attacks Countermeasures Assessments," Indonesian Journal

of Electrical Engineering and Computer Science, vol. 21, no. 2, p. pp. 1121~1131, February 2021.

[9] Cahyadi and Nanang, "SQL injection Detection Using Deep Learning A Project Report".

[10] M. Hasan and Z. Balbahaith, "Detection of SQL Injection Attacks: A Machine Learning Approach," International

Conference on Electrical and Computing Technologies and Applications (ICECTA).

[11] Q. LI, W. LI, J. WANG and A. M. CHENG, "A SQL Injection Detection Method Based on Adaptive Deep

Forest," SPECIAL SECTION ON DEEP LEARNING: SECURITY AND FORENSICS RESEARCH ADVANCES

AND CHALLENGES, October 17, 2019.

[12] Soomlek, K. Kamtuo and Chitsutha, "Machine Learning for SQL Injection Prevention on Server-Side Scripting,"

2016.

[13] https://www.kaggle.com/syedsaqlainhussain/sql-injection-dataset, March 24, 2022.

[14] https://www.delta-net.com/compliance/cyber-security/faqs/how-does-cyber-security-work, March 24, 2022.

[15] P.S.Seemma, S.Nandhini and M.Sowmiya, "International Journal of Advanced Research in Computer and

Communication Engineering (IJARCCE)," Overview of Cyber Security, vol. 7, no. 11, November 2018.

[16] https://www.stackhawk.com/blog/sql-injection-prevention-spring/, April 3, 2022.

[17] https://www.vskills.in/certification/tutorial/sql-injection-3/, April 6, 2022.

[18] https://www.acunetix.com/websitesecurity/sql-injection2/, April 12, 2022.

[19] M. Shachi, N. S. S. A. S. S. Ahmed, A. A. Brishty and N. Sakib, "A Survey on Detection and Prevention of SQL

and NoSQL Injection Attack on Server-side Applications," International Journal of Computer Applications, vol.

57

183, no. 10, June 2021.

[20] N. Bhateja, D. S. Sikka and D. A. Malhotra, "A Review of SQL Injection Attack and Various Detection

Approaches," Amity University Haryana, Gurgaon, India.

[21] M. A. Rubaiei, T. A. Yarubi, M. A. Saadi and B. Kumar, "SQLIA Detection and Prevention Techniques," 9th

International Conference on System Modeling & Advancement in Research Trends, 4th–5th, December, 2020.

[22] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja and T. Wadile, "Detection of SQL Injection using Machine

Learning: A Survey," International Research Journal of Engineering and Technology (IRJET), vol. 06, no. 11,

Nov 2019.

[23] C. Pinga, W. Jinshuang, Y. Lanjuan and P. Lin, "SQL Injection Teaching Based on SQLi-labs," IEEE 3rd

International Conference on Information Systems and Computer Aided Education (ICISCAE), 2020.

[24] W. G. Halfond, J. Viegas and A. Orso, "A Classification of SQL Injection Attacks and Countermeasures," College

of Computing Georgia Institute of Technology.

[25] M. H. U. Sharif, "Web Attacks Analysis and Mitigation Techniques," International Journal of Engineering

Research & Technology (IJERT), pp. 10 - 12, 2022.

[26] G. R. Chowdary, S. Neeraj and S. Sparsha, "MACHINE LEARNING APPROACHES FOR DIFFERENT

CYBERTHREATS," B.M.S Institute of technology and Management, September 2021.

[27] I. Tafa and E. Resulaj, "h International Conference on Multidisciplinary Studies," 10-11 December 2021.

[28] Z. C. S. S. Hlaing and M. Khaing, "A Detection and Prevention Technique on SQL Injection Attacks," Faculty of

Information Science, University of Computer Studies (Magway).

[29] Farooq and Umar, "Ensemble Machine Learning Approaches for Detection of SQL Injection Attack," ISSN 1846-

6168 (Print), ISSN 1848-5588 (Online).

[30] M. A. Kausar, M. Nasar and A. M. Said, "SQL Injection Detection and Prevention Techniques in ASP.NET Web

Application," International Journal of Recent Technology and Engineering ·, vol. 8, no. 3, October 2019.

[31] L. Ma, Y. Gao, D. Zhao and C. Zhao, "Research on SQL Injection Attack and Prevention Technology Based on

Web," International Conference on Computer Network, Electronic and Automation (ICCNEA), 2019.

[32] S. Bandhakavi, P. Bisht, P. Madhusudan and V. Venkatakrishnan, "CANDID: Preventing SQL Injection Attacks

using Dynamic Candidate Evaluations," University of Illinois Chicago, Urbana-Champaign, USA.

[33] F. Q. Kareem, S. Y. Ameen, D. M. Ahmed, S. F. Kak, I. M. I. A. M. A. Z. N. R. Hajar Maseeh Yasin and N.

Omar, "SQL Injection Attacks Prevention System Technology: Review," Asian Journal of Research in Computer

Science, vol. 10, no. 3, pp. 13-32, 2021.

[34] D. Kar, S. Panigrahi and S. Sundararajan, "SQLiDDS: SQL Injection Detection Using Query Transformation and

Document Similarity," Silicon Institute of Technology, Bhubaneswar, India, p. 377–390, 2015.

[35] L. Xiao, S. Matsumoto, T. Ishikawa and K. Sakurai, "SQL Injection Attack Detection Method using Expectation

Criterion Kyushu University," Fourth International Symposium on Computing and Networking, 2016.

[36] L. Ma, Y. Gao, D. Zhao and C. Zhao, "Research on SQL Injection Attack and Prevention Technology Based on

Web," International Conference on Computer Network, Electronic and Automation (ICCNEA), 2019.

58

[37] R. Dorai and V. Kannan, "SQL Injection-Database Attack Revolution and Prevention," Journal of International

Commercial Law and Technology, vol. 6, no. 4, 2011.

[38] R. Chandrashekhar, M. Mardithaya, S. Thilagam and D. Saha, "SQL Injection Attack Mechanisms and Prevention

Techniques," Springer-Verlag Berlin Heidelberg 2012, p. 524–533, 2012.

[39] J. T. Senders, M. M. Zaki, A. V. Karhade, B. Chang, W. B. G. &. M. L. B. &. T. R. Smith and O. Arnaout, "An

introduction and overview of machine learning in neurosurgical care," REVIEW ARTICLE - NEUROSURGICAL

TECHNIQUES, 2017.

[40] Abdulmalik and Yazeed, "An Improved SQL Injection Attack Detection Model Using Machine Learning

Techniques," International Journal of Innovative Computing 11(1) 53-57, vol. 11, no. 1, pp. 53-57, 2021.

[41] R. Mui and P. Frank, "Preventing SQL Injection through Automatic Query Sanitization with ASSIST,"

Polytechnic Institute of NYU, p. 27–38, 2010.

[42] https://www.ptsecurity.com/ww-en/analytics/knowledge-base/how-to-prevent-sql-injection-attacks/#2, May 23,

2022.

[43] B. S. Kumar and P. Anaswara, "Vulnerability detection and prevention of SQL injection," International Journal of

Engineering & Technology, vol. 7, pp. 16-18, January 2018.

[44] https://www.allroundautomations.com/products/pl-sql-

developer/?gclid=CjwKCAiA1JGRBhBSEiwAxXblwYu7LEpBuotCpcGlZq_y2jCE7MzKX8UE4IwQKR_VdKzhGH

-YSUwcEhoCZoMQAvD_BwE, April 26, 2022.

[45] M. Bravenboer, E. Dolstra and E. Visser, "Preventing injection attacks with syntax embeddings," Elsevier,

October 2007.

[46] Krüger, R. A. McClure and I. H., "SQL DOM: Compile Time Checking of Dynamic SQL Statements," May 2005.

[47] Cahyadi and Nanang, "SQL injection Detection Using Deep Learning A Project Report," Sekolah Elektro dan

Informatika Institut Teknologi Bandung.

[48] https://www.geeksforgeeks.org/role-based-access-control/, April 29, 2022.

[49] https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html, April 29, 2022.

[50] C. Torrano-Gimenez, A. Perez-Villegas and G. Alvarez, "An Anomaly-Based Approach for Intrusion Detection in

Web Traffic," Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas.

[51] MWARUWA and M. CHAKA, "LONG SHORT TERM MEMORY BASED DETECTION OF WEB BASED

SQL INJECTION ATTACKS," UNIVERSITY OF NAIROBI, p. 52, 2017.

[52] S. Singh and A. Kumar, "Detection and Prevention of SQL Injection," International Journal of Scientific Research

& Engineering Trends, vol. 6, no. 3, 2020.

[53] M. Martin, B. Livshits and M. S. Lam, "Finding Application Errors and Security Flaws Using PQL: a Program

Query Language," Computer Science Departmen, Stanford University, 2005.

[54] Rauti and Sampsa, "Towards Cyber Attribution by Deception," University of Turku, Finland.

[55] J. Hasan, A. M. Zeki, A. Alharam and N. Al-Mashhur, "Evaluation of SQL Injection Prevention Methods,"

International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019.

59

[56] https://auth0.com/blog/hashing-passwords-one-way-road-to-security/, April 29, 2022.

[57] https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html, April 30, 2022.

[58] S. Gadgil, S. Pillai and S. Poojary, "SQL INJECTION ATTACKS AND PREVENTION TECHNIQUES,"

International Journal on Recent and Innovation Trends in Computing and Communication, vol. 1, no. 4, pp. 293-

296, April 2013.

[59] Robinson, M. Akbar and M. A. F. Ridha, "SQL Injection and Cross Site Scripting Prevention Using OWASP Web

Application Firewall," INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, vol. 2, no. 4, 2018.

[60] Murphy, I. E. Naqa and M. J., "What Is Machine Learning?," Machine Learning in Radiation Oncology: Theory

and Applications.

[61] J. Alzubi, A. Nayyar and A. Kumar, "Machine Learning from Theory to Algorithms: An Overview," Second

National Conference on Computational Intelligence (NCCI 2018), 2018.

[62] A. SHRESTHA and A. MAHMOOD, "Review of Deep Learning Algorithms and Architectures," IEEE, April 1,

2019.

[63] Nasteski and Vladimir, "An overview of the supervised machine learning methods," Faculty of Information and

Communication Technologies, Partizanska bb, December 2018..

[64] https://softwareengineering.stackexchange.com/questions/368671/training-data-in-unsupervised-learning, April

30, 2022.

[65] J. T. Senders, M. M. Zaki, A. V. Karhade, B. Chang, W. B. Gormley, M. L. Broekman, T. R. Smith and O. A. ,

"An introduction and overview of machine learning in neurosurgical care," REVIEW ARTICLE -

NEUROSURGICAL TECHNIQUES, pp. 29-38, 2018.

[66] Mahesh and Batta, "Machine Learning Algorithms - A Review," International Journal of Science and Research

(IJSR), 2018.

[67] Chapelle, O. Schölkopf and A. B. Zien, "Book Reviews," IEEE TRANSACTIONS ON NEURAL NETWORKS, vol.

20, no. 3, MARCH 2009.

[68] G. Huang, S. Song, J. N. D. Gupta and C. Wu, "Semi-Supervised and Unsupervised Extreme Learning Machines,"

IEEE TRANSACTIONS ON CYBERNETICS, 2015.

[69] Sarker and I. H., "Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and

Research Directions," REVIEW ARTICLE, 29 May 2021.

[70] Q. LI, W. LI, J. WANG and M. CHENG, "A SQL Injection Detection Method Based on Adaptive Deep Forest,"

SPECIAL SECTION ON DEEP LEARNING: SECURITY AND FORENSICS RESEARCH ADVANCES AND

CHALLENGES, October 17, 2019.

[71] A. SHRESTHA and A. MAHMOOD, "Review of Deep Learning Algorithms and Architectures," IEEE, April 1,

2019.

[72] Sastry, Upadhya, Vidyadhar and P. S., "An Overview of Restricted Boltzmann Machines," Rreview Article, vol.

99, no. 2, June 2019.

[73] COŞKUN, Musab, YILDIRIM, Özal, UÇAR, Ayşegül, DEMIR and Yakup, "AN OVERVIEW OF POPULAR

60

DEEP LEARNING METHODS," European Journal of Technic EJT, vol. 7, no. 2, 2017.

[74] Indolia, Sakshi, Goswami, A. Kumar, Mishra, S. P., Asopa and Pooja, "Conceptual Understanding of

Convolutional Neural Network- A Deep Learning Approach," International Conference on Computational

Intelligence and Data Science (ICCIDS 2018), pp. 679-688, 2018.

[75] https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/, April 30, 2022.

[76] https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_deep_neural_networks.htm, April

30, 2022.

[77] M. Jiang, Y. Liang, X. Feng, X. Fan, Z. Pei, Y. Xue and R. Guan, "Text classification based on deep belief

network and softmax regression," RECENT ADVANCES IN PATTERN RECOGNITION AND ARTIFICIAL

INTELLIGENCE, 2016.

[78] H. Zhang, T. Huang, S. Liu, H. Yin, J. Li, H. Yang and Y. Xia, "A learning style classification approach based on

deep belief network for large-scale online education," Journal of Cloud Computing: Advances, Systems and

Applications, vol. 9, no. 26, 2020.

[79] D. S. Smys, D. J. I. Z. Chen and D. S. Shakya, "Survey on Neural Network Architectures with Deep Learning,"

Journal of Soft Computing Paradigm (JSCP) (2020), vol. 2, no. 3, pp. 186-194, 2020.

[80] Williams, S. Thomas and Laurie, "Using automated fix generation to secure SQL statements," 29th International

Conference on Software Engineering Workshops(ICSEW'07), 2007.

[81] Z. Lashkaripour and A. G. Bafghi, "A Security Analysis Tool For Web Application Reinforcement Against SQL

Injection Attacks (SQLIAs)," International ISC Conference on Information SECURITY & CRYPTOLOGY, ·

August 2013.

[82] P. SAVCBS, "Specification and Verification of Component-Based Systems," 12th ACM SIGSOFT Symposium on

the Foundations of Software Engineering, October 31-November 5, 2004.

[83] Chen, X. Fu, X. Lu and B. P. Shijun, "A Static Analysis Framework For Detecting SQL Injection Vulnerabilities,"

31st Annual International Computer Software and Applications Conference(COMPSAC 2007), 2007.

[84] D. Appelt, C. D. Nguyen, L. Briand and N. Alshahwan, "Automated Testing for SQL Injection Vulnerabilities: An

Input Mutation Approach," Conference Paper, July 2014.

[85] Orso, W. G. Halfond and Alessandro, "Preventing SQL Injection Attacks Using AMNESIA," College of

Computing Georgia Institute of Technology, 2006.

[86] Ghafarian and D. Ahmad, "A Hybrid Method for Detection and Prevention of SQL Injection Attacks," Computing

Conference, 2017.

[87] I. Lee, S. Jeong, S. Yeo and J. Moon, "A novel method for SQL injection attack detection based on removing SQL

query attribute values," Mathematical and Computer Modelling, vol. 55, no. 1-2, pp. 58-68, 2012.

[88] R. Mui and P. Frankl, "Preventing SQL Injection through Automatic Query Sanitization with ASSIST," Salaun,

Fu, and Hall ¨ e (Eds.): Fourth International Workshop on Testing, Analysis and Verification of Web Software,

pp. 27-38, 2010.

[89] Shiva, R. Dharam and S. G., "Runtime Monitoring Technique to handle Tautology based SQL Injection Attacks,"

61

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3):, vol. 1, no. 3, pp. 189-203, 2012.

[90] W. Qing and C. He, "The research of an AOP-based approach to the detection and defense of SQL injection

attack," International Conference on Advanced Electronic Science and Technology (AEST 2016), 2016.

[91] M. E. Hossain and S. Ahmed, "An approach to secure multi-tier websites through SQL-Injection detection and

prevention," ICCA, Jan 2020.

[92] K. Ross, "SQL Injection Detection Using Machine Learning Techniques and Multiple Data Sources," San Jose

State University SJSU ScholarWorks, 2018.

[93] A. Alam, M. Tahreen, M. M. Alam, S. A. Mohammad and S. Rana, "SCAMM: Detection and Prevention of SQL

Injection Attacks," Department of Computer Science and Engineering BRAC University, 2021.

[94] S. Mishra, "SQL Injection Detection Using Machine Learning," The Faculty of the Department of Computer

Science San José State University, 2019.

[95] I. Jemal, H. Hamam, O. Cheikhrouhou and A. Mahfoudhi, "SQL Injection Attack Detection and Prevention

Techniques Using Machine Learning," International Journal of Applied Engineering Research, January 2020.

[96] T.P.Latchoumi, M. S. Reddy and K.Balamurugan, "Applied Machine Learning Predictive Analytics to SQL

Injection Attack Detection and Prevention," European Journal of Molecular & Clinical Medicine, vol. 07, no. 02,

2020.

[97] N. Cahyadi, "SQL injection Detection Using Deep Learning A Project Report," Rekayasa dan Manajemen

Keamanan Informasi Sekolah Elektro dan Informatika Institut Teknologi Bandung.

[98] S. ABAIMOV and G. BIANCHI, "CODDLE: Code-Injection Detection With Deep Learning," University of Rome

Tor Vergata, Rome, Italy, 2019.

[99] D. Chen, Q. Yan, C. Wu and J. Zhao, "SQL Injection Attack Detection and Prevention Techniques Using

Deep Learning," Journal of Physics: Conference Series, 2020.

[100] K. Zhang, "A Machine Learning based Approach to Identify SQL Injection Vulnerabilities," IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2019.

[101] M. M. Hassan, R. B. Ahmad and T. Ghosh, "SQL Injection Vulnerability Detection Using Deep Learning: A

Feature-based Approach," Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 9, no.

3, p. 702~718, September 2021.

[102] A. Luo, W. Huang and W. Fan, "A CNN-based Approach to the Detection of SQL Injection Attacks," IEEE,

2019.

[103] M. Hirani, A. Falor, H. Vedant, P. Mehta and D. Krishnan, "A Deep Learning Approach for Detection of SQL

Injection Attacks using Convolutional Neural Networks," Department of Computer Engineering,MPSTME,

NMIMS University, Mumbai, India, 2020.

[104] J. K. R, P. Beriwal, S. B. B, A. Amarajan and N. Pandey, "An Efficient SQL Injection Detection System

Using Deep Learning," International Conference on Computational Intelligence and Knowledge Economy

(ICCIKE), 2021.

[105] T. GHOSH, "SQL Injection Vulnerability Detection using Deep Learning: A Web Feature Based Approach,"

62

Department of Software Engineering DAFFODIL INTERNATIONAL UNIVERSITY, 2019.

[106] J. Wang, Z. Zhou and J. Chen, "Evaluating CNN and LSTM for Web Attack Detection," Association for

Computing Machinery., 2018.

[107] H. Zhang, J. Zhao, B. Zhao, X. Yan, H. Yuan and F. Li, "SQL Injection Detection Based on Deep Belief

Network," CSAE2019.

[108] M. Zhang, B. Xu, S. Bai, S. Lu and Z. Lin, "A Deep Learning Method to Detect Web Attacks Using a

Specially Designed CNN," Springer International Publishing, p. 828–836, 2017.

[109] Y. Fang, J. Peng, C. Huang and L. Liu, "WOVSQLI: Detection of SQL Injection Behaviors Using Word

Vector and LSTM," Association for Computing Machinery., 2018.

[110] https://scikit-learn.org/stable/modules/feature_selection.html, April 30, 2022.

[111] https://in.mathworks.com/discovery/feature-extraction.html, May 1, 2022.

[112] https://www.infoworld.com/article/3003315/deep-learning-a-brief-guide-for-practical-problem-solvers.html,

May 1, 2022.

[113] R. Yamashita, M. Nishio, R. K. G. Do and K. Togashi, "Convolutional neural networks: an overview and

application in radiology," Insights into Imaging, vol. 9, p. 611–629, 2018.

[114] K. O’Shea and R. Nash, "An Introduction to Convolutional Neural Networks," arXiv, 2 Dec 2015.

[115] H. Gholamalinezhad and H. Khosravi, "Pooling Methods in Deep Neural Networks, a Review," Ph.D. Student

of Electronics - Image Processing, Faculty of Electrical & Robotics Engineering, Shahrood University of

Technology, Daneshgah Blvd., Shahrood, Iran..

[116] A. Ajit, K. Acharya and A. Samanta, "A Review of Convolutional Neural Networks," International

Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), February 2020.

[117] V. T. Ponnada and S. N. Srinivasu, "Efficient CNN for Lung Cancer Detection," International Journal of

Recent Technology and Engineering (IJRTE), vol. 8, no. 2, July 2019.

[118] P. A. Abhay K.Kolhe, "A SQL Injection : Internal Investigation of Injection, Detection and Prevention of

SQL Injection Attacks," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 1,

January - 2014.

[119] I. Jemal, O. Cheikhrouhou, H. Hamam and A. Mahfoudhi, "SQL Injection Attack Detection and Prevention

Techniques Using Machine Learning," International Journal of Applied Engineering Research ·, vol. 15, no.

6, pp. 569-580, January 2020.

[120] I. Jemal, O. Cheikhrouhou, H. H. and A. Mahfoudhi, "SQL Injection Attack Detection and Prevention

Techniques Using Machine Learning," International Journal of Applied Engineering Research, vol. 15, no. 6,

pp. 569-580, 2020.

63

Appendix

64

65

