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ABSTRACT 

Machine translation (MT) is one of the applications of natural language processing which involves 

using computers to translate from one source language to another target language. For many years, 

Statistical Machine Translation (SMT) dominated the field of machine translation technology. 

Long sentences are broken up into small pieces in classical statistical machine translation, which 

results in poor levels of accuracy. Neural Machine Translation (NMT) is a new paradigm that 

swiftly superseded SMT as the predominant method of MT, developed with the development of 

deep learning. NMT approach differs from SMT systems as all parts of the neural translation model 

are trained jointly (end-to-end) to maximize the translation performance.  In an encoder-decoder 

design, the entire source sequence's input is condensed into a single context vector, that is then 

sent to the decoder to create the output sequence. The major drawback of encoder-decoder model 

is that it can only work on short sequences. It is difficult for the encoder model to memorize long 

sequences and convert it into a fixed-length vector. One realistic solution to this problem is the 

attention mechanism. The attention mechanism predicts the next word by concentrating on a few 

relevant parts of the sequence rather than looking on the entire sequence. Hence, the objective of 

this research work is to develop a neural machine translation system for English-Wolaytta using 

attention mechanism.  

The English-Wolaytta machine translation system has been trained on parallel corpus covering the 

religious, and frequently used sentences or phrases which can be used in day to day 

communication. A total of 27351 parallel English-Wolaytta sentences were prepared and the 

system is trained and tested using 80/20 ratio. These data were preprocessed in the suitable format 

in way to be used in neural machine translation. For building the proposed English-Wolaytta NMT 

model, an LSTM encoder and decoder architecture with an attention mechanism has been proposed 

in the Sequence-to-Sequence concept.  In order to evaluate the efficiency of the proposed system, 

BLUE score metrics is used, and for testing the efficiency of attention mechanism, we have 

developed non-attention model and compared it with the attention mechanism. Hence, we have 

proved that the attention mechanism has a better translation and has achieved a BLEU score of 

5.16 and 88.65 accuracy. 

Keywords: Machine Translation, Neural Machine Translation, English, Wolaytta, Attention 

Mechanism, Encoder-Decoder Architecture, Natural Language Processing
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Communication is the main tie that binds our world community. Language is the primary means 

of communication among humans. Language also called Natural Language (NL) which refers to 

any human spoken or written symbol that has evolved naturally for human communication. 

Through natural language communication, we are able to share our ideas, opinions, views, and 

emotions with another person. The purpose of language is creating an understanding of complex 

and abstract thinking. It plays a vital role in helping people build a bridge of relationships. Various 

natural language is used by people residing in different areas or belonging to different 

communities.  

To make communication possible in a multilingual environment, either people need to use a 

common language when conveying a message or they need to adapt the source language and 

culture to those of the people they want to communicate with. But language barriers are creating 

huge gaps. Globalization and the rise of the internet as a global medium of communication has led 

to an ever-increasing demand for translation systems. Translation systems have a significant role 

in bridging both the linguistic and cultural differences that has long-standing between people of 

different corner of the world. Recently, advances in technology have paved a way to positive 

changes in translation making possible Interlingua communications. Natural Language Processing 

(NLP) is one of these advancements. 

NLP, or computational linguistics, is a fundamental area of machine learning (ML). It is the 

capacity of a computer software to comprehend, interpret, and work with spoken and written 

human language [1]. NLP contributes significantly to the survival and further development of 

languages by offering state-of-the-art tools and applications to the speakers. It is a considerable 

step forward in Artificial Intelligence (AI) [2].  NLP typically involves applications of Computer 

Science and computational linguistics in its efforts to fill the gap between human communication 

and computer understanding [1]. NLP has various applications including Machine Translation 

(MT), Text summarization, Information extraction etc. [3].  
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Human-human, human-computer, computer-human, and computer-computer communication via 

computing systems can be facilitated by NLP applications. Every language should be easily 

comprehended by the computer in the NLP environment. Machine translation is the procedure that 

enables a computer to comprehend the various languages spoken worldwide (MT). 

Machine translation is a branch of computational linguistics which studies the use of computer 

software to translate text or speech from one natural language to another [4]. It can be defined as 

the capability of computers to automatically translate text between two natural languages while 

maintaining the intended meaning and producing fluid text in the target language. Without the use 

of human translators, these automatic translation systems transform one language into another 

using cutting-edge technology, extensive dictionaries, and a set of linguistic principles [5]. Despite 

being one of the oldest areas of study in artificial intelligence, machine translation has seen very 

significant advancements in terms of translation quality due to a growing interest in human-

machine interactions, the availability of big data, improved algorithms, and a recent shift toward 

large-scale empirical techniques. The demand for translation services is currently expanding across 

numerous industries, including business, medicine, and the economy. 

Machine translations can be classified according to their core methodology: the rule based 

approach also known as Knowledge based approach which is a linguistic rich approach where 

humans specify a set of rules to describe the translation process and the corpus based approach 

which is entirely corpus based where knowledge is extracted from a parallel corpus. 

Rule based machine translation approach involves sub approaches like direct approach, transfer 

based approach and Interlingua machine translation approach. Sub approaches involved in corpus-

based machine translation include statistical phrase-based approach and neural-based approaches. 

Example-based, Knowledge based approaches are termed as is less used approaches nowadays [3]. 

 

1.2. Statement of the Problem 

Ethiopia is a multilingual, multiethnic and culturally a pluralistic nation with more than 80 

different languages with over 200 dialects spoken. Languages in Ethiopia can be classified within 

four major language groups, though the country is also home to several unclassified tongues. The 

four main language groups in Ethiopia are Semitic, Cushitic, Omotic and Nilo-Saharan. Most of 
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the languages in Ethiopia are included in the Afro-Asia language family. Of these Ethiopian 

languages’ majority are Cushitic and Omotic languages and some are Semitic languages [6]. 

Nearly 30 languages collectively referred to as "Omotic languages" and they are spoken in the 

south-west of Ethiopia, close to the Omo River. The 28 Omotic languages are divided into southern 

and northern sub-families among these [7]. 

The Wolaytta language, which is spoken in the Wolaytta Zone and some other areas of Ethiopia's 

Southern Nations, Nationalities, and People's Region, is a member of the Northern Omotic 

language family. The number of speakers of this language is estimated about 15.5 million 

Populations (based on 1999E.C census) [8]); it is the native language of the Wolaytta people. It is 

also spoken in different neighboring areas and various cities throughout the country by people 

from Wolaytta region. In the region, the media of instruction in primary schools is Wolaytta 

language and is offered as a program in Wolaytta Sodo University. The number of articles and 

newspapers published in this language is increasing over the years and different Mass Medias are 

streaming their programs this language [6]. The need for effective translation has become a matter 

of urgency due to the ever-increasing amount of contents that are being created in English 

language. Various research results, teaching materials and information available on the Internet 

use these languages as their preferred language of communication.  

Language constraints might still make it difficult to acquire information in the contemporary 

globalized environment. In some cases, it is impossible to meet the demand for translation by using 

solely human translators; as a result, tools like MT are becoming more and more popular since 

they have the ability to solve this issue. The importance of using technology in people's daily lives 

is also increasing. Not only in educational areas but also in social, financial, technological, 

entertainments and cultural fields. As the necessity to use technology is increasing, so does the 

demand for translation. 

Despite the large number of speakers all over the country, there are very few computational natural 

language tools available for Wolaytta. It is a morphologically rich language having many other 

distinct linguistic characteristics. On the contrary it is still an under-resourced language. Just to 

mention a few of the works done so far: Attention Based Amharic-to- Wolaytta Neural Machine 

Translation by Workineh Wogasso [9], English- Wolaytta machine translation using Statistical 

Approach by Melaku Mara [10], Bidirectional Dictionary Based machine translation for Wolaytta 
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Amharic by Temesgen Mengistu [11], a Hybrid Machine Translation System for English-to- 

Wolaytta by Kidanemariam Firew [12]. This previous works uses traditional translational 

approaches.  Over the course of machine translation development, MT has changed greatly, from 

systems that required hours and days of computing time to produce a translation of dubious quality, 

to the current neural machine translation (NMT) systems that can process the same content in mere 

seconds and with much more accuracy. Neural machine translation has many advantages over 

traditional machine translation including higher translation accuracy, less need for human input, 

quicker translation turnaround times and so on. However, to the researcher’s knowledge the neural 

translation using attention-based model for English to Wolaytta has not yet been done. 

This study uses neural machine translation (NMT) with attention approach to translate words from 

English to Wolaytta. The proposed model is chosen because attention-based neural machine 

translation has achieved significant performance in recent years and attentional neural machine 

translation is efficient and produces fluent translation. It is becoming the mainstream machine 

translation method in the current industry. For example, NMT with attention is the leading model 

behind the popular services like google translate. In 2016 google announce the launch of Google 

Neural Machine Translation system (GNMT), which utilizes state-of-the-art training techniques to 

achieve the largest improvements to date for machine translation quality.  Human evaluations show 

that GNMT has reduced translation errors by 60% compared to the previous phrase-based system 

on many pairs of languages: English ↔ French, English ↔ Spanish, and English ↔ Chinese [13].  

During translation, the attention mechanisms selectively focuses on sub-parts of the sentence to 

improve the performance of neural machine translations. To accomplish an efficient translation 

with respect to accuracy as well as quality and to reach a better BLEU score between the language 

pairs, the attention-based neural machine translation is proposed.   

 

1.3. Research Motivation  

The primary objective of MT is to eliminate language barriers by developing a machine translation 

system that can translate one human language to another. It plays a vital role in strengthening 

communications between people residing in different areas and in enabling peoples to use 

documents and data produced in resource rich languages. There is a high need for translation due 
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to the requirement for information sharing among resource-rich and low resource languages. 

Languages with a limited amount of parallel corpus resources benefit less from such a system than 

languages with large translated resources. Among the languages with less translated documents 

are Ethiopian languages such as Wolaytta.  

Despite being widely spoken language in southern Ethiopia, Wolaytta is considered as less 

resourced language. English is the universal language on the Internet and many documents are 

written in English. Because of that non-English speakers are faced with the problem of 

communication and limited access to resources and this problem is compounded in Wolaytta 

language. Because it falls under the category of a resource-rich language, English is the ideal 

choice to translate material from. Improving machine translation accuracy from resource rich 

language like English to resource scarce languages like Wolaytta will make a significant 

contribution. With the recent widespread use of Wolaytta language on publications and on social 

media in Wolaytta Zone, improving the performance of translation from English language is of 

great benefit to both the community, the private and public sector in the area. Since Wolaytta is 

the official working language of Wolaytta zone, applying machine translation on the translation of 

different educational books or other materials can contributes to different government institutions 

like elementary education.  English- Wolaytta Machine Translation can solve the aforementioned 

problems. This has motivated us to work on Attention-based English-to- Wolaytta Neural MT. 

1.4. Research Questions 

The central questions of the study which is addressed by this research study are: 

▪ What will the English-Wolaytta language pairs' performance of the attention-based NMT 

approach be? 

▪ How well do attention-based NMT models perform in translation tasks? 

 

1.5. Objectives of the Study 

1.5.1 General Objective 

The general objective of this study is to develop an English-to-Wolaytta neural machine translation 

using attention-based approach. 
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1.5.2 Specific Objectives 

The following specific objectives are outlined in order to fulfill the study's general objective. 

▪ To prepare English- Wolaytta parallel corpus 

▪ To review techniques and methodologies used for machine translation 

▪ To review related literatures to identify the linguistic behaviors of English and Wolaytta 

languages. 

▪ To design the architecture of the system  

▪ To develop a model for English-Wolaytta machine translation 

▪ To evaluate the performance of the developed model 

1.6. Scope and Limitations of the Study 

The main aim of this study is to develop an attention based neural machine translation for English 

to Wolaytta. The study designed to operate only in one direction (unidirectional) i.e., from English 

to Wolaytta. Because of having insufficient sources, the data is collected manually from limited 

resources which makes the system limited to specific domains. The other limitation of this study 

is a lack of computationally powerful machine that helps us to make different experiments to get 

a more efficient model by changing different parameters setups and using different approaches. 

1.7. Significance of the Study 

The main contribution of this research work includes: 

▪ After this study, it is expected that there will be better translation between the two language 

pairs.  

▪ This study can be used in the preparation of teaching materials in the areas in which 

Wolaytta is spoken. 

▪ The study will contribute to increase digital literacy by removing language barrier  

▪ It will help with the development of teaching materials in the Wolaytta region and the 

accurate translation of technical papers. 
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1.8.  Methodology of the study 

To accomplish the research a lot of methods, tools, and techniques were applied. 

1.8.1 Literature Review 

 

Reviewing several literatures on machine translation systems were conducted for other language 

pairs to gain deep understanding of the research area. A detailed literature review on Neural 

Machine translation approach in particular with regard to techniques used in the approach were 

done. For further understanding of the linguistic behavior of both language pairs, different related 

articles and books were reviewed. 

1.8.2 Data Collection 

 

The translation system tries to generate translations using the English-Wolaytta corpus based on 

neural methods. To perform the experiment, English-Wolaytta parallel corpus were collected from 

sources like the Holy Bible and simple sentences commonly used for daily communication 

purpose. The simple sentences were prepared manually to conduct the experiment. Since Wolaytta 

is under-resourced language, the corpora are from limited sources. 

 

1.8.3 Tools 

 

To implement the model of the English- Wolaytta neural machine translation system, Python 

programming language is used. Python is chosen because of its high-recital tool for NLP and it is 

open-source, with a variety of rich libraries, rich documentation, and support. Anaconda Navigator 

which is a desktop graphical user interface (GUI) is used to help us use different very efficient 

editors like Jupyter Notebook. The NMT was built using TensorFlow, one of the most popular 

data science and machine learning frameworks, which is an open-source deep learning library with 

Keras and NumPy library. Keras library was employed in this work on top of TensorFlow. 
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Table 1.1: Hardware Tool 

Computer 

Type 

Operating 

System 

Processor System Type Installed 

RAM  

Storage 

Laptop, HP 

ENVY x360 

Windows 11 

Home 

AMD Ryzen5 

4500U with 

Radeon Graphics   

2.38 GHz 

64-bit Operating 

system x64-based 

processor 

8 GB 238.46 GB 

SSD 

 

1.9. Thesis Organization 

This thesis report includes six chapters. Chapter two presents the literature review of Machine 

Translation, Types of Machine Translation and their advantage and disadvantage, Neural Machine 

Translation and the different architecture of NMT and algorithms. It also presents a review of 

works done in the area of Machine Translation in Ethiopian and Foreign languages. 

Chapter Three presents the overview of Wolaytta Language. The chapter represents the inflectional 

and derivational morphology of the language. 

Chapter Four discusses the steps that have been followed in the research work and the proposed 

architecture of the of English-Wolaytta NMT model. 

Chapter Five discusses the experiment and implementation of English-Wolaytta NMT model by 

applying data processing and Encoder-Decoder with attention mechanism, models training, and 

testing. It also presents the experiment result, evaluation and comparison of performance of the 

model based on evaluation metrics. 

Chapter Six presents the conclusion and future works for further research direction on this research 

topic/domain. 
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CHAPTER TWO 

 LITERATURE REVIEW 

2.1. Introduction 

In this chapter, review of literature in the field of machine translation has been made. The chapter 

covers overview of machine translation, the need for machine translation and different approaches 

of machine translation with special focus on neural machine translation approach. A review of 

related research works which were done in the area of Machine Translation in Ethiopian and 

Foreign languages is also provided. 

2.2.  Why Machine Translation? 

In the context of modern globalization, people in various fields are now expanding their scope 

activities from local and regional to international levels. Globalization is playing a major role in 

this regard. It is combining social, cultural, economic, political and technological developments 

and is creating a unified overall environment. Globalization supported by information and 

communication technology has made the world a very small place. Keeping pace with the ever-

increasing globalization is making the need for translation greater than ever. Translation fills the 

global communication gap between the communities speaking different languages. Difficulties in 

understanding foreign language have reduced significantly since MT has come to the field. MT 

has constantly been improved and upgraded through the enhanced programs of statistics, analysis 

and data processing. Such popular services as Babelfish and Google Translate are often used to 

meet the communication needs of the globalized world community, in particular on the Internet 

platform. 

The Internet World Statistics Report describes that the content available on the internet in different 

languages varies, and the most dominant language on the internet is English [14] keeping in view 

this issue there is a dire need of machine translation system to make the web content available to 

everyone in their native language 

Machine translation frameworks are expected to decode or translate creative works from any 

language to local language. Such machine translation frameworks can break the language 

obstruction by quickly making work accessible to the globe’s masses. Numerous web pages may 
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contain information related to our interest in a foreign language, and with the help of machine 

translation, we understand the content present in those web pages. Machine translation can also 

help commercial product manufacturers prepare product manual in many languages that can be 

used by different countries. With the advancements in the internet, millions of users worldwide 

can get the information in their native language with the help of machine translation. In modern 

civilization, machine translations have growing need and importance in economics, business, 

health care and industrialization. The social and political urgency of machine translation rises in 

societies where more than one language is spoken. During the last decade, machine translation 

technology has improved. With the emergence of personal computers and the increasing use of 

computer-assisted tools, machine translation gained a strong momentum giving birth to 

commercially available software and hardware with translation tools and powerful dictionaries. 

Currently, machine translation is used by several companies and by governments. It is becoming 

more and more crucial for companies to remain relevant in the fast-changing global economy. It 

translates a vast amount of text in less time than a human translator, thus saving a lot of time. 

2.3.  An Overview of Machine Translation 

Without a human being involved, a computer program may translate text from one language to 

another using a process known as machine translation (MT), sometimes known as automated 

translation. It is a field of practical research that incorporates concepts and methods from statistics, 

artificial intelligence (AI), computer science, and linguistic programming [15]. 

The goal of machine translation is to create a system that can translate text from one language into 

another while maintaining the original text's meaning. Because natural languages are extremely 

complicated in terms of term word meaning, grammar rules, etc., MT requires a comprehensive 

understanding of both the source language and the target language, including both languages' 

grammar and semantic syntactic comprehension [16]. It begins the process by analyzing the input 

in the source language and building an internal representation. This representation is changed and 

converted into a format appropriate for the intended language. Finally, output is produced in the 

intended language. On a fundamental level, MT simply swaps out words from one natural language 

with words from another. 
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A translation may be done manually or automatically using machine translation. When using 

computer-based translation tools, human translators assist machine translators in performing the 

translation. When using human-aided machine translation, humans and computers work together 

to translate texts. Human involvement occurs either before the translation process, known as pre-

editing, or after the translation process, known as post-editing. The distinction between machine 

aided and human aided machine translation is frequently ambiguous, and the term "computer-aided 

translation" might refer to either. However, the automation of the entire translation process is the 

essence of machine translation [4]. 

Systems for translating texts are either created for two specific languages (bilingual systems) or 

for multiple pairs of languages (multilingual systems). Bilingual systems can be created to work 

in both directions and only one direction (unidirectional), such as from English into Wolaytta 

language. When translation is unidirectional, just one direction from the source language to the 

destination language is supported. Systems that are bidirectional function in both directions, 

allowing one language to serve as the source and the other as the destination and vice versa. Most 

bilingual systems are unidirectional, although multilingual systems are typically meant to be 

bidirectional [4]. 

However, machine translation has advantages and disadvantages just like everything else. The 

speed of machine translation is its main benefit. It is accessible at all times, quick, affordable, and 

easily updatable. Utilizing it comes with certain trade-offs as well. It is unable to provide a 

complete and accurate translation on its own. Even so, it eventually needs assistance from people. 

Additionally, machine translation cannot understand the intricacies of culture and society or its 

substance. The main problem for the machine translation paradigm is developing a program that 

can comprehend text like humans do and produce new material in the target language that sounds 

like it was produced by a human [17]. 

Machines are not yet intelligent enough to distinguish a word meaning based on context, and may 

provide a bad translation. Also, the idioms, tone, cultural references upon which a language is 

build and impart any particular message; cannot be understood by any machines.  

Humans are not exempt from difficulties. For instance, no two human translators can translate the 

same material into the same language pair in exactly the same way, and accurate translation may 
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need several rounds of revisions. Combining the efforts of the human mind and the machine results 

in a higher quality translation. Although the quality of machine translation is significantly inferior 

to that of human translation, text can be translated quickly, accurately, and effectively by 

integrating machine translation with other technologies and human translators. There have been a 

variety of methods developed to automate translation, each with advantages and problems of their 

own [18]. 

2.4.  Approaches of Machine Translation  

Different strategies have been presented and put into effect since the idea of employing machines 

for language translation procedures was developed. Rule-based machine translation and corpus-

based translation are the two basic paradigms that machine translation has historically followed. 

The integration of rule-based and corpus-based MT systems has lately led to the development of 

hybrid techniques and, most recently, neural machine translation approaches, which are currently 

dominating the paradigms of machine translation [19]. 

2.4.1 Rule Based Machine Translation (RBMT) 

The first method ever created in the field of machine translation is called Rule-Based Machine 

Translation (RBMT), sometimes known as Knowledge-Based Machine Translation. Machine 

translation systems based on linguistic data about the source and target languages are referred by 

this generic term. RBMT systems provide translation using bilingual and monolingual dictionaries, 

grammars, and transfer rules. Morphological, syntactic, and semantic information about the source 

and target languages are managed during translation. To create linguistic principles, this 

information is used. Rules are important at all phases of translation, including syntactic processing, 

semantic interpretation, and contextual language processing [18]. 
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Figure 2.1: General Steps of Rule-based Machine Translation [16] 

Converting source language structures to target language structures is the aim of RBMT. Direct, 

transfer-based, and Interlingua are the three sub-approaches that the methodology can use. The sub 

methods vary in how thoroughly they analyze the source language and how much they try to 

express meaning or intent between the source and target languages in a way that is not dependent 

on either language [16].  

2.4.1.1 Direct Approach 

In this approach literal translation involves transferring the source language into the target 

language without any intermediate languages. Without using an additional or intermediary 

representation, source language words are translated. Word-to-word translation is done with or 

without keeping the word's sense in this method. Systems for direct translation are essentially 

unidirectional and bilingual [16]. There won't be any complicated architecture involved in this 

approach. With the use of a bilingual dictionary, it performs word-by-word translation, usually 

followed by some syntactic rearrangement. Such systems are heavily reliant on both the source 

and target languages as a result of this direct mapping. 
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Figure 2.2: Major Tasks in Direct Machine Translation Approach [16] 

2.4.1.2   Interlingua Approach 

This method of machine translation (MT) involves converting the source language into a 

representation that is independent of all other languages used in the translation process. The term 

"neutral language" refers to this transitional tongue. Languages used as the source and target are 

irrelevant. The Interlingua is then used to produce the target language. From now on, this type of 

method just requires two modules: analysis and synthesis. For multilingual systems, the Interlingua 

technique is undoubtedly the most appealing. One of the main benefits of this technique is that as 

the number of target languages it may be converted into grows, the Interlingua gains in value. In 

1992, Nyberg and Mitamura created KANT, the sole Interlingua machine translation system. It is 

not simple work to develop an Interlingua language. To create completely neutral language, too 

much work is needed [18]. 

2.4.1.3 Transfer-based Approach 

Transfer-based machine translation produces a translation from an intermediate representation that 

mimics the meaning of the source sentence. Contrary to Interlingua MT, it is somewhat reliant on 

the language pair being translated. By examining the grammatical structures of both the source 

language and the target language, a set of linguistic rules are established in this translation in order 

to retain the meaning of a sentence. Translation can be divided into three phases in the transfer-

based approach: Analysis, transfer, and generation come first. The source language text is initially 

examined using linguistic data to create a syntactic representation of the source language using a 
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source language parser. The second stage involves the transformation of the source syntactic 

representation into the target syntactic representation. The target language text is produced using 

the morphological analyzer in the last step of this translation methodology. Transfer-based systems 

require rules for lexical, semantic, and syntactic transfer. The source parse tree can be changed to 

resemble the target parse tree using syntactic transfer rules. Semantic role labeling is used in 

semantic transmission. On a multilingual dictionary, lexical transfer rules are based. Lexical 

ambiguity can be resolved by using the dictionary [18] [20]. 

 

Figure 2.3: Machine Translation Pyramid [18] 

2.4.1.4   Advantages and Disadvantages of RBMT 

Different approaches of MT have complementary pros and cons. Here are some of the advantages 

and dis advantages associated with RBMT approach.   

Advantages 

A bilingual corpus is not necessary to construct a rule-based machine translation system. This 

enables the development of translation systems for languages without any digital information or 

similarities. The RBMT system is domain neutral and provides excellent out-of-domain quality 

due to the rules' ability to be applied across a variety of domains. The addition of improved quality 

and consistency is RBMT's additional benefit. Errors are simpler to identify and troubleshoot since 

the system is more transparent. Even if the trigger scenario is extremely uncommon, a tailored rule 

can correct each inaccuracy. Another RBMT advantage is reusability. The foundation of RBMT 

systems typically consists of a robust source language analysis that is fed to a transfer step and 

target language generator; the source language analysis and target language generation 
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components can be shared by multiple translation systems, necessitating the specialization of only 

the transfer step. Additionally, a substantially related language analysis can be bootstrapped using 

the source language analysis for one language. The needs of a wide range of linguistic phenomena 

can be met by RBMT, which is extensible and capable of high accuracy in limited language sets. 

Disadvantage 

The fundamental disadvantage of rule-based machine translation is that a huge number of rules are 

required to cover all language aspects, which necessitates extensive linguistic understanding. It is 

quite expensive because it not only calls for linguistic proficiency but also intensive coding on the 

part of the programmer, which takes a lot of time and linguistic resources. Large-scale rule 

interactions, ambiguity, and idiomatic idioms are challenging to handle in RBMT. Rules must be 

changed in order to increase the quality of an RBMT; but, changing just one rule does not ensure 

that the RBMT will perform more accurately overall. Additionally, rule updates are typically 

highly expensive. There are still certain linguistic details that need to be carefully set. 

2.4.2 Corpus-based Machine Translation 

A key paradigm for creating MT systems is rule-based techniques. To address the extensive 

variances and temporal shifting properties of the actual text, such techniques struggle to acquire 

the necessary information. Some statistical translation models and assisting tools had been created 

to address this issue. A machine translation system with an architecture based on bilingual or 

multilingual corpora analysis is known as corpus-based machine translation. Data with text and its 

translation are called bilingual parallel aligned corpora. As an alternative to the rule-based method, 

it was introduced. A significant amount of raw data is gathered in parallel corpora when using a 

corpus-based technique, and this data is then used to extract translations for new sentences. The 

untranslated data includes literature, dictionaries, grammars, and other resources. The translation 

between the source and target languages is essentially the raw data [16].  

The corpus-based method to machine translation has become one of the most extensively 

researched areas in machine translation since 1989. Examples-Based Machine Translation 

(EBMT), Statistical Machine Translation (SMT), and Neural Machine Translation are the three 

variants of the corpus-based technique that have been recently classified. These strategies are 

succinctly explained in the following subsections [16] [20]. 
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2.4.2.1   Example-Based Machine Translation (EBMT) 

Example-based translation, often referred to as Memory-based translation, is a type of corpus-

based machine translation that draws its primary information from bilingual corpora of parallel 

texts. Makoto Nagao proposed the example-based translation approach in 1984. It is based on 

analogical reasoning between two translation instances. A bilingual corpus is used by an example-

based translation at runtime as its primary knowledge basis. These algorithms use the source text 

as input and search the corpus for the source examples that are most comparable to the source text. 

Retrieving equivalent translations is the next stage. Recombining the obtained translations with 

the final translation is the last step. The main principle is that if a sentence that has already been 

translated reappears, the same translation is likely to be accurate once more. The system uses the 

example that has already been translated as knowledge. This method extracts data from corpora 

for analysis, transmission, and translation production [21] [22]. 

In EBMT, the translation process is essentially a mechanism for matching the input sentence 

against the stored translated samples rather than utilizing explicit mapping rules to convert 

sentences from one language to another. 

Advantages of an EBMT 

EBMT uses parallel texts as its main knowledge which avoids the need for manually derived rules 

making quickly adaptable to many language pairs. Because EBMT a memory-based translation, 

the translation memory saves the user effort of re translating the sentence and this saves the 

processor time and user time. The other advantage of this model is it works well with small set of 

data and possible to generate output more quickly by training the translation program. 

Disadvantages of an EBMT 

Even while EBMT does away with the requirement for manually developed rules, it still needs 

analysis and generation modules to create the dependency trees required for both evaluating the 

sentence and the examples database. Although parallel processing techniques can be used, EBMT's 

computational efficiency, particularly for big databases, remains a concern. To create the 

dependency trees required for the examples database and for analyzing the sentence, analysis and 
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generation modules are required. Because there are no effective techniques for cleaning noisy 

corpora, the effectiveness of the EBMT system is hindered in cases where there are noisy corpora. 

2.4.2.2 Statistical Machine Translation (SMT) 

Statistical Machine Translation (SMT) is a type of machine translation in which translations are 

produced using statistical models whose parameters are obtained through the examination of 

bilingual text corpora. Warren Weaver first proposed the concept in 1949, but it wasn't until the 

late 1980s that researchers at IBM's Thomas J. Watson research center revived it [23]. SMT seeks 

to use statistical decision theory, which is based on the probability distribution function, to arrive 

at the best translation decision. Empirical Machine Translation (EMT) systems use statistical 

translation models that are built from the examination of monolingual and bilingual corpora to 

perform statistical machine translation [22]. 

In SMT, a bilingual text corpus is utilized to examine the parameters of the statistical model and 

statistical probabilities are employed to determine the likelihood of a translation. The availability 

of a statistical table, which can be created using supervised or unsupervised statistical machine 

learning techniques, is a key component of SMT. Statistics for phrases or languages are typically 

included in statistics tables. Instead of utilizing linguistic translation methods, SMT calculates the 

odds of a match statistically using two probabilistic models: The Language Model and the 

Translation Model. 

The idea of SMT is that document can be translated on the basis of probability distribution 

function. And this function is generated easily by using Bayes theorem. In Bayes theorem 

probability distribution P(t/s) is obtained from the product of P(s/t) and P(t), where P(s/t) is the 

probability that the source sentence is a translation of the target sentence, and P(t) is the probability 

of the target language. Three elements the language model, translation model, and decoder play a 

prominent role in the SMT architecture as seen in Figure 2.4.  
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Figure 2.4: Statistical Machine Translation 

The language model first determines P(t) using the monolingual corpus. The appropriate word 

combinations in the target language are also its responsibility. Thus, it guarantees the output is 

grammatically correct. Second, the translation model, which ensures that the target hypothesis 

produced by the machine translation system corresponds to the source phrase, estimates P(s/t) 

based on the parallel corpus. The Decoder, which actually does the translation, comes in third [24] 

[23] Using the following equation, the decoder selects the sentence in the SL that has the highest 

likelihood of being a feasible translation for a given sentence t in the target language. 

P (t|s) = argmax (P (s|t)) ∗ P (t))                                                                                                   (2.1) 

Depending on the fundamental modeling unit, statistical machine translation can be divided into 

three groups. These three types of language modeling are word-based, phrase-based, and 

syntactical-based. 

Word-based Language Modeling: It is the statistical-based MT system's initial attempt. The 

basic building block of this approach is words, as its name suggests. The target sentence is created 

by translating each word in the input sentence word by word, then arranging those translated words 

in a certain order. In word-based translation, the alignment of the words in the input and output 

phrases typically follows particular patterns [22]. 

Phrase-based Language Modeling: A phrase or series of words is the basic building block of this 

approach. Before translation, each source and target sentence are broken up into distinct phrases 

rather than words. There is a creation of a word order using both the source and target languages. 
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Based on the vector of items with coordinating properties for the dialect succession pair, decoding 

is performed [20] [22]. 

Syntactical-based Language Modeling: The translation rule serves as the basic building block 

of this approach. The source language's word and variable order makes up the translation rule. a 

target language syntax tree (having words or variables at leaves), The likelihood of the language 

pair is expressed as a vector of feature values. 

Advantages of SMT 

The key benefit of this approach is that linguists don't need to customize the tool because it learns 

translation techniques through statistical analysis of bilingual corpora. When expensive and 

qualified corpora are readily accessible, SMT systems are simple to construct, simple to maintain, 

effective, and deliver excellent quality. Another benefit of the SMT model that promotes more 

natural transactions is better resource management. No specific pair of languages is the focus of 

SMT systems. 

Disadvantages of SMT 

The main difficulty in SMT system is creating massive parallel corpus. SMT requires preparing 

parallel text which can be costly for users with limited resources. Training SMT systems requires 

high computational resources and it is difficult to perform error analysis. The other dis advantage 

in SMT is it does not work well between languages that have significantly different word orders. 

2.4.3 Hybrid Machine Translation Approach 

Hybrid Machine Translation (HMT) is a new strategy created by utilizing both statistical and rule-

based translation approaches, and it has proven to be more effective in the field of MT systems. 

By smoothly incorporating the advantages of both technologies, hybrid machine translation 

approaches have been developed with the goal of resolving the issues brought on by RBMT and 

SMT systems and producing translation output of greater quality [18]. It blends statistics and rules. 

The hybrid technique can be implemented in a variety of ways, and generally speaking, 

architectures having an SMT system or an RBMT system at their heart can be distinguished from 

each other. The drawbacks of both approaches were taken out of the hybrid approach to machine 

translation, which now offers a promising translation with high efficiency [22]. 
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Advantages of Hybrid MT 

This approach has a lot more power, flexibility and control when translating. Many issues can be 

addressed at their root causes through rules that go beyond the capabilities on a statistical only 

approach.  

Disadvantages of Hybrid MT  

But despite of its advantages, this approach has some demerits like: it requires a big dictionaries or 

corpora, complexity of the system, domain specific nature of system, lexicon and linguistic 

irregularities, etc. Hampers its commercial viability, etc.   

2.4.4 Neural Machine Translation Approach 

For many years, SMT dominated the field of machine translation technology. Long sentences are 

broken up into small pieces in classical statistical machine translation, which results in poor levels 

of accuracy. Neural machine translation was developed and frequently used to address this issue. 

MT using a neural network that directly predicts the conditional probability of converting a given 

source sentence to a target sentence is known as Neural Machine Translation (NMT). Neural 

Machine Translation is a new paradigm that swiftly superseded SMT as the predominant method 

of MT, developed with the development of deep learning. 

The NMT approach does not have a separate language model, translation model, or reordering 

model like the statistical technique does. Instead, one word at a time is predicted using a single 

sequence model. The task of estimating the likelihood of a string of words is carried out by an 

artificial neural network. NMT eliminates the need for wasteful feature engineering by modeling 

the complete translation process with a single, sizable neural network. As opposed to SMT's 

separately tuned components, NMT's training is end-to-end. Compared to rule-based and statistical 

machine translation (SMT) systems, NMT has recently emerged as a viable methodology that has 

produced notable advances [25]. 

Machine translation employing an "encoder-decoder" structure was first proposed by [26] in the 

year 1997. A language model based on neural networks was created in 2003 by a team of 

researchers at the University of Montreal headed by Yoshua Bengio [27], which solved the data 

scarcity issue of conventional SMT models. Their efforts set the foundation for the use of neural 

networks in machine translation in the future. 
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For machine translation, a brand-new end-to-end encoder-decoder structure was put forth in 2013 

by Nal Kalchbrenner and Phil Blunsom [28]. Convolutional neural networks (CNN) are used in 

this model to encode a given source text into a continuous vector, and recurrent neural networks 

(RNN) are used as the decoder to convert the state vector into the target language. Their research 

gave rise to the NMT, a technique that maps natural language using deep learning neural networks. 

In contrast to the linear SMT models, NMT's nonlinear mapping describes the semantic 

equivalence utilizing the state vectors that link the encoder and the decoder. Additionally, the RNN 

is meant to be able to comprehend the meaning behind phrases of any length and resolve the "long 

distance reordering" issue. However, the "exploding/vanishing gradient" problem makes it 

difficult for RNN to truly handle the long-distance dependencies; as a result, the NMT model did 

not initially attain a decent performance [29]. 

Sequence to sequence learning (seq2seq) was developed by  [30] in 2014 using RNNs for both 

encoder and decoder, and the Long Short-Term Memory (LSTM, a type of RNN) for NMT was 

also introduced. The issue of "exploding/vanishing gradients" is controlled by the gate mechanism 

that allows for explicit memory deletes and updates in LSTM, which allows the model to capture 

"long-distance interdependence" in a phrase much better. The "long distance reordering" problem 

was resolved with the advent of LSTM, while the "fixed-length vector" problem became the main 

obstacle for NMT. 

Since the "attention" method was first introduced by Yoshua Bengio's group [25], the "fixed-length 

vector" problem has begun to be solved. When performing a prediction job, the neural network is 

able to concentrate on relevant input components more thanks to the attention mechanism. Only a 

small percentage of the source phrase is significant when the decoder is creating a word for the 

target sentence; as a result, a content-based attention mechanism is used to dynamically construct 

a (weighted) context vector depending on the source sentence. Then, rather than using a fixed-

length vector, the target word will be anticipated based on the context vectors. Since then, NMT 

has significantly increased in performance, and the "attentional encoder-decoder networks" model 

is now the most advanced one available.  
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Advantages of NMT 

Because all components of the neural translation model are trained together (end-to-end), unlike 

conventional translation systems, Neural Machine Translation exhibits greater performance in 

translation. It also exhibits simplicity in contrast to earlier paradigms because it uses fewer 

components, requires fewer processing steps, and uses less memory than SMT. It requires less 

knowledge related to the structure of source and target language as well as, it allows to use human 

and data resources more efficiently than RBMT. NMT systems can understand the broader context 

of words and phrases to produce more accurate and fluent translations. By contrast, conventional 

PBMT only considers the context of a few words on either side of the translated word. For 

morphologically rich target language, NMT can select more correct word forms than RBMT. Also, 

reordering errors in NMT are lesser than SMT. 

Disadvantages of NMT 

The main disadvantages of NMT is that it is time consuming to train NMT model. NMT requires 

large training data to build competitive models. The other drawback of NMT system is: it performs 

poorly when it comes to the translation of rare words. One reason for that is the limited vocabulary; 

another is the unreliable training of rare word’s embedding as the word embedding represent both 

source and target words. Also, it is difficult to fix errors in an NMT system because it uses a beam 

search with almost no constraint for searching target words. 

2.5    Encoder-Decoder Architecture 

The encoder-decoder sequence to sequence network, commonly known as the standard algorithm 

for NMT, is an architecture that can be used to create RNNs or Transformers. Recurrent neural 

networks can be used to solve sequence-to-sequence prediction issues utilizing the encoder-

decoder approach. The encoder-decoder framework, which almost all neural machine translation 

models use, typically consists of two recurrent neural networks (RNNs), one of which consumes 

the input text sequence and the other of which produces translated output text [13]. 

The encoder and the decoder are two connected networks in the original encoder-decoder structure, 

each serving a different purpose in the translation process. Each hidden state of the encoder 

network compresses the variable-length sequence into a fixed-length vector after reading the 
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source sentence word-by-word when it gets a source sentence. Encoding is the name of this 

procedure. The decoder then performs the opposite process by word-by-word translating the 

thought vector to the target sentence from the encoder's final concealed state also known as the 

thought vector. This procedure is also known as end-to-end translation since the encoder-decoder 

structure directly handles the translation task from the source data to the target result, meaning 

there is no discernible outcome in the middle process. The Encoder-Decoder structure of NMT 

works on the basis of a semantic space intermediate vector that maps the source sentence to the 

target sentence. In fact, both languages can use this intermediate vector to describe the same 

semantic meaning [25] [30]. 

The process of Encoding and Decoding can be illustrated in the below figure.  

 

Figure 2.5: The encoder-decoder architecture for NMT 

The source and target sentence pairs will be X and Y, respectively. The encoder RNN turns the 

source text X1, X2..., Xn into fixed-dimension vectors. Using conditional probability, the decoder 

produces one word at a time. 

P (Y |X) = P (Y |x1, x2, x3…. xn)                                                                                                 (2.2) 

The fixed size vectors encoded by the encoder are indicated in the equation by the x......xn. The 

equation above is changed to the equation below using the chain rule, where the source phrase 

vectors and symbols predicted up to this point are used to forecast the following word as it is being 

decoded. The following expression then changes to:  

P (Y |X) = P (yi |y0, y1, y2,...., yi−1;x1,x2,x3,...,xn )                                                                   (2.3) 

A softmax over the vocabulary terms is used to represent each term in the distribution. Different 

neural networks, including long and short memory neural networks and gated recurrent neural 

networks, can implement the encoder-decoder model because it is a general framework [31]. 
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2.6 Attention 

This encoder-decoder method could have a problem because a neural network needs to be able to 

fit all the information from a source sentence into a fixed-length vector. Long sentences, especially 

those that are longer than the sentences in the training corpus, may be challenging for the neural 

network to handle as a result [32]. In 2015 Bahdanau, Cho, and Bengio [25] introduced a 

modification to the encoder-decoder model that learns to align and translate concurrently in order 

to address this problem. The suggested approach soft-searches for a collection of spots in a source 

phrase where the most pertinent information is focused each time a word in a translation is 

generated. The model then predicts a target word based on all previously generated target words 

as well as the context vectors connected to these source positions. The encoder typically converts 

the full source sentence into a fixed-length vector in the encoder-decoder architecture. The 

translated word is predicted using the most pertinent information from the source sentence and the 

previously created target words in the model with attention mechanism. By not having to encode 

all of the information in the source sentence into a fixed-length vector, searching for the most 

pertinent sections of the source phrase eases the encoder's workload. 

The decoder receives information from each hidden state of the encoder through an interface 

(attention) that connects the encoder and decoder. With the help of this framework, the model may 

pick concentrate on the most important segments of the input sequence and then understand the 

associations between them. This enables the model to effectively handle lengthy input sentences. 

The attention mechanism lowers the cost of calculation for NMT. 

2.7 Language Modelling 

The process of giving sentences in a language a probability is known as language modeling (LM). 

It explains the word order in a natural language. In order to provide a foundation for their word 

predictions, language models examine corpora of text data. It can be thought of as the computation 

of a single word's probability given every word that comes before it in a phrase. It makes an effort 

to imitate the natural language's built-in regularities (in word order). With applications in speech 

detection, text production, and machine translation, language modeling is a basic task in AI and 

NLP [33].  
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The most crucial piece of information in the MT job is actually provided by the language model: 

the likelihood that a specific word (or phrase), which is dependent on earlier words, will emerge. 

Therefore, enhancing the LM will undoubtedly enhance translation performance. Statistical 

language models and neural language models are the two main categories of language models 

(NLM). The Statistical Language Models learns the probability distribution of words using 

conventional statistical methods like N-grams, Hidden Markov Models (HMM), and specific 

linguistic rules. It typically entails creating an n-th order Markov assumption, calculating n-gram 

probabilities through counting, and then smoothing [33]. This language model is expressed as a 

probability distribution over a sequence of strings (words). Learning the joint probability function 

of word sequences in a language is one of the objectives of statistical language modeling. The 

curse of dimensionality, which refers to the requirement for enormous quantities of training data 

when learning very complicated functions, makes this inherently challenging. The number of 

instances needed can expand exponentially as the number of input variables rises. When a large 

number of distinct input variable value combinations must be distinguished from one another and 

the learning process requires at least one example for each significant value combination, this is 

known as the "curse of dimensionality”. The issue with language models arises from the enormous 

number of word combinations that are feasible; for instance, there are 1050 different combinations 

for a sequence of 10 words drawn from a vocabulary of 100,000 words [27].  

Although probability of rare n-grams can be poorly predicted due to data scarcity, statistical 

language models are easy to train (despite smoothing techniques). In order to address the n-gram 

problem, Bengio et al. first suggested the neural language model in 2003 [27]. Better language 

model development frequently leads to models that perform better on the NLP job they were 

designed for. The goal of better language model training is beneficial in and of itself since it 

frequently enhances the underlying metrics of the downstream work (such as the BLEU score for 

translation). Due to the ease of the modeling stages, neural language models (NLMs) became the 

preferred option. 

2.8   Neural Language Model (NLM) 

Continuous representations or embedding of words are used by neural language models also 

known as continuous space language models to generate predictions. To simulate a language, these 

models employ several types of neural networks. In order to lessen the effects of the curse of 
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dimensionality, NLM make use of their capacity to learn dispersed representations. By encoding 

words in a distributed manner as non-linear combinations of weights in a neural net, neural 

networks are able to overcome the problem of the curse of dimensionality. By parameterizing 

words as vectors (word embedding) and using them as inputs to a neural network, this model can 

address the problem of n-gram data scarcity [27]. As part of the training process, the parameters 

are learned. Similar to non-neuronal approaches like Latent Semantic Analysis, word embedding 

produced by NLMs have the feature that semantically similar words are also similar to one another 

in the induced vector space. In both standalone LMs and when models are merged into bigger 

models for difficult tasks like machine translation, NLM approaches outperform conventional 

methods. 

Although it has been demonstrated that NLMs perform better than count-based n-gram language 

models, they are blind to sub word information (e.g. morphemes). As a result, it is difficult to 

predict the embedding of unusual words, which causes significant perplexities for rare words (and 

words surrounding them). This is particularly problematic for languages with complex 

morphology and long-tailed frequency distributions, as well as for domains with dynamic 

vocabularies [34]. To solve the difficulty of learning long-term dependency problem various 

improvements were proposed.  Some novel, effective methods, including Long Short-term 

Memory RNN Language Model, character-aware models, factored models, bidirectional models, 

caching, attention, etc., are proposed. Recently, attention mechanisms have been introduced to 

improve NNLMs, which achieved significant performance improvements. 

2.9   Network Models in Neural Machine Translation 

The precise design of the neural networks utilized for machine translation varies between neural 

machine translations. Recurrent neural networks (RNNs) and convolutional neural networks 

(CNNs) are the two main strategies. RNNs translate texts by reading a sentence in one language 

and forecasting an orderly series of words with the same meaning in another language, either 

strictly left-to-right or right-to-left. RNNs are currently used by Google Translate and other 

programs to search through databases of texts, statistically analyze them, and then offer the results 

that are most plausible. RNNs therefore process information methodically and linearly. Despite 

traditionally outperforming CNNs at language translation tasks, RNNs have a design flaw that may 

be recognized by considering how they handle data. Because RNNs process words one at a time 
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in a strict left-to-right or right-to-left order, they don't naturally fit with the extremely parallel GPU 

hardware that drives contemporary machine learning. Due to the requirement that each word wait 

until the network has finished processing the preceding word, the computation cannot be fully 

parallelized. RNN based NMT models however, differ in three main terms: 

a) Some studies have chosen a straightforward unidirectional RNN in terms of 

directionality—unidirectional or bidirectional. To accept the input sentence, Luong et al., 

for instance, employed unidirectional RNN directly. A different popular option that can 

improve translation quality is bidirectional RNN. This is so that the model's ability to 

accurately forecast the current word depends on how well it "knows" the information in 

the context word. Clearly, this capability might be strengthened by a bidirectional RNN. 

b) When comparing single layer RNN with multi-layer RNN in terms of depth, single layer 

RNN typically performs worse than multi-layer RNN. Nearly all models with competitive 

performance in recent years have used deep networks, indicating a tendency of adopting a 

deeper model to produce the most up-to-date result and 

c) In terms of type, frequently either an LSTM, a Gated Recurrent Unit, or a vanilla RNN 

(GRU). Both LSTM and GRU are more resilient than a plain RNN in dealing with the 

gradient exploding and vanishing problem. Another job for sequence processing has 

similarly shown improved results for GRU and LSTM [35].  

CNNs, on the other hand, have the ability to process data hierarchically, enabling them to search 

for non-linear relationships in the data. This has implications for translation because it makes it 

simpler for CNN to understand context and translate appropriately. Today, Facebook adopts 

CNN's strategy for its translation services. Convolutional architecture is currently being taken into 

account for machine translation. They are consequently more effective computationally. The fact 

that information is processed hierarchically by CNNs, which makes it simpler to capture 

complicated relationships in the data, is another benefit [36]. CNN-based models outperform 

RNN-based NMTs in terms of training speed because of CNN's inherent structure, which enables 

parallel computations for its various filters when processing input data. Additionally, the gradient 

vanishing issue in CNN-based models is now simpler to overcome because to the model structure. 

However, their translation quality suffers from two catastrophic flaws. The long dependency of 

words can only be identified in high-level convolution layers because the initial CNN based model 
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can only capture word dependencies within the width of its filters; this unnatural nature frequently 

results in a worse performance than the RNN based model. Second, when the sentence lengthens, 

performance suffers significantly because the original NMT model compresses a sentence into a 

fixed size of the vector. This results from the vector's finite capacity for representation. Early RNN-

based model proposals also exhibit a similar issue, which is eventually mitigated by the Attention 

Mechanism [35].  

2.9.1 Recurrent Neural Network 

Recurrent neural networks (RNNs) are a subclass of neural networks that are particularly well 

adapted for handling sequential input, such as text sentences where words depend on one another. 

With hidden states, RNNs enable the use of prior outputs as inputs. This is ideal for modeling 

languages because each word in a language is dependent upon the ones that come before it. The 

hidden state is updated and used to process the subsequent word at each time step as a sequence is 

processed one word at a time [37]. In order to analyze sequences, a recurrent neural network (RNN) 

iterates through the sequence's elements while keeping track of its current state, which contains 

data about what it has seen so far.  

RNN is made to extract contextual data by identifying the relationships between different time 

stamps. It is made up of a great deal of successive recurrent layers that are successively modeled 

in order to map the sequence with other sequences. RNN is quite good at extracting contextual 

information from the sequence. However, the network structure's contextual cues are reliable and 

useful for achieving the data classification procedure. The length of the sequences doesn't matter 

while using RNN. 

 

Figure 2.6: Architecture of RNN 
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Using a pure deep RNN model, [30] proposed the first successful RNN-based NMT and obtained 

performance that is comparable to the best SMT result. Google's Neural Machine Translation 

System: Bridging the Gap between Human and Machine Translation is one example of a large-

scale system that swiftly adopted the RNN-based NMT technique, or RNMT, as the de-facto 

standard for NMT [13].  

Following RNMT, convolutional neural network-based approaches [38] to NMT have recently 

drawn research attention due to their ability to fully parallelize training to take advantage of 

modern fast computing devices such as GPUs and Tensor Processing Units (TPUs). Well known 

examples are ByteNet and ConvS2S. The ConvS2S model was shown to outperform the original 

RNMT architecture in terms of quality, while also providing greater training speed.  

Most recently, the Transformer model [39] , which is based solely on a self-attention mechanism 

and feed-forward connections, has further advanced the field of NMT, both in terms of translation 

quality and speed of convergence. NMT has already been widely deployed in production systems 

by Google, Microsoft, Facebook, Amazon, SDL, Yandex, and many more [40].  

Although RNNs are often regarded as the standard text architecture, they come with their own set 

of issues, including the inability to retain past material for extended periods of time and difficulty 

producing lengthy relevant text sequences due to explosion or vanishing gradient issues. Due to 

these factors, new architectures were created and established as the most advanced method for 

various language production tasks, including Long Short-Term Memory (LSTM) [41] and Gated 

Recurrent Units (GRU) [42].  

2.9.2 Long Short-Term Memory 

To stop the error gradient from declining over time and either disappearing entirely or growing 

exponentially, Hochreiter and Schmidhuber created the Long Short-Term Memory (LSTM) in 

1997 [43]. The LSTM is a memory cell, as its name suggests. Cells and gates both play a role in 

memory modification and information retention. From the first to later time steps, the knowledge 

is carried by the Cell States without disappearing.  

The sigmoid activation, also known as tanh activation, is used by gates. Tanh activation ranges 

from 0 to 1. The input gate, forget gate, and output gate are the three gates that make up an LSTM. 

Forget Gate: The forget gate eliminates information that is no longer relevant in the cell state. The 
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gate receives two inputs, c_t (input at the current time) and h t-1 (prior cell output), which are 

multiplied with weight matrices before bias is added. The output of the activation function, which 

receives the outcome, is binary. If a cell state's output is 0, the piece of information is lost, however 

if it is 1, the information is saved for use in the future. Input gate: The input gate is responsible for 

adding important information to the cell state. The inputs h_t-1 and c_t is used to control the 

information first using the sigmoid function, which filters the values that need to be remembered 

in a manner similar to the forget gate. Then, using the tanh function, a vector is produced that 

contains all possible values for h_t-1 and c_t and has an output range of -1 to +1. To extract the 

useful information, the vector's values and the controlled values are finally multiplied. The output 

gate's job is to gather pertinent data from the current cell state and display it as output. The tanh 

function is first used to the cell to create a vector. The data is then filtered by the values to be 

remembered using the inputs h_t-1 and c_t, and the information is then controlled using the 

sigmoid function. The vector's values and the controlled values are finally multiplied and supplied 

as input and output to the following cell, respectively [44].  

 

 

Figure 2.7: Gated Recurrent Units (GRU) 
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The GRU, a more straightforward version of the LSTM, was released in 2014 [45]. This unit has 

two gates that regulate how much information is remembered or forgotten: a reset gate and an 

update gate. Each recurrent unit is produced by a gated recurrent unit (GRU), which was developed 

to capture dependencies on various time scales. The GRU has gating units that regulate the flow 

of information inside the unit without the use of separate memory cells, much like the LSTM unit 

does. It only has three gates, unlike LSTM, and it doesn't keep track of the internal state of the cell. 

The data that is kept in an LSTM recurrent unit's internal cell state is incorporated into the gated 

recurrent unit's hidden state. The next Gated Recurrent Unit receives this group of data. 

 

Figure 2.8: Long Short-Term Memory (LSTM) 

Update Gate: The update gate assists the model in deciding how much historical data from earlier 

time steps should be transmitted to the future. Forget Gate and Input Gate are combined to create 

Update Gate. It is comparable to an LSTM recurrent unit's Output Gate. 

Reset Gate: In order to prevent gradient explosion, this gate resets the previous information. The 

amount of prior knowledge that should be forgotten is determined by Reset Gate. It is comparable 

to how the Input Gate and Forget Gate work together in an LSTM recurrent unit. 

Current Memory Gate (ht): Similar to how the Input Modulation Gate is, a component of the 

Input Gate is utilized to provide some nonlinearity into the input as well as make the input Zero-

mean and it is incorporated into the Reset Gate. Making it a component of the Reset gate also 

lessens the impact that knowledge from the past has on information that is being sent into the future 

[44]. 
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2.10    Related Work on Machine Translation 

Many attempts were made to create a machine translation between various languages in the past. 

This subsection examines some of the related works discovered while reading up on machine 

translation research involving the Wolaytta language as well as other Ethiopian and foreign 

languages. 

2.10.1 Machine Translation Involving Wolaytta Language 

Few studies have been done on the Wolaytta language using various techniques and resources. 

This section will review existing research on machine translation, with a focus on the Wolaytta 

language. 

Bidirectional Dictionary Based Machine Translation for Wolayitegna-Amharic by Java 

To help Amharic speakers use Wolayitegna and vice versa, Temesgen Mengistu [46] created a 

bidirectional dictionary-based machine translation to convert Wolayitegna to Amharic. In order to 

provide an exact translation for the experiment, 5400 dictionary entries were created in a MySQL 

database, and Java was used to design the user interface. The bilingual dictionary served as the 

foundation for a machine translation of these two languages in this research project. An 

arrangement of source language words and their associated target language words is defined. 

Dictionary-based translation uses bilingual corpus, which is defined in the form of a dictionary, as 

its database throughout run time. The translation memory houses this database. The study adopted 

the dictionary-based machine translation strategy since it is the most advised for languages with 

comparable structures and little linguistic resources, like Wolaytta (Wolaytta and Amharic). An 

Amharic definition for each word from the Wolaytta source language was provided in a bilingual 

dictionary. 

Words with multiple meanings were some of the difficulties the researcher encountered during this 

research. Some words in Wolayitegna have the same spelling and pronunciation but a different 

meaning depending on the context of the sentence. In order to translate between two languages, 

dictionary-based machine translation uses a database-stored word-based dictionary. Another 

difficulty encountered during this investigation was that Wolayitegna only accepts postfix while 

Wolayitegna has no proposition and requires both prefix and postfix. This distinction made it 

difficult to translate between two languages since, from a single root Wolayitegna word, we may 
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construct a number of words with postfixes that might or might not be derived from the same 

Amharic word. 

The researcher suggested that by incorporating more corpora and contextualizing grammatical 

translation for both languages, the dictionary-based system may be made even better. 

English-Wolayita Machine Translation using Statistical Approach 

Melaku Mara [10] conducted the experiment with the goal of translating English text into Wolayita 

text using a statistical machine translation method. 30,000 bilingual corpora from the spiritual 

realm and 39,893 monolingual corpora from other sources were collected to meet the research 

project's goal. In the parallel corpus, the researcher preprocessed data. Normalization, 

tokenization, lower-case and clean, and sentence alignment are a few of the preprocessing task. A 

variety of freely accessible tools were utilized, including the SRILM toolkit for language 

modeling, MGIZA++ to align the corpus at the word level using IBM models (1–5), Moses for 

decoding, and the Ubuntu operating system, which is appropriate for Moses environments. 

Additionally, Wolaytta text is segmented using the unsupervised morpheme segmentation tool 

Morfessor, and the BLEU score is used for evaluation. 

In this study, both un segmented and segmented experimental groups were run in order to develop 

SMT for the English-Wolaytta language pair. Six distinct corpora were used for each experiment 

group. The parallel sentences were divided into groups of 5, 10, 15, 20, 25, and 30. 95 percent of 

the sentences in each corpus were utilized for training, 2 percent were used for tuning, and 3 

percent were used for testing. The un segmented corpus uses the previously divided parallel 

sentences to perform BLEU scores of 4.91 percent, 6.30 percent, 7.21 percent, 7.60 percent, 7.96 

percent, and 8.46 percent. The segmented corpus uses the previously divided parallel sentences to 

perform BLEU scores of 9.83 percent, 11.38 percent, 12.70 percent, 12.77 percent, 12.93 percent, 

and 13.21 percent.  

By recording the results of each experiment, the researcher was able to determine that the 

segmented approach had a superior BLEU score than the un segmented English-Wolaytta 

combination, which was 8.46 percent. Based on the results of the studies, the researcher concluded 

that larger corpora and morphological segmentation would result in greater performance. The 
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researcher also suggested that future studies should concentrate on morphological segmentation 

and expanding the corpus size in order to further enhance the system's performance. 

Attention based Wolaita-Amharic Neural Machine Translation 

Workineh Wogasso conducted the study with the aim of creating an attention-based neural 

machine translation strategy for an Amharic-to-Wolaita machine translation system [9]. He 

gathered datasets from various sources, primarily religious books, totaling 9280 Amharic-Wolaita 

parallel phrases. 80 percent of the total data from the corpus is used for the training set, while the 

remaining 20 percent is used to test the system. Thus, the parallel corpus that makes up the training 

set totals 7424 sentences, whereas the test set only has 1856. To implement the system, various 

tools were employed. He employed the Python programming language along with a selection of 

open-source deep learning libraries, including Keras, TensorFlow, and NumPy. 

The Sequence to Sequence (Seq2Seq) model, based on Encoder-Decoder architecture, was used 

to build the system by fusing Recurrent Neural Networks (RNN) with Gated Recurrent Units 

(GRU). He used two separate methods in two trials to test the system's accuracy. The first 

experiment had a BLEU score of 0.5960 and was carried out using a non-attention-based 

methodology. The attention-based technique was used in the second trial, which had a BLEU score 

of 0.6258. 

The studies' findings indicate that the attention-based system performs better in translations, with 

a BLEU score improvement of +0.02978, and requires less training time than the non-attention-

based system. The experiment's findings also shown that, as sentence length increases, the 

attention-based model performs better than the non-attention-based approach. 

 

2.10.2 Machine Translation Involving other Ethiopian Languages 

Amharic-Arabic Neural Machine Translation 

Ibrahim Gashaw and HL Shashirekha conducted a research to create a neural machine translation 

between Amharic and Arabic [47]. The researchers created a modest size Amharic-Arabic parallel 

text corpus using Quranic text corpora that were available on Tanzile in order to conduct the 

experiment because Amharic and Arabic lack parallel corpora for the purpose of building NMT. 
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They manually divided the verses into separate Amharic-language source sentences and Arabic-

language target sentences. 13,501 Amharic-Arabic parallel phrases totaling 3.2 MB in size were 

prepared, and they are divided into training (80%) and the remaining 20% for testing.  Both the 

Amharic and Arabic scripts were preprocessed, the sentences were manually separated and 

aligned, and all punctuation was then deleted from the texts. 

The researchers used an open-source OpenNMT system to create two LSTM and GRU-based 

NMT models utilizing an attention-based encoder-decoder architecture. Bilingual Evaluation 

Understudy is used to test the models (BLEU). They compared Google Translation System, a free 

multilingual translation tool developed by Google to translate multilingual text, with the two 

recurrent units LSTM and GRU based OpenNMT translation algorithm, finding that LSTM based 

OpenNMT outperforms the other, with BLEU scores of 12 percent, 11 percent, and 6 percent for 

LSTM, GRU, and GNMT, respectively. The outcome shows that LSTM-based NMT performs 

better than GRU-based NMT. 

It was regarded as a good performance for a small size corpus because their experiment was the 

first one performed on an Amharic and Arabic parallel text corpus. Finally, the researchers 

suggested that for improved performance, a lengthy experiment with lots of training data may be 

used. 

A Parallel Corpora for bi-directional Neural Machine Translation for Low Resourced 

Ethiopian Languages 

In this study, a team of researchers used neural machine translation to create parallel corpora for 

English and Ethiopian languages such Wolaita, Gamo, Gofa, and Dawuro [48]. A parallel dataset 

is gathered from the internet and pre-processed before being used in an NMT experiment. The 

dataset was separated into a train, validation, and test set for the experimental purpose. 80 % of 

the dataset was utilized for training, while 20 % was used for testing. The training set was further 

split into training set and validation set, each comprising 70% of the training set. As a starting 

point for neural machine translation, a bi-directional neural machine translation experiment has 

been carried out using the gathered corpus. The test findings demonstrate that neural machine 

translation performs well when compared to a baseline experiment with BLEU scores of 13.8 for 
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Wolaita-English and 8.2 for English-Wolaita. Comparatively speaking, the Wolaita-English 

translation performs better than those of the other Ethiopian language pairs. 

The experiment's findings demonstrate that the performance of neural machine translation depends 

on the size of the dataset and improves as it grows. In addition to these factors, the morphological 

diversity of the Ethiopian language also played a role in the poor results of neural machine 

translation when Ethiopian was the target language. The researchers proposed that to improve the 

performance of the NMT model, more datasets should be used, and alternative domains should be 

used with more linguistic variables for Ethiopian languages. 

Bi-Directional English-Afan Oromo Machine Translation Using Convolutional Neural 

Network  

By using convolutional neural networks on translations between these language pairs, Arfaso 

Birhanu [49] hopes to improve the prior work on machine translation from English to Afan Oromo 

by making the translation bidirectional. He gathered a total of 5550 parallel phrases to accomplish 

his goal, including passages from the Bible, published conversational novels, regional and federal 

Ethiopian governmental constitutions, Oromia regional revenue, and Oromia health sectors. A total 

of 20% of the dataset was used for testing, while the remaining 80% was used for training. In order 

to accomplish the goal, he put three study-designed systems into use and similarly trained the 

systems to obtain an accurate comparison of their performance. For the bidirectional translation of 

Afan Oromo and English, three different approaches were used: a word-based statistical technique 

as a baseline, the RNN method as a competitive model, and convolutional neural networks. 

The BLEU scores from English to Afan Oromo and Afan Oromo to English were 20.51 and 19.86 

for the Baseline (STM) model, 22.79 and 21.67 for the RNN-based model, and 24.37 and 23.18 

for the CNN-based model. In comparison to the baseline system, the CNN translations from 

English to Afan Oromo and vice versa improved by 3.86 and 3.32 BLEU values, respectively. In 

addition, the BLEU score improved over the RNN technique in the translations from English to 

Afan Oromo and from Afan Oromo to English, respectively, by 1.58 and 1.51. When the results of 

the CNN-based model were compared to those of the RNN-based model and the STM model, the 

CNN-based model outperformed both in terms of translation quality and training requirements. 

Finally, when the results of translation in the two directions are compared, translation from Afan 

Oromo to English yields a higher BLUE score. 
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The researcher suggests that future study include more datasets to improve translation quality even 

further and test the systems on GPU-based computers to further cut down on training time for the 

systems. 

Bidirectional Tigrigna – English Statistical Machine Translation  

Mulubrahan Hailegebreal [50] conducted a study in order to create a statistical machine 

translation-based translation system from Tigrigna to Amharic. The Holy Bible, the FDRE 

Constitution, and basic sentences made up the corpus. The corpus was divided into five groups, 

referred to as Corpus I, Corpus II, Corpus III, Corpus IV, and Corpus V, and prepared in a format 

appropriate for use in the development process. Baseline (a phrase-based machine translation 

system), morph-based (based on morphemes collected using an unsupervised method), and post-

processed segmented systems are the three sets of experiments that are carried out (based on 

morphemes obtained by post-processing the output of the unsupervised segmented). 

The language modeling, word alignment, segmentation goal, and automatic evaluation technique 

were built using IRSTLM, GIZA++, Morfessor 1.0, and BLEU, respectively. 90% of the corpus 

data were utilized for training, and 10% were used for testing. The experiment's findings indicate 

that the post-processed segmented system outperforms the other two for the Tigrigna-English 

language pair. The researcher found that using Tigrigna and English as the source and target 

sentences, respectively, resulted in higher translation accuracy in each experiment. As a result, the 

post-processed experiment employing corpus II produced a better result, with a BLEU score of 

53.35 % for Tigrigna-English translations and 22.46 % for English-Tigrigna translations. 

The researcher concludes by advising that segmenting only prepositions and conjunctions has 

greatly improved the BLEU score. The translation quality may be further enhanced by carefully 

segmenting various Tigrigna language derivational and inflectional morphs. This may be a topic 

for research in order to enhance the functionality of a translation system for this language 

combination. 
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2.10.3 Machine Translation Involving Non- Ethiopian (Foreign) Languages 

Google's Neural Machine Translation system: Bridging the Gap between Human and 

Machine Translation 

The design and implementation of GNMT, a Google production NMT system, are presented by 

Yonghui Wu, Mike Schuster, et al [13]. The system aims to address many NMT-related problems, 

such as slower training times, inefficiency in handling rare words, and occasionally failing to 

translate all words in the source sentence. To avoid delayed training, their model has a deep LSTM 

network with 8 encoder layers and 8 decoder levels. They employ an attention mechanism that 

joins the bottom layer of the decoder and the top layer of the encoder in order to increase 

parallelism and hence shorten training time. They use low-precision arithmetic for their inference 

computations to speed up translation. Additionally, they used sub-word units, also referred to as 

word-pieces for inputs and outputs, to address unusual terms. The model was able to translate all 

of the inputs by using a beam search strategy. Their model carefully adheres to the conventional 

sequence-to-sequence learning architecture. An encoder network, a decoder network, and an 

attention network make up its three parts. The WMT'14 English-to-French (WMT EnFr) and 

English-to-German (WMT EnDe) corpora, which are widely used as benchmarks for Neural 

Machine Translation systems, were employed in the experiment. They used a beam search method 

to implement their plan. 

They evaluate GNMT using Google's translation production corpora in addition to publicly 

accessible corpora, which are two to three decimal orders of magnitude larger than the WMT 

corpora for a particular language pair. They contrast the accuracy of their model with that of human 

translators and Google Translates top production system for phrase-based machine translation 

(PBMT). The training sets on WMT En Fr and En De have 36M and 5M sentence pairs, 

respectively. In all instances, the 2014 News Test was used as the test sets to contrast with earlier 

works. 

The BLEU score metric was used to assess their system. The single model performs 38.95 BLEU 

on WMT'14 English-to-French, which is an improvement of 7.5 and 1.2 BLEU from the single 

model without an external alignment stated, respectively. Additionally, their models were totally 

independent. The single model performs similarly on WMT'14 English-to-German, scoring 24.17 

BLEU, which is 3.4 BLEU higher than a previous competitive baseline. Last but not least, when 
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compared to Google's previous phrase-based translation system on the aforementioned language 

pairs, the GNMT model reduces translation errors by an average of 60%. 

 

Sequence to Sequence Learning with Neural Networks 

The creation of Sequence to Sequence Learning using Neural Networks for English to French 

Machine Translation is presented by Ilya Sutskever, Oriol Vinyals, and Quoc V. Le [30]. They 

provide a generic, end-to-end method for sequence learning in this study that places the bare 

minimum of presumptions on the sequence structure. The input sequence is first translated into a 

vector with a fixed dimensionality using a multilayered Long Short-Term Memory (LSTM), and 

the target sequence is then extracted from the vector using a deeper LSTM. They used a subset of 

12 million phrases with 348 million French words and 304 million English words from the 

WMT'14 English to French dataset to train their models. With an input vocabulary of 160,000 and 

an output vocabulary of 80,000, they used deep LSTMs with 4 layers, 1000 cells per layer, and 

1000-dimensional word embedding. 

The key output of their work is that, on the WMT'14 English to French translation problem, they 

directly extracted translations from an ensemble of 5 deep LSTMs (each with 380M parameters) 

using a straightforward left-to-right beam-search decoder, resulting in a BLEU score of 34.81. This 

is unquestionably the best outcome that direct translation using big neural networks has ever 

produced. They used the 33.30 BLEU score of an SMT baseline from the same dataset for 

comparison. The LSTM used to generate the 34.81 BLEU score had an 80k word vocabulary, 

hence any terms in the reference translation that were not in this vocabulary reduced the score. 

This finding demonstrates that a phrase based SMT system outperforms a somewhat under-

optimized neural network architecture with lots of space for advancement. 

Although the LSTM is capable of addressing issues with long-term dependencies, they found that 

in the training and test sets, the LSTM learns far better when the source sentences are reversed but 

not the target sentences, and they achieved a 36.5 BLEU score by doing so. Since doing so created 

several short-term dependencies between the source and the target sentences and simplified the 

optimization problem, they found it to be incredibly beneficial to reverse the order of the words in 

the input phrase, which enhanced the LSTM's performance. 
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In conclusion, there have been numerous studies done in Ethiopian and foreign languages on 

statistical, rule-based, hybrid, and neural machine translations between various languages. In the 

majority of cases, statistical machine translation was employed, while several studies have 

combined statistical and rule-based approaches. Machine translations frequently employed by the 

statistical MT methodology; however, the goal of this work is to demonstrate how implementing 

encoder-decoder architecture NMT with attention mechanism can be and implementing a new 

machine translation system for English-Wolaytta Language. 
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CHAPTER THREE 

THE WOLAYTTA LANGUAGE 

3.1    Introduction 

In this Chapter, a brief overview on Wolaytta language is provided. The chapter concerned on the 

inflectional and derivational morphology of the language. The major Wolaytta word classes, which 

are nouns, verbs, adjectives and conjunctions, also described in this chapter. 

3.2    Overview of Wolaytta Language 

Ethiopia's Wolaytta or Wolaytta is an administrative region. The Wolaytta people, whose ancestral 

home is in the zone. The name "Wolaytta" is a representation of the people, place, and language 

[51]. Gamo Gofa borders Wolaytta on the south, the Omo River on the west, which divides it from 

Dawro, Kembata Tembaro on the northwest, Hadiya on the north, the Bilate River on the east, 

which divides it from Sidama Region, and the Lake Abaya on the south-east, which divides it from 

Oromia Region. Sodo serves as the administrative hub for Wolaytta. Areka, Boditi, Tebela, Bele, 

Gesuba, Gununo, Bedessa, and Dimtu are further significant towns. 

The native peoples refer to their language as "Wolaitta" (Wolayttattuwa in their language). The 

Wolaytta Zone and neighboring areas of Ethiopia's Southern Nations, Nationalities, and People's 

Region are home to Wolaytta, a North Omotic language of the Ometo group. It is the Wolaytta 

people's native tongue [52].  

The language is also referred to as Wolaitta doonna (literally mouth of Wolayitta) or Wolaitta 

Kaalaa (literally word of Wolayitta). These words are said to relate to the Wolaytta verb root 

walakk- to mix (v.t.)‘ and their derivatives such as walah-étt- to be mixed, to mingle with‘, waláh-

aa mixture‘, waláh-ett-aa mixing‘, this naming reflects the history or origin of Wolaytta people: 

they claim that many races or tribes mixed with each other to form Wolaytta and so on [51].  

The language is known by the common names Wolaytta and Wolaittattuwa. Other names for it 

include Wolaita Doanaa and Wolaitta Kaalaa, which translate to mean "mouth of Wolaytta" (lit 

word of Wolaytta). This language has been written in a number of different ways using the Latin 

alphabet. This includes the terms Wolaytta, Wolaitta, and Welaita that [52] and others use. In this 
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instance, "Wolaytta" is used in the paper. Of the 20–25 languages/dialects that make up the 

Afroasiatic Phylum, Wolaytta is an Omotic language. The Omotic language family is divided into 

western and eastern Omotic by [53]. A part of western Omotic is Wolaytta. Then, the Eastern 

Branch is separated into the south-eastern Banna, Hamar, and Karo languages, and the north-

eastern Ari and Dime languages. The Wester Omotic language further splits out into the maji and 

Kafa Gimojan languages. Gimojan and Kafa languages make up the first group, while Nao, Sheko, 

and Maji languages make up the second. Ometo, Jenjero, and Gimira are the three subgroups of 

the Gimojan. Since the Sudan Interior Mission originally developed it in the 1940s, the Wolaita 

language has been written in Latin script on official documents. A team led by Dr. Bruce Adams 

later changed the writing method. In 1981, the New Testament was completed, and the entire Bible 

followed in 2002. 

The 1985 E.C.-published doctoral research on the Wolaytta language [51] and other studies utilize 

a separate notation from Wolaytta called "Wolaittatto pitaliyaa xaafiyo wogaa," which translates 

to "the custom in writing the Wolaytta letters”. Wolaytta language is the fourth most extensively 

used in the nation after Oromifa, Tigrigna, and Amharic. 

3.3   Morphology of Wolaytta Language 

The study of word creation and structure is known as morphology. It deals with how words are 

constructed out of morphemes, which are smaller meaning-bearing units. The smallest meaningful 

unit in a language that has a meaning and cannot be further broken down into a meaningful unit is 

known as a morpheme. Inflectional and derivational morphology are the two different types. When 

word stems join with grammatical markers for things like person, gender, number, tense, case, and 

mode, the process is known as inflectional morphology. Morphemes can be divided into two 

categories: bound and free. In Wolaytta, there are two of them. In contrast to bound morpheme, 

which cannot stand alone as a word, free morpheme may. Free morphemes can stand alone, such 

as town and dog. Only other morphemes are found with bound morphemes, such as "un-." 

Generally speaking, prefixes and suffixes make up bound morphemes. 

While some morphemes are affixes, some are roots. Affix is a morpheme that joins with roots (or 

stems), altering their meaning in predictable ways. Prefixes or suffixes are the two most common 

types of affixes. The words re-read, unloved, and eta-agaa in Wolaytta are examples of prefixes 
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that come before roots. Eta-agaa, eta-asa, and eta-ayyo are prefixes in English. An affix that 

follows a root is a suffix. Like -est, -er, and -s (quick-est, quick-er, read-s, book-s) [6]. The affixes 

we just discussed are unique in yet another aspect. When they are connected to the base, they are 

behaving in a specific way. They are either providing grammatical details or generating a new 

word [52].  

 

 

Figure 3.1: Word Morphemes 

Among the Ethiopian languages Amharic and Tigrigna uses both types of affixes, Wolaytta 

language does not have prefix and infix. Instead, Suffixation is the basic way of word formation 

in Wolaytta. Most words in Wolaytta consist of a lexical stem and a grammatical ending. As stated 

by [51] [10] , the lexical stem has the only suffix but not prefix. For example: 

 

 

 

 

 

Table 3.1: Suffix Formation of Wolaytta Language 

Word  Stem  Suffix  

Keexiis Keexa -iis 

Keexissiis Keexa -issiis 

Keexidoogaapekka Keexa -idoogaapekka 
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Keexisisidaakaappekka Keexa -isisidaakaappekka 

 

3.3.1 Inflectional Morphology and Derivational Morphology 

Wolaytta, like the other Ethiopian languages, has an extremely rich morphology. Inflectional and 

derivational morphology are the two different types. 

When word stems join with grammatical markers for things like person, gender, number, tense, 

case, and mode, the process is known as inflectional morphology. Parts of speech do not alter as a 

result of inflectional modifications. Wolaita is extremely inflectional; a given word's root can take 

on various forms. The Wolaytta language has the following inflection morphologies: siiqa, 

siiqaasa, siiqaasu, siiqada, siiqadasa, siiqadii, siiqaidda, siiqais, siiqoosona, and siiqida. 

Derivational morphology examines the modifications that lead to the change in word classes 

(changes in the part of speech). For instance, a verb can be used to create a noun or an adjective. 

The Wolaytta language's derivation morphology is "siiqakka," "siiqasa," which is derived from the 

root word "siiqa." It is the act of creating new words from existing ones or their roots, frequently 

by affixing suffixes like -kka and –asa [6]. 

3.3.1.1 Inflectional morphology of Wolaytta Language 

A. Personal Pronouns: A personal pronoun is a pronoun that is primarily used with a specific 

grammatical person, such as the first person (I), second person (you), or third person (as he, as 

she). According to number (often solitary or multiple), grammatical or natural gender, case, and 

formality, personal pronouns can also take on diverse forms. Basic distinctions based on personal 

pronouns are common in most languages. These distinctions can be found in the fundamental 

group of independent personal pronouns [10]. Some examples are shown in the following table. 

Table 3.2: List of Pronouns 

Wolaytta English 

Tani I 

A She 

I He 



46 

 

Etti They 

Nuuni We 

Tana Me 

Nuna Us 

Eta They 

Sentences are made less repetitious by the use of pronouns. Just like in English, a noun or another 

pronoun can be replaced with a Wolaytta pronoun. They bear markings for their gender and 

number. For instance, pronouns like "Ta/ tani" that denote "me" in the singular and can be either 

masculine or feminine, "'a" that denotes "she" in the singular and can either be masculine or 

feminine, I that denotes "he" in the singular, "etti" that denotes "they" in the plural and can either 

be masculine or feminine, and "nu/nuni" that denotes "we" in the plural Wolaytta pronouns. 

Common Nouns: The character sequence for Wolaytta nouns is C1V1C2V2, where C and V stand 

for a consonant and a vowel, respectively. This indicates that the majority of Wolaytta stems are 

in fact bi-radical1. A glottal stop can also be represented by C1. While V1 can be either a short or 

long vowel or, less frequently, a diphthong, C2 can be either a plain or geminated consonant. Last 

but not least, V2 denotes either the typical absolute case ending or a thematic vowel that denotes 

the endings necessary for the grammatical function of the noun that are connected to the noun 

stem. Although the majority of Wolaytta words are bi-radical (based on the number of consonants 

in the word), there are a few that are Pluri-radical [52] [54]. 

 

Table 3.3: General Syllable Formulation of a Bi-radical Wolaytta Nouns 

Sequence of Character Example Meaning 

CVCV Kaisoi Thief 

CVC: V: Shappa River 

CV:CV: Keettaa House 

CV:C: V: Keettaa Milk 

Pluri-radical forms are also common in Wolaytta nouns. The following table illustrate the pluri-

radical Wolaytta nouns form. 
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Table 3.4: Pluri-radical Wolaytta Nouns Form 

Noun Meaning   

Gisttiyaa Wheat 

Gallassatuppe Day 

According to the endings that Wolaytta nouns adopt in their inflection grouped into four primary 

types. The first class of nouns are those with an absolute case ending in -a and stress on the final 

syllable. Asa means "person," aawa means "father," and tuma means "darkness." The second class 

of nouns includes those whose absolute case ends in -iya and which stress their penultimate letter. 

Morkkiya means "enemy," Penggiya means "the door," and Siya means "listen." The third type of 

nouns are those with an absolute case ending in -uwa. Examples include "story," "trouble," and 

"cotton," among others. Nouns in the absolute case that end in -(i)yu belong to the fourth class. 

These phrases primarily apply to living things that are female. An illustration would be naiyu 'girl' 

bollotiyu 'mother-in-law' [6] [52].  

Wolaytta nouns have gender, number, and case markings. 

I) Gender: The Wolaytta language uses the masculine and feminine genders. As mentioned above, 

the fourth-class nouns are feminine, while the first, second, and third-class nouns are masculine. 

The endings of feminine and masculine words are different from one another. In absolute case, 

masculine ends in –a whereas feminine ends in –u [6]. 

Example: dorsa 'sheep', masculine vs. dorsiyo 'sheep', feminine, desha 'goat', masculine vs. 

deshiyo 'goat', feminine, hage 'this, masculine' vs. hanna 'this, feminine, taagaa 'he/it is mine' vs. 

taaro 'she/it is mine' 

II) Numbers: Wolaytta word comprises both singular and plural forms, according to [52]. The 

fundamental form of the noun is found in the single, and suffixes are used to make the plural. The basic 

noun form often makes up the single, whereas a special suffix is employed to create the plural. Wolaytta 

uses the morpheme -tv to make nouns plural, where -v stands for a terminal vowel that alters according 

on the case inflection of the plural. The plural marker is -ta in the absolute case, where -v equates to -

a. The morpheme -tv is used by all four classes of nouns to create their multiple forms, but a noun's 

class membership also manifests in its plural form. 

Accordingly, the -a-ta ending is used to make First class nouns plural. 
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Example: Asa 'person' -- Asata 'persons', Achcha 'tooth’--- Achchata 'teeth' 

When making plurals, nouns of the Second class have the -eta ending. 

Example: hariya 'donkey'--- hareta 'donkeys’, Orgiya ‘he-goat' --- Orgeta 'he-goats' 

The -o-ta ending designates nouns belonging to the Third class. 

Example: Oduwa 'tale' --- Odota 'tales', Worduwa 'lie' --- Wordota 'lies' 

Finally, fourth class nouns that refer to feminine beings use the plural form of the corresponding 

masculine word. 

Example: 7imattiyo 'female guest' ---7imatt-a-ta 'female guests' 

Nouns of the second class and ending in -e-ta are similar to feminine nouns that lack a masculine 

counterpart. 

Example: Machchiyo ‘wife' ---machchota 'wives', mishshiriyo 'married woman' ---mishshireta 

'married women' 

III) Case: Wolaytta has a very difficult noun inflection. There are various cases in by adding case 

endings to the noun stem or the absolutive case form, the inflection is accomplished. As a result, 

the subject case terminates in -y (first three classes), -i (plural), and -(i)ya, but the absolutive case 

is distinguished by the endings -a (1st class and plural), -iya (2nd class), -uwa (3rd class), and -

(i)yu (4th class), as we have previously seen above in the common noun section (4th class). The 

genitive is either conveyed just by the noun stem or, more frequently, is identified by the extension 

of the absolutive form's terminal vowel. The respective absolutive case and the object case of the 

noun inflection are consistent [6] [52] [54].  

The endings listed in the table below serve as a marker for the other cases. 
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Table 3.5: Case Markers 

Case Marker (Morphemes)  
 

Function  Example  

-ssi, -w or –yoo  Dative case  Garssassissi 

-kko or -mati  Directive case  Garssakko 

-ni  Locative  Garsani 

-ppe  Ablative  Garsaappe 

-ra  Commutative case  Garssara  

B. Adjectives:  A word that reveals more information about a noun is an adjective. It can also 

change a noun or pronoun by adding phrases that describe, name, or quantify something. Typically, 

an adjective will come after the noun or pronoun it modifies. In the Wolaytta language, adjectives 

finish in -a, -iy, or -uwa. 

 

Table 3.6: List of Wolaytta Adjective with their Ending 

Adjectives ending in –a Adjectives ending in –iy Adjectives ending in –uwa 

Geessha 'clean' Mal”iya 'sweet' Lo7uwa 'good/nice' 

Cinca 'clever' Yashisiya ‘fierce’ yuushuwa 'round' 

Since adjectives do not need to agree with their ruling noun in Wolaytta in terms of gender, 

number, or case when they are used in the attributive position, they frequently remain unmodified 

[52]. However, most adjectives ending in -uwa and a small number ending in -iya are replaced by 

the endings -o and -e respectively when employed in the attributive position. 

Example: Lo7-uwa 'good/nice' ➔ lo7o asa 'a good person' 

haahuwa 'wide/far' ➔ haaho sohuwa 'a far place'     luuliya 'straight' ➔ luule 7ogiya 'a straight 

road' 

The ending -uwa of an adjective will become -o when it is employed in the predicative position. 

However, not every word that comes before a noun is an adjective. For instance, the demonstrative 

determiner Ha plays the role of an adjective in the phrase Ha dorsay taga, "This sheep is mine." 

C. Verbs: Similar to the majority of Ethiopian languages, Wolaytta has an extremely sophisticated 

verbal system. Most verbs have a consonant-vowel-consonant pattern [51].  
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For example:  Gela - ’enter’                      Mooga - 'bury'                    Kera - 'split' 

According to mood, tense, type of action, and aspect, Wolaytta verbs display a fairly complicated 

inflection system [6]. Take the verb imma (give), for instance. Its past tense inflection is as follows: 

Imm-asi --- I gave              Imm-dasa – you gave          Imm-su – she gave 

Imm-isi ---- he gave           Imm-ida --- we gave           Imm-ideta – you gave (plural) 

Imm-idosona – they gave 

Similar to the Amharic language, Wolaytta verbs are placed at the conclusion of phrases, and the 

sentences below use suffix-bound morphemes to assist identify the sentence's subject. 

Tani 7osuwa wursasi 'I finished my job' 

Verbs include shamasu, madasa, and wursasi in the three sentences above. The bound morphemes 

"-su," "-dasa," and "-si" indicate that the third person has a feminine tag and that the second and 

first-person pronouns are employed as the sentence's subjects. The Wolaytta language uses 

suffixes to alter the form of verbs at any moment for person, gender, and number [6] [52] [54].  

3.3.2 Derivational Morphology in Wolaytta 

A. Verbs: Wolaytta uses several morphemes, like other Cushitic and Semitic languages of 

Ethiopia, to create additional stems from roots or stems. In Wolaytta, this derivation process is 

explicitly used by appending one or more morphemes to the verbal stem [6] [54].  They also 

mentioned that there are three main types of verbal stems that can be formed from secondary 

sources: iterative (or intensive), causative, and passive (or reflexive) [52] [54]. The Wolaytta 

language uses the same morpheme, -erett-, which is frequently suffixed to its verbal stem, to 

signify iteratives and intensive stems. Examples are "to break" and "to break many times or in 

numerous pieces," respectively. Shissh-erett means "to gather many times or in many things" and 

means to collect something. Only the morpheme -is-s, which is productive and causative, is used 

in Wolaytta. 

gel- 'enter'➔ gel-iss- 'let someone enter/put into’.  
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When creating the causative form of a verb with a primary stem ending in -y or -y-y, all instances 

of -y are replaced with -sh-. 

Example: uy-y- 'drink' ➔ ush-sh- 'let someone drink.  

yuuy-y- 'turn, intr'➔ yuush-sh- 'turn,tr 

B. Noun: Wolaytta nouns are created by combining the class suffixes -a and –uwa [6] [52] [54], 

they can be used to convey action nouns as well as very concrete or abstract words as shown in 

the following table. 

Table 3.7: Derivational Morphology Nouns 

Noun Suffix Derived Noun 

hassay- ‘speak’ -a Hassaya/conversation  

harg- ‘sick’ -ya harg-iya ‘sickness’  

gulba- ‘knee’ -ta gulba-ta ‘knee’  

wurse- ‘end’ -tta wurse-tta 'end  

eeyya- ‘stupidity’ -tetta eeyya-tetta 'stupidity'  

kaawo-tetta- ‘kingome’ -tetta kaawo-tetta 'kingdom'  

 

C. Adjectives: Adjectives in the Wolaytta language can be created from verbal roots by adding 

morphemes like -ta. Imma+ -ta imota, as an illustration. Additionally, it can come from nouns, 

stems created by adding bound morphemes, and compound words. 

D. Conjunctions: The word conjunction is used to join words together into phrases, clauses, and 

sentences as well as to coordinate words. There are various terms that are used as conjunctions in 

Wolaytta. Below is a list of some Wolaytta terms for conjunctions [10].  
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Table 3.8: List of conjunctions 

English Conjunction Wolaytta Conjunction 

And Nne 

Or Woikko  

So, Therefore Hegaa gishshau 

For Aissi giikko  

But Shin  

Because Gishsha (do gishsha)  

Even if Hanikkokka  

Whenever Awudekka  

Wherever Awannikka  

 

3.4     Word Formation in Wolaytta 

Words in Wolaytta can be created through compounding and affixation. Affixes are morphemes 

that can function by themselves as a word. Out of the three affix types (prefix, suffix, and infix), 

Suffixation is the only method of word creation used by Wolaytta. In Wolaytta, a single word can 

take on numerous forms. This is true because Wolaytta words are relatively long due to the 

repeated addition of suffixes [6].  

Example:   fayda ‘count’             ➔  fayduwa  'number'  

                   Be”a ‘see’                  ➔  be”uwa ‘action of seing' 

                   Na”a ‘boy/son'            ➔  na”iyo ‘girl/daughter'  

Compounding is the second step in Wolaytta word construction. Combining two language forms 

with distinct functions is known as compounding. Despite Wolaytta abundance in compounds, 

compound morphemes are uncommon there and their generation is erratic [52]. As a result, it 

might be challenging to identify the root of the compounds that form words. 
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3.5     Wolaytta Language Writing System 

A Tagmemic Analysis of the Wolaytta Language by B. Adams states that the Wolaytta language 

employs a Latin-based alphabet with twenty-nine basic letters, of which five (‘i’, 'e', 'a', 'o', and 'u') 

are vowels, twenty-four ('b', 'c', 'd', 'f', 'g', 'h', 'j', ’k’, ’l’, ’m’, ’n’, ’p’, ’q’, ’r’, ’s’, ’t’, ’v’, ’w’, ’x’, 

’y’, ’z’ and  ‘7’). In addition, seven pair letters which are a combination of two consonant 

characters such as ('ch','dh','ny', 'ph', 'sh', 'ts' and 'zh'). The Latin alphabet has now been included 

into the mother tongue educational system, and numerous textbooks are now produced in Latin 

[52].  

Table 3.9: Wolaytta Language Alphabet Letters 

Latiine Latiine 

Woggaa Qeerra Woggaa Qeerra 

A A R r 

B B S S 

C C T T 

D D U U 

E E V V 

F F W W 

G G X X 

H H Y Y 

I I Z Z 

J J CH Ch 

K K DH Dh 

L L NY Ny 

M M PH Ph 

N N SH Sh 

O O TS Ts 

P P ZH Zh 

Q Q 7 7 
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3.6     Punctuation Marks in Wolaytta Language 

Similar to how it is done in English, white spaces are used to separate words in Wolaytta writings. 

The punctuation used in English and other languages that employ the Latin writing system is the 

same throughout all punctuation marks. For instance, the full stop (.) in a statement, the question 

mark (?) in an interrogative sentence, and the exclamation mark (!) in a command or exclamatory 

sentence all serve as markers for the conclusion of a sentence.  

However, there are some apostrophe exceptions. Some books use the apostrophe in the alphabet 

at glottal place 7. For instance, "lo77o" uses two apostrophes, "lo"o," whereas "de7iya" uses one, 

"de'iya." 

3.7 Wolaytta Language Sentence Structure 

The fundamental sentence structures, or SVO, SOV, OSV, OVS, VSO, and VOS, are all feasible 

depending on the locations of the Subject, Object, and Verb, or their permutations. The vast 

majority of Afro-Asian languages have SOV word order. Consider Amaharic and Afan Oromo. 

Since Wolaytta is an Omotic family language, it uses the SOV grammatical structure found in the 

Afro-Asian language phylum as opposed to English's SVO (subject verb object) sentence structure. 

"Addaami kattaa immiis," for instance, is a statement in the Wolaytta language. A subject is 

"Addaami," an object is "Kattaa," and a verb is "Immiis." The sentence structure in English is 

subject-verb-object. For instance, the English translation of the Wolaytta line above would be 

"Adam given food," where Adam is the subject, "given" is the verb, and food is the object [10].  
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CHAPTER FOUR 

PROPOSED ARCHITECTURE AND RESEARCH METHODOLOGY 

4.1.   Introduction 

The objective of this study is to develop an English-Wolaytta neural machine translation with 

attention mechanism. In order to achieve the objective appropriate approaches were studied and 

chosen. Parallel English-Wolaytta corpus were collected and prepared in the way to be used for 

NMT model. This chapter briefly discusses the proposed architecture, how the study has been 

made, the tools and techniques that have been used for development of English-Wolaytta NMT 

model.  

4.2.   Proposed Architecture of English-Wolaytta NMT 

Neural machine translation is the state-of-the-art in machine translation that surpasses all existing 

machine translation methods. It uses word vector representation that utilizes numerous amounts of 

neural networks to predict the probability of word sequence. It translates sentences at once, that 

other translation approaches could not do. In NMT the input sentence passes through the encoder 

that designates the meaning of the input sentences, known as “thought vector/context vector” or a 

sentence vector, which passes through a decoder that process the input to provide a translation. 

This model is known as an encoder-decoder architecture [13].  

Just as there is a successive change in other translation approaches, through time, there are also a 

promising improvement in neural machine translations. Initially it was implemented by sequence 

to sequence RNNs methods like LSTM, GRU and CNN. Later, attention mechanism added. Now 

it has been brought forth with supper improvements “Transformer with attention”. In this study 

encoder-decoder/sequence to sequence (seq2seq) with attention mechanism is implemented to 

develop the English-Wolaytta NMT. The following Figure 4.1 shows the proposed architecture of 

the study. 
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Figure 4.1: Proposed Architecture for English-Wolaytta NMT 

While working with NMT, there must have parallel corpus that will be used to train and test the 

NMT model. The corpora that are pre-processed must also be split into the training, validation and 

test data sets. From these data the source and target validation data; the source and target train data 

are used to preprocess the first phase. The training steps takes the training and validation files to 

create the models for the translation step. This is where the best performing NMT architecture is 
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chosen and tuned with an appropriate parameter like batch size, epoch and so on. At the end of the 

training, there will be certain models created by which the translation will take place. The model 

created here, together with source test data set predicts an appropriate target translation. The 

predicted target translation is tested with target test data set (reference) to check the performance 

of the proposed model. The following section and subsection discuss all the steps and the methods 

followed to build the proposed English-Wolaytta NMT model. 

4.3.Corpus Collection and Preparation 

To create an effective translation model, machine translation research heavily relies on parallel 

corpora of the source and target languages. Hence, the first step of any machine translation task is 

collecting a source and target language parallel corpus. The corpus which was used in this research 

study was collected and prepared from religious domain and some common words which are used 

in daily communication purpose. The religion domain corpus mainly constitutes bible contents 

which is extracted from the online source1 for both English and Wolaytta language of bible 

scriptures. A total of 27351 parallel English-Wolaytta sentences were collected. 

After collecting the corpus of the source (English) and target (Wolaytta) languages, the next task 

was preparing the parallel corpus manually for both languages because of the scarcity of parallel 

corpus. All of the data in the collected corpus was subsequently converted to plain text, cleaned 

up from the blank lines and noisy characters, and its encoding was converted to UTF-8 

automatically to make it ready for training of the system. There is a number of preprocessing 

activities which were carried out to get a cleaned corpus and prepared it in a format that needs to 

be applicable for the system. These preprocessing includes lower-case, cleaning, normalization, 

tokenization, and padding. The following Figure 4.2 shows sample collected English-Wolaytta 

corpus. 

 
1 https://ebible.org/bible/ 

https://ebible.org/bible/
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Figure 4.2: Sample English-Wolaytta Parallel Corpus 

4.4.  Text Preprocessing 

After preparing the manually collected English-Wolaytta corpus, the text preprocessing task has 

been performed before using it on the neural network machine translation model development. 

There are different activities which are undertaken in text preprocessing to prepare a cleaned 

corpus that helps to build an efficient translation model. These activities are described as follows 

in the following subsections. 

4.4.1. Normalization 

Normalization is a method used to clean noise from unstructured text or sentence [55]. In this 

study, normalization is used to convert the English word or phrase with the same pronunciation 

and different writing representation to same word or phrase which are called contraction. In 

English language phrases like ‘can’t’ and ‘cannot’, ‘she’s’ and ‘she is’  represent the same meaning 

with different pronunciation and it can be used interchangeably without any meaning differences, 

therefore, those type of phrases or words are normalized by converting from its contraction/ short 

form of representation to its full representation. In this study, texts or phrases of the English 

language is performed by using the code in Appendix A. 
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4.4.2. Data Cleaning 

The collected parallel English-Wolaytta corpus is not cleaned. Hence, the corpus needs to be 

cleaned by removing irrelevant characters, numbers, punctuation marks, blank values, special 

characters and so on. To preprocess and get a cleaned dataset from the prepared parallel corpus a 

python script is created by using a regular expression (RE) from NLTK to remove the unwanted 

characters, punctuation marks including spaces between paragraphs and numbers in the corpus. 

Appendix B demonstrates the implementation code used to clean the prepared parallel English-

Wolaytta corpus.  

4.5.   Tokenization and Padding 

Tokenization is a process in which a word or a sequence breaks up into keywords, words, symbols, 

etc. A word or a group of words may be used to do tokenization. In addition, a paragraph or 

sentence may be divided into phrases or words. Tokenization simply split strings or tokenize words 

in a sentence. The splitting can be performed by using space delimiter and it is performed in whole 

document [55]. In this study, word tokenization is applied to split the English and Wolaytta 

sentences into words to better use them for further machine translation activities. In order to find 

the boundaries of the sentence, <start> and <end> tag was added as an indicator of the start and 

end of a sentence so that the model knows as it reached the start and end of words in input sentence 

and output sentence. 

Padding is a way of making each sequence of word ids in the same length in order to batch them 

together. Padding can be added at the end of the sequences to make them the same length because 

sentences can vary in length. This type of data is given to the encoder component, which creates a 

contextual association between words. When a sequence contains a longer sentence, an 

improvement method is required to aid in the storage of the longer phrase's context. In order to fix 

the length of a text, padding is the process of taking a value and adding pad characters to the left, 

right, or both sides of the string [56]. We did that by using a built-in function called 

tf.keras.preprocessing.sequence.pad_sequences ([inputs]), which results in padding being added 

to the end of each English and Wolaytta sequence to make them all the same length. The 

implementation code is demonstrated inside preprocess function in Appendix B. 
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4.6.  Word Representation 

The original sequential data in NMT is not adequate for the neural network to read. It requires 

representation in a suitable format in some way. The input data must be numerical since a neural 

network consists of a sequence of addition and multiplication operations. Each word of the 

sentence in the data must be recognized and represented by a distinct index in order to transform 

it into appropriate format. One method of transforming each unique word into individual numbers 

is known as one-hot representation. To transform vocabulary words into a representation of a 

specific id, we used a built-in technique called index_word method in our study.   

After identifying the unique tokens, the initial index is represented by 0 (zero), and the last index 

is represented by the sum of all the unique tokens minus one. Hence, only the words given in vector 

representation will be able to be processed by the neural network that uses this vocabulary as 

showed in Figure 4.3. 

 

Figure 4.3: Sample word2index Representation 

4.7.   Data Splitting for Model Training and Testing 

Once the prepared corpus is preprocessed, the preprocessed data are used to train and test the neural 

network machine translation model. To do this, the prepared corpus should be classified as source 

train, source validation, source test, target train, target validation and target test. In this study, 

80/20 corpus splitting were applied. The 20 percent testing data has also further split into validation 

set. 
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4.8.   Encoder 

Encoder is one component of NMT architecture that accepts a single element as an input sequence, 

processes it, gathers data about the element, and propagates it [32]. When reading a phrase with m 

words or an input sequence of length L, it will take L time steps because it only reads one element 

or word at a time. A thought vector or context vector representing the meaning of the source 

language must be created by the encoder. Following are some examples of notations used in the 

encoding process: The RNN’s internal states at time step t are ht and ct; the input at step t is xt; and 

the output at step t is yt. 

Take the question, "What is your name?" as an example. This string of letters can be thought of as 

a four-word statement. Here, the letters x1 stand for "What," x2 for "is," x3 for "your," and x4 for 

"name." Four-time steps will be read from this sequence, as shown in figure below. When the time 

t = 1 comes around, it remembers that the RNN cell has read "What," when the time t = 2 comes 

around, it remembers that the RNN has read "What is," and when the time t = 4 comes around, the 

final states h4 and c4 remember the full sequence "What is your name." Initial vectors for the initial 

states h0 and c0 are zero. The encoder determines the thought vector using a list of words as input. 

 

Figure 4.4: LSTM Encoder 

A sentence from a specified source language is transformed into a thought vector using a high-

dimensional vector of real numbers or components. Concisely representing the source language 

sentence and choosing how to initialize the initial states of an encoder with zeros are the major 

goals of the context vector (v). The context vectors serve as the decoder's initial state. The context 

vector is used as the beginning state by the RNN decoder instead of starting with zero. 
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4.9.  Decoder 

The decoder is another component of NMT. The decoder's purpose is to convert the context vector 

into the desired translation [32]. The most recent input data and the system's previous outputs, the 

encoder produces a context vector as its final output. This context vector will be sent into the 

decoder either with or without the use of the attention-based mechanisms. The last layer of the 

encoder network will be connected to the attention layer of the network if the attention mechanism 

is used [32]. RNN network serves as the encoder and decoder. In our model, we have used one of 

the special kinds of RNN network called LSTM since it is most familiar for both Encoder and 

Decoder part of NMT on text-based translation [57].  

4.10. Attention Mechanism 

One of the major advances in machine translation that helped the neural machine translation 

systems is the attention mechanism [58]. As discussed in previous subsection in a basic Encoder-

Decoder based RNN architecture, the encoder encodes the entire source language sequences of 

data into a single real-valued vector which is the context vector, and then passes it to the decoder 

to create the output sequence. Consequently, the Decoder only has access to the Encoder's output 

context vector. Because of this, representing the full input sequence as a single vector is inefficient 

and unable to represent for increasingly complex sentences and expansive vocabulary. The 

attention mechanism, which has lately gained prominence in neural network training, is one 

practical approach to solving such an issue. Encoder-Decoder architecture with attention 

mechanisms predicts a target word based on the context vectors associated with the source 

language position and the previously generated target words, as opposed to Encoder-Decoder 

architecture without attention, which uses the source representation only once to initialize the 

decoder hidden state. 

By incorporating an attention mechanism, we were able to resolve the fundamental Encoder-

Decoder difficulty. An attention mechanism to the Encoder-Decoder reduces the higher dimension 

vector into the lower dimension vector, to address the increasing number of vocabulary size 

problems of the basic Encoder-Decoder based technique [25]. It is helpful to focus on the source 

sequence's most pertinent information. So, it is helpful to focus only on the relevant information 

other that taking whole information at once. Self-attention is represented by the following formula. 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = softmax ((QKT ) /√dk ) V - (1)                                                             (4.1) 

Where Q represents the matrix that contains the query result, K represents all keys, and V are 

values. Each symbol represents the vector representations of all words in the sequence [59]. 

4.11. Model Evaluation Metrics 

Various techniques have been proposed to evaluate any machine translations accuracy of 

translation performance. Bilingual evaluation understudy (BLEU), which compares the system's 

output with reference sentences that have been translated by humans, is one of these metrics. The 

core concept of BLEU is the measurements of this proximity. A high-quality translation is one that 

is more similar to a competent human translation. The BLEU score value is between 0 and 1. Most 

often, it is expressed as a percentage from 0 to 100. The more similar the translation is to a human 

translation, the higher the BLEU score [60].  
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CHAPTER FIVE  

EXPERIMENTAL RESULT AND DISCUSSION 

5.1.   Introduction 

In this chapter, the experimental result gained from the English-Wolaytta NMT model training and 

testing are presented in detail. Finally, the chapter concludes with a review of the study's findings 

and details on evaluation metrics. 

5.2.    English-Wolaytta NMT Model Building and Training 

For building the proposed English-Wolaytta NMT model LSTM encoder and decoder architecture 

with an attention mechanism has been proposed in the Sequence-to-Sequence concept. Simple 

RNNs have a hidden state where they keep the details of the data they have seen up to that point. 

However, simple RNNs cannot preserve long-term dependencies because they have vanishing 

gradient difficulties for extended sequences as we have seen in the literature part [61]. Long-term 

dependencies, which are frequently present in time series data, are preserved by LSTMs. Given 

that a word toward the end of the sentence may frequently be extremely dependent upon a word 

toward the beginning of the sentence, this is a highly desired quality in a MT model. The LSTM 

architecture was chosen to carry out the work of NMT in this research due to its numerous benefits. 

For better understanding of the efficiency of attention mechanism we have employed both attention 

and non-attention mechanism to compare their result. We have also trained the model numerous 

times by adjusting the number of hyper parameters, including the epoch, batch size, optimization 

functions and learning rate. Thus, the model is trained with parallel English-Wolaytta corpus by 

using batch size of 100 and 128, epoch number of 5, 10, 15, 30, 38 and 50 and two optimization 

function which are Adam and RMSProp with learning rate of 0.1 and 0.01. The following 

subsection describes the result gained from the experiment. 

5.2.1. English-Wolaytta NMT using Non-attention Mechanism 

In this experiment, the English-Wolaytta NMT model is built with an Encoder-Decoder 

architecture without attention mechanism and trained with the training corpus set. As we have 

discussed earlier different hyper parameter values are used interchangeably to check their effect 

on the performance of the English-Wolaytta NMT translation accuracy. By setting the different 
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parameters, the best performing hyper parameter combination are recorded. Hence, Table 5.1 

shows top three best results gained from the encoder- decoder without attention mechanism based 

on the different hyper parameter setups. 

Table 5.1: Best Results using Encode-Decoder without Attention Mechanism 

Rank Epoch Batch Size Optimization Function Learning Rate BLUE Score 

1 50 100 Adam 0.01 2.35 

2 5 128 Adam 0.01 1.78 

3 15 100 Adam 0.01 0.63 

 

5.2.2. English-Wolaytta NMT using Attention Mechanism 

In this experiment, the English-Wolaytta NMT model is built with an Encoder-Decoder 

architecture with attention mechanism and trained with the training corpus set like we did in the 

non-attention. Table 4.2 illustrate top three best results gained from the encoder- decoder with 

attention mechanism English-Wolaytta NMT using different hyper parameter settings. 

Table 5.2: Best Results using Encode-Decoder with Attention Mechanism 

Rank Epoch Batch Size Optimization Function Learning Rate BLUE Score 

1 15 128 Adam 0.01 5.16 

2 50 100 Adam 0.1 4.59 

3 10 100 RMSProp 0.01 3.14 

 

Based on the findings of the above different experiments, English-Wolaytta NMT built with 

attention mechanism has got a better result than non-attention. This is because Encoder-Decoder 

without attention mechanisms cannot handle large number of sentences. As the length of the 

sentence increases, the inter-dependency of words is loosely related and unable to handle a large 

number of vocabulary sizes. In addition to that, we have seen that the performance of the NMT 

model depends on the hyper parameter settings like batch size, epoch, and optimization function 

and so on. The Encoder-Decoder model with LSTM are tuned with these hyper parameters in the 

translation as seen in the above sections, and accordingly the BLEU score shown above confirms 
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right. All the above model has shown that Encoder-Decoder model with attention mechanism can 

achieve better translation accuracy. 

5.3.    English-Wolaytta NMT Testing and Translation 

After the training step is over at some points the succeeding step is to run a model test and start 

the encoder and decoder processes. By providing the data to the encoder and receiving the output 

at the decoder, we can make predictions. For the neural architecture, translation is done in a step-

by-step, end-to-end process which predicts the possible best translations taking a model with test 

data and it gives best possible translations. The best possible translation predicted is used to 

evaluate the performance of that model. This translation attempt is somehow close to Wolaytta 

sentence but it lacks the exact translation because of the data size. The smaller is the data size the 

poor is the result. The following figure illustrates the translation result gained from the experiment.  

 

Figure 5.1: English-Wolaytta NMT Translation Result 
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5.4.    Discussion of the Result 

The general objective of this thesis work is to develop English-Wolaytta machine translation model 

using deep learning neural machine translation approach. For achieving this, different 

preprocessing steps were done. After that the model is built and trained with Encoder-Decoder 

architecture with and without attention mechanism using LSTM.  Based on our experimental 

findings, better outcome is obtained when an attention mechanism is used instead of a non-

attention mechanism. However, it is difficult to obtain a translation model that is more effective 

given the short amount of data employed in this study. Even if a small dataset is used, the maximum 

BLEU score of 5.16 and accuracy of 88.65 is recoded by playing with this small corpus and 

changing various hyper parameters. From our experimental finding we have seen that NMT has 

become a successful machine translation technique as a result of increased processing capacity. 

Sentences can be translated by NMT with remarkable accuracy using the Encoder-Decoder 

architecture. Machine translation is also becoming more effective with the addition of attention 

mechanisms which solves the problem of Encoder-Decoder model to handle a larger number of 

vocabulary sizes available within the data.  

One can see that the English-Wolaytta translation result from our experimental result score 

demonstrates that the attention-based approach is better to the non-attention-based approach. 

However, the outcomes from both experiments were only based on smaller corpora. The accuracy 

improves together with the corpus size, and the BLEU score result can likewise increase 

proportionally. 

Our experimental findings indicate that English-Wolaytta non-attention-based NMT has 

interesting translation results, with a BLEU score of 2.35 and accuracy of 86.91 in relation to our 

small datasets. Additionally, utilizing an attention-based approach has greatly improved our 

results, with a 2.81 BLEU improvement over a non-attention-based system. Additionally, when 

we looked at training time efficiency, the attention-based system outperformed the non-attention-

based system. Additionally, when compared to non-attention-based systems, attention-based 

systems can store longer contextual relevancies of terms found in larger sentences of datasets. 

Therefore, in this research work an attempt has been made to answer the research questions set out 

at the beginning of the research. The first research question was “What will be the performance of 
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attention-based NMT approach to English-Wolaytta language pairs?” It is answered by doing 

different experiments with limited resource and the best result we have got from the various 

experiments has achieved BLUE score of 5.16. The second research question which is “How well 

do attention-based NMT models perform in translation tasks?” is answered by implementing both 

attention and non-attention mechanism in order to evaluate the efficiency of the attention 

mechanism in the translation task and we have proved that it has a better translation accuracy than 

the non-attention based model.    
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 

6.1.   Introduction 

In this chapter, the researcher concludes the overall work of the study and provides 

recommendation for other problems to be investigated by summarizing the research, research 

findings, and significant contributions of the study. It also highlights the outcomes that resulted 

from the research experiments as well as the work that will need to be done in the future by anyone 

or any group interested in working on tasks connected to machine translation between the English 

and Wolaytta language pairs or any other language pairs. 

6.2.   Conclusion 

The design and implementation of an English-Wolaytta Neural Machine Translation (MT) system 

is the main emphasis of this research work. A highly important use of natural language processing 

is machine translation, which uses devices like computers to automatically translate vast amounts 

of text from a source natural language to a destination natural language. Machine translation is 

now a particularly difficult research topic in the fields of computational linguistics and natural 

language processing on a global scale. The employment of a multilingual machine translation 

system as a language learning aid can help one become familiar with both known and undiscovered 

natural languages. Natural language is a crucial component of human life. One of the most 

significant and efficient forms of communication is natural language. It helps in connecting 

individuals from other communities and civilizations. Even though Wolaytta is one of a recognized 

language in Ethiopia, there are relatively few electronic resources available for it and there no 

much MT systems for the Wolaytta language. Therefore, the researcher encouraged to prepare 

English-Wolaytta parallel text corpus and the development of an English-Wolaytta machine 

translation system. 

For comparing the translation outcomes of the proposed English-Wolaytta MT system, the Neural 

Machine Translation (NMT) which is the state-of-art approach has been used to develop the 

English-Wolaytta MT system. For doing so, a Deep Learning Encoder-Decoder (seq2seq) with 

and without attention model for translating from English-Wolaytta was proposed. The parallel 
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English Wolaytta parallel corpus was prepared from some common sentences and religious 

domain to train the English-Wolaytta NMT system. The parallel English-Wolaytta corpus of 56900 

tokens has been used, and out of these total tokens, 12,120 were English tokens, and 44,780 

Wolaytta tokens. This corpus was used to train and test the seq2seq with attention and non-

attention mechanism by using LSTM and the translation accuracy of the English-Wolaytta NMT 

system has been assessed using the BLEU score. After extensive experimentation, the suggested 

system achieves a BLEU score of 5.16 and 88.91 accuracy. 

6.3.   Future Works 

The followings are some further future works or recommendations based on the findings of this 

study:  

▪ Recommend to train the NMT model with a powerful processing machines by adding more 

datasets to improve the translation quality since neural networks require more data and 

powerful processing machines to function more effectively and get accurate translation. 

▪ Recommend to add and expand the corpus from various domains including business, 

tourism, health, entertainment and so on to make it work for most purposes. 

▪ Recommend future researchers who are interested in this work to expand this system by 

making it bidirectional in the future so that resources written in both languages can be 

translated with ease. 

▪ Recommend to increase the performance of the NMT model by using the most recently 

used architecture called transformer model. 

▪ Recommend to develop and implementing the English-Wolaytta NMT system in web 

based or mobile application to make it more operational and useful for the users. 

▪ Additionally, this research could be very beneficial for future study to work on speech to 

text or text to speech translation. 
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Appendix 

Appendix A: Normalization 

def clean_text(text): 

    '''Clean text by removing unnecessary characters or contractions and altering the format of 

words.''' 

    text = text.lower() 

    text = re.sub(r"i'm", "i am", text) 

    text = re.sub(r"he's", "he is", text) 

    text = re.sub(r"she's", "she is", text) 

    text = re.sub(r"it's", "it is", text) 

    text = re.sub(r"that's", "that is", text) 

    text = re.sub(r"what's", "that is", text) 

    text = re.sub(r"where's", "where is", text) 

    text = re.sub(r"how's", "how is", text) 

    text = re.sub(r"\'ll", " will", text) 

    text = re.sub(r"\'ve", " have", text) 

    text = re.sub(r"\'re", " are", text) 

    text = re.sub(r"\'d", " would", text) 

    text = re.sub(r"\'re", " are", text) 

    text = re.sub(r"won't", "will not", text) 

    text = re.sub(r"can't", "cannot", text) 

    text = re.sub(r"n't", " not", text) 
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    text = re.sub(r"n'", "ng", text) 

    text = re.sub(r"'bout", "about", text) 

    text = re.sub(r"'til", "until", text) 

    return text 

lang.English=lang.English.apply(clean_text) 

 

Appendix B: Implementation Code 

# **Attention Based English-Wolaytta Neural Machine Translation** 

## Load important libraries 

import re 

import matplotlib.pyplot as plt 

import time  

import numpy as np 

import tensorflow as tf 

from keras.layers import Embedding,LSTM,Dropout,Dense,Layer 

from keras import Model,Input 

from keras.utils import plot_model 

from keras_preprocessing.sequence import pad_sequences 

from nltk.translate.bleu_score import corpus_bleu 

from tensorflow.keras.optimizers import Adam 

import collections 

import keras.backend as K 
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## **Preprocess dataset** 

source = "English.txt" 

target = "Wolayita.txt" 

def preprocessing(source,target, max_num_input=26000): 

    # open and read source and target datasets 

    source_data = open(source,'r',encoding='utf8').readlines() 

    target_data = open(target,'r',encoding='utf8').readlines() 

    # check if source and target datasets are equal 

    assert len(source_data) == len(target_data) 

    print("Length of source Language :",len(source_data)) 

    print("Length of target Language :",len(target_data)) 

    # limit input data 

    if max_num_input > 0: 

        max_num_input = min(len(source_data), max_num_input) 

        source_data = source_data[:max_num_input] 

        target_data = target_data[:max_num_input] 

    # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize 

each sentence.  

    source_sen = [[re.sub('[\W]', '', str(token.lower() )) for token in sen.strip().split(' ')] for sen in 

source_data] 

        # target 

    target_sen = [[re.sub('[\W+0-6+8-9]', '', str(token.lower() )) for token in sen.strip().split(' ')] for 

sen in target_data] 
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    # # remove punctuation 

    # target_sen = re.sub('[\W+0-6+8-9]', '', str(target_sen)) 

    # for the target sentences, add <sos> and <eos> tokens to each sentence  

    for sent in target_sen: 

        sent.append('<end>') 

        sent.insert(0,'<start>') 

    # create the common_words objects for each file 

    source_dict = common_words(source_sen) 

    target_dict = common_words(target_sen) 

    # For the source sentences. we'll use this to split into train/dev/test  

    split_size = len(source_sen)//10  

    # get the sents-as-ids for each sentence 

    source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in 

source_sen] 

    # Use 8 parts (80%) of the sentences for training and pad upto maximum sentence length 

    source_train = pad_sequences(source_words[:8*split_size], padding='post') 

    # Use 1 parts (10%) of the sentences for evaluation and pad up to maximum sentence length 

    source_eva = pad_sequences(source_words[8*split_size:9*split_size],padding='post') 

    # Use 1 parts (10%) of the sentences for test and pad upto maximum sentence length 

    source_test = pad_sequences(source_words[9*split_size:],padding='post') 

    eos = target_dict.word2ids['<end>']  

    # for each sentence, get the word index for the tokens from <start> to up to but not including 

<end>, 
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    target_words = [[target_dict.word2ids.get(tok,target_dict.UNK) for tok in sent[:-1]] for sent in 

target_sen] 

    # select the training set and pad the sentences 

    target_train = pad_sequences(target_words[:8*split_size],padding='post') 

    # the label for each target word is the next word after it 

    target_train_labels = [sent[1:]+[eos] for sent in target_words[:8*split_size]] 

    # pad the labels. Dim = [num_sents, max_sent_lenght] 

    target_train_labels = pad_sequences(target_train_labels,padding='post') 

    # expand dimensions Dim = [num_sents, max_sent_lenght, 1].  

    target_train_labels = np.expand_dims(target_train_labels,axis=2) 

    # get the labels for the dev and test data. No need for inputs here. no need to expand dimensions 

    target_eva_labels = pad_sequences([sent[1:] + [eos] for sent in target_words[8 * split_size:9 * 

split_size]], padding='post') 

    target_test_labels = pad_sequences([sent[1:] + [eos] for sent in target_words[9 * split_size:]], 

padding='post') 

    # we have our data. 

    train_data = [source_train,target_train,target_train_labels] 

    eva_data = [source_eva,target_eva_labels] 

    test_data = [source_test,target_test_labels] 

    return train_data,eva_data,test_data,source_dict,target_dict 

## **common_words** 

# Extract common words from dataset 

class common_words(): 
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    def __init__(self, sents): 

        word_counter = collections.Counter(tok.lower() for sent in sents for tok in sent) 

        self.vocab = [] 

        self.vocab.append('<pad>') #zero paddings 

        self.vocab.append('<unk>') 

        # add only words that appear at least 4 times in the corpus 

        self.vocab.extend([t for t,c in word_counter.items() if c > 10]) 

        self.word2ids = {w:id for id, w in enumerate(self.vocab)} 

        self.ids2word = dict([(value, key) for (key, value) in self.word2ids.items()]) 

        self.UNK = self.word2ids['<unk>'] 

        self.PAD = self.word2ids['<pad>'] 

## Load the datasets 

 

Let's load the datasets using the load function defined earlier. 

train_data,eva_data,test_data,source_dict,target_dict = preprocessing(source,target, 

max_num_input=26000) 

let's now quickly check the data structure. 

eva_data[0] 

test_data 

## **The Neural Translation Model (NMT)** 

For the NMT the network (a system of connected layers/models) used for training differs slightly 

from the network used for inference. Both use the seq-to-seq encoder-decoder architecture.  

class AttentionLayer(Layer): 
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    def compute_mask(self, inputs, mask=None): 

        if mask == None: 

            return None 

        return mask[1] 

    def compute_output_shape(self, input_shape): 

        return (input_shape[1][0],input_shape[1][1],input_shape[1][2]*2) 

    def call(self, inputs, mask=None): 

        encoder_outputs, decoder_outputs = inputs 

        decoder_outputs_transpose = K.permute_dimensions(decoder_outputs,pattern = (0,2,1)) 

        luong_score = K.batch_dot(encoder_outputs,decoder_outputs_transpose) 

        luong_score = tf.nn.softmax(luong_score,axis = 1) 

        encoder_vector = tf.math.multiply(tf.expand_dims(encoder_outputs,axis = -2) , 

tf.expand_dims(luong_score,axis = -1) ) 

        encoder_vector = tf.reduce_sum(encoder_vector,axis=1) 

        # [batch,max_dec,2*emb] 

        new_decoder_outputs = K.concatenate([decoder_outputs, encoder_vector]) 

        return new_decoder_outputs 

class seq2seqModel(object): 

    def __init__(self,source_dict,target_dict,use_attention): 

        # the number of hidden units used by the LSTM 

        self.hidden_size = 200 

        # the size of the word embeddings being used 

        self.embedding_size = 100 
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        # the dropout rate for the hidden layers 

        self.hidden_dropout_rate=0.2 

        # the dropout rate for the word embeddings 

        self.embedding_dropout_rate = 0.2 

        # batch size 

        self.batch_size = 100 

        # the maximum length of the target sentences 

        self.max_target_step = 100 

        # vocab size for source and target; we'll use everything we receive 

        self.vocab_target_size = len(target_dict.vocab) 

        self.vocab_source_size = len(source_dict.vocab) 

        # intances of the dictionaries 

        self.target_dict = target_dict 

        self.source_dict = source_dict 

        # special tokens to indicate sentence starts and ends. 

        self.SOS = target_dict.word2ids['<start>'] 

        self.EOS = target_dict.word2ids['<end>'] 

        # use attention or no 

        self.use_attention = use_attention 

        print("number of tokens in source: %d, number of tokens in target:%d" % 

(self.vocab_source_size,self.vocab_target_size)) 

    def build(self): 

        #-------------------------Train Models------------------------------ 
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        source_words = Input(shape=(None,),dtype='int32') 

        target_words = Input(shape=(None,), dtype='int32') 

        # The train encoder 

        #  Create two randomly initialized embedding lookups, one for the source, another for the 

target.  

        # Creating the embedding lookups... 

        embeddings_source = Embedding(self.vocab_source_size,self.embedding_size) 

        embeddings_target = Embedding(self.vocab_target_size,self.embedding_size) 

        # Look up the embeddings for source words and for target words. Apply dropout to each 

encoded input 

        # Looking up source and target words...' 

        source_word_embeddings = Dropout(0.3)(embeddings_source(source_words)) 

        target_words_embeddings = Dropout(0.3)(embeddings_target(target_words)) 

        #  An encoder LSTM() with return sequences set to True 

        #  Creating an encoder' 

        encoder_outputs, encoder_state_h, encoder_state_c = 

LSTM(self.hidden_size,recurrent_dropout=self.hidden_dropout_rate,return_sequences=True,retu

rn_state=True)(source_word_embeddings) 

        encoder_states = [encoder_state_h,encoder_state_c] 

        # The train decoder 

        decoder_lstm = 

LSTM(self.hidden_size,recurrent_dropout=self.hidden_dropout_rate,return_sequences=True,retu

rn_state=True) 
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        decoder_outputs_train,_,_ = 

decoder_lstm(target_words_embeddings,initial_state=encoder_states) 

        if self.use_attention: 

            decoder_attention = AttentionLayer() 

            decoder_outputs_train = decoder_attention([encoder_outputs,decoder_outputs_train]) 

        decoder_dense = Dense(self.vocab_target_size,activation='softmax') 

        decoder_outputs_train = decoder_dense(decoder_outputs_train) 

        # compiling the train model. 

        adam = Adam(learning_rate=0.01,clipnorm=5.0) 

        self.train_model = Model([source_words,target_words], decoder_outputs_train) 

        self.train_model.compile(optimizer=adam,loss='sparse_categorical_crossentropy', 

metrics=['accuracy']) 

        # at this point you can print model summary for the train model 

        print('\t\t\t\t\t\t Train Model Summary.') 

        self.train_model.summary() 

        print(plot_model(self.train_model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True)) 

        #-------------------------Inference Models------------------------------ 

        # The inference encoder  

        self.encoder_model = 

Model(source_words,[encoder_outputs,encoder_state_h,encoder_state_c]) 

        # at this point you can print the summary for the encoder model. 

        print('\t\t\t\t\t\t Inference Time Encoder Model Summary.') 



88 

 

        self.encoder_model.summary() 

        # The decoder model 

        # specifying the inputs to the decoder 

        decoder_state_input_h = Input(shape=(self.hidden_size,)) 

        decoder_state_input_c = Input(shape=(self.hidden_size,)) 

        encoder_outputs_input = Input(shape=(None,self.hidden_size,)) 

        # create decoder for inference 

        #  Get the decoded outputs 

        # print('\n Putting together the decoder states') 

        # get the inititial states for the decoder, decoder_states 

        # decoder states are the hidden and cell states from the training stage 

        decoder_states = [decoder_state_input_h,decoder_state_input_c] 

        # use decoder states as input to the decoder lstm to get the decoder outputs, h, and c for test 

time inference 

        decoder_outputs_test,decoder_state_output_h, decoder_state_output_c = 

decoder_lstm(target_words_embeddings, initial_state=decoder_states) 

 

        # Task 1 (b.) Add attention if attention 

        if self.use_attention: 

            decoder_outputs_test = decoder_attention([encoder_outputs_input,decoder_outputs_test]) 

        # Task 1 (c.) pass the decoder_outputs_test (with or without attention) to the decoder dense 

layer 

        decoder_outputs_test = decoder_dense(decoder_outputs_test)    
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        # put the model together 

        self.decoder_model = 

Model([target_words,decoder_state_input_h,decoder_state_input_c,encoder_outputs_input], 

                                   [decoder_outputs_test,decoder_state_output_h,decoder_state_output_c]) 

        # you can now view the model summary 

        print('\t\t\t\t\t\t Decoder Inference Model summary') 

        print(self.decoder_model.summary()) 

    def time_used(self, start_time): 

        curr_time = time.time() 

        used_time = curr_time-start_time 

        m = used_time // 60 

        s = used_time - 60 * m 

        return "%d m %d s" % (m, s) 

    def train(self,train_data,dev_data,test_data, epochs): 

        start_time = time.time() 

        # for epoch in range(epochs): 

        # print("Starting training epoch {}/{}".format(epoch + 1, epochs)) 

        epoch_time = time.time() 

        source_words_train, target_words_train, target_words_train_labels = train_data        

self.history=self.train_model.fit([source_words_train,target_words_train],target_words_train_lab

els,batch_size=self.batch_size,epochs=epochs) 

        # print("Time used for epoch {}: {}".format(epoch + 1, self.time_used(epoch_time))) 

        dev_time = time.time() 
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        # print("Evaluating on dev set after epoch {}/{}:".format(epoch + 1, epochs)) 

        # self.eval(dev_data) 

        # print("Time used for evaluate on dev set: {}".format(self.time_used(dev_time))) 

        self.train_model.save('aeng_wol_model.h5')  

        self.encoder_model.save('aeng_wol_modele.h5') 

        self.decoder_model.save('aeng_wol_modeld.h5') 

        print("Training finished!") 

        print("Time used for training: {}".format(self.time_used(start_time))) 

        print("Evaluating on test set:") 

        test_time = time.time() 

        self.eval(test_data) 

        print("Time used for evaluate on test set: {}".format(self.time_used(test_time))) 

    def get_target_sentences(self, sents,vocab,reference=False): 

        str_sents = [] 

        num_sent, max_len = sents.shape 

        for i in range(num_sent): 

            str_sent = [] 

            for j in range(max_len): 

                t = sents[i,j].item() 

                if t == self.SOS: 

                    continue 

                if t == self.EOS: 
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                    break 

                str_sent.append(vocab[t]) 

            if reference: 

                str_sents.append([str_sent]) 

            else: 

                str_sents.append(str_sent) 

        return str_sents 

    def eval(self, dataset,print_outputs = False): 

        # get the source words and target_word_labels for the eval dataset 

        source_words, target_words = dataset 

        vocab = self.target_dict.vocab 

        # using the same encoding network used during training time, encode the training 

        encoder_outputs, state_h,state_c = 

self.encoder_model.predict(source_words,batch_size=self.batch_size) 

         

        # for max_target_step steps, feed the step target words into the decoder. 

        predictions = [] 

        step_target_words = np.ones([source_words.shape[0],1]) * self.SOS 

        for _ in range(self.max_target_step): 

            step_decoder_outputs, state_h,state_c = 

self.decoder_model.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=self.

batch_size) 

            step_target_words = np.argmax(step_decoder_outputs,axis=2) 
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            predictions.append(step_target_words) 

        # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover 

the batch_size sentences 

        predicted = self.get_target_sentences(np.concatenate(predictions,axis=1),vocab) 

        Actual = self.get_target_sentences(target_words,vocab,reference=True) 

        # score using nltk bleu scorer 

        score = corpus_bleu(Actual,predicted) 

        print("Model BLEU score: %.2f" % (score*100.0)) 

        #Modification 

        if print_outputs: 

            sources = 

self.get_target_sentences(np.array(source_words[0:len(source_words)]),self.source_dict.vocab) 

            return sources,  predicted, Actual 

## **Training Without Attention** 

### Architecture 

#Clear session prior to creating the architecture 

tf.keras.backend.clear_session() 

model = seq2seqModel(source_dict, target_dict,False) 

model.build() 

### Training and test evaluation  

model.train(train_data,eva_data,test_data,50)  

### plo model history 

model.history.history['loss'] 
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model.history.history['accuracy'] 

model.history.history.keys() 

model.history.history.keys() 

# summarize history for accuracy 

plt.plot(model.history.history['accuracy']) 

# plt.plot(model.history.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

# summarize history for loss 

plt.plot(model.history.history['loss']) 

# plt.plot(model.history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

def eval1( dataset,print_outputs = False): 

        # get the source words and target_word_labels for the eval dataset 

        source_words = dataset 
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        vocab = model.target_dict.vocab 

        loaded_modele = tf.keras.models.load_model('eng_wol_modele.h5', compile=False) 

        # using the same encoding network used during training time, encode the training 

        encoder_outputs, state_h,state_c = 

loaded_modele.predict(source_words,batch_size=model.batch_size) 

        # for max_target_step steps, feed the step target words into the decoder. 

        predictions = [] 

        step_target_words = np.ones([source_words.shape[0],1]) * model.SOS 

        loaded_modeld = tf.keras.models.load_model('eng_wol_modeld.h5', compile=False) 

        for _ in range(model.max_target_step): 

            step_decoder_outputs, state_h,state_c = 

loaded_modeld.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=model.b

atch_size) 

            step_target_words = np.argmax(step_decoder_outputs,axis=2) 

            predictions.append(step_target_words) 

        # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover 

the batch_size sentences 

        predicted = model.get_target_sentences(np.concatenate(predictions,axis=1),vocab) 

        #Modification 

        if print_outputs: 

            sources = 

model.get_target_sentences(np.array(source_words[0:len(source_words)]),model.source_dict.vo

cab) 

            return sources,  predicted 
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def proprocessing(source): 

    # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize 

each sentence. 

    a=[] 

    source_sen = [re.sub('[\W]', '', str(token.lower() )) for token in source.split(' ')]  

    a.append(source_sen) 

    # get the sents-as-ids for each sentence 

    source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in 

a] 

    print('source_words',source_words) 

    source_test = pad_sequences(source_words,padding='post') 

    return source_test 

def translate2( ): 

    # Prints out a set number of translations from the test set 

    data=input('Please enter the text input: ') 

    data=proprocessing(data) 

    sources,  candidates = eval1(data,print_outputs=True) 

    example_no = 2 

    for i in range(example_no-1): 

        print(f"Output:{i+1}") 

        print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}") 

        print(f"Predicted translation: {' '.join(candidates[i]).replace('<pad>', '').replace('<unk>', '')}")         

translate2() 
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# load HDF5 format 

#loaded_model = tf.keras.models.load_model('eng_wol_model.h5') 

 

def translate(model, sentence = 15): 

    # data=input() 

    sources,  Predicted, Actual = model.eval(test_data,print_outputs=True) 

    for i in range(sentence-1): 

        print(f"example:{i+1}") 

        print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}") 

        print(f"Predicted translation: {' '.join(Predicted[i]).replace('<pad>', '').replace('<unk>', '')}") 

        print(f"Actual translation: {' '.join([l[0] for l in Actual][i]).replace('<pad>', '').replace('<unk>', 

'')}") 

# load HDF5 format 

# loaded_model = tf.keras.models.load_model('eng_wol_model.h5') 

translate(model) 

#Clear session prior to creating the architecture 

tf.keras.backend.clear_session() 

model_attention = seq2seqModel(source_dict, target_dict,True) 

model_attention.build() 

 

### Training and test evaluation  

model_attention.train(train_data,eva_data,test_data,50) 

model_attention.history.history['loss'] 
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model_attention.history.history['accuracy'] 

model.history.history.keys() 

# summarize history for accuracy 

plt.plot(model.history.history['accuracy']) 

# plt.plot(model.history.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

# summarize history for loss 

plt.plot(model.history.history['loss']) 

# plt.plot(model.history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

# plot_model(model_attention, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True) 

translate(model_attention) 

### Translate from user input 

def eval1( dataset,print_outputs = False): 
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        # get the source words and target_word_labels for the eval dataset 

        source_words = dataset 

        vocab = model.target_dict.vocab 

        loaded_modele = tf.keras.models.load_model('aeng_wol_modele.h5', compile=False) 

        # using the same encoding network used during training time, encode the training 

        encoder_outputs, state_h,state_c = 

loaded_modele.predict(source_words,batch_size=model.batch_size) 

        # for max_target_step steps, feed the step target words into the decoder. 

        predictions = [] 

        step_target_words = np.ones([source_words.shape[0],1]) * model.SOS 

         

        loaded_modeld = tf.keras.models.load_model('aeng_wol_modeld.h5', compile=False, 

custom_objects={"AttentionLayer": AttentionLayer }) 

        for _ in range(model.max_target_step): 

            step_decoder_outputs, state_h,state_c = 

loaded_modeld.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=model.b

atch_size) 

            step_target_words = np.argmax(step_decoder_outputs,axis=2) 

            predictions.append(step_target_words) 

        # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover 

the batch_size sentences 

        predicted = model.get_target_sentences(np.concatenate(predictions,axis=1),vocab) 

        #Modification 

        if print_outputs: 
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            sources = 

model.get_target_sentences(np.array(source_words[0:len(source_words)]),model.source_dict.vo

cab) 

            return sources,  predicted 

def proprocessing(source): 

    # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize 

each sentence. 

    a=[] 

    source_sen = [re.sub('[\W]', '', str(token.lower() )) for token in source.split(' ')]  

    a.append(source_sen) 

    # get the sents-as-ids for each sentence 

    source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in 

a] 

    print('source_words',source_words) 

    source_test = pad_sequences(source_words,padding='post') 

    return source_test 

def translate2( ): 

    # Prints out a set number of translations from the test set 

    data=input('Please enter the text input: ') 

    data=proprocessing(data) 

    sources,  candidates = eval1(data,print_outputs=True) 

    example_no = 2 

    for i in range(example_no-1): 
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        print(f"Output:{i+1}") 

        print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}") 

        print(f"Predicted translation: {' '.join(candidates[i]).replace('<pad>', '').replace('<unk>', '')}") 

translate2() 

 

 


