

Attention-based Neural Machine Translation from English-

Wolaytta

A Thesis Presented

by

Mekdes Melese

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the

Requirements for the Degree of Master

of Science

in

Computer Science

 January 2023

ACCEPTANCE

Attention-based Neural Machine Translation from English-Wolaytta
By

Mekdes Melese

Accepted by the Faculty of Informatics, St. Mary’s University, in partial
fulfilment of the requirements for the degree of Master of Science in

Computer Science

Thesis Examination Committee:

__
Internal Examiner

{Full Name, Signature and Date}

_____________Dr. Minale Ashagrie ____ Feb, 23,2023
External Examiner

{Full Name, Signature and Date}

__
Dean, Faculty of Informatics

{Full Name, Signature and Date}

January 2023

DECLARATION

I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials

used for the thesis work have been duly acknowledged.

Mekdes Melese Mekuria

Full Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Alemebante Mulu Kumlign (PhD)

Full Name of Advisor

Addis Ababa

Ethiopia

January 2023

i

ACKNOWLEGMENTS

First and foremost, praise be to the Almighty God who gave me the opportunity, strength, and

wisdom to achieve whatever I have achieved so far.

Next, I am greatly indebted to a number of people who assisted me to successfully complete this

thesis. My most profound thanks go to my advisor Alemebante Mulu (PhD) for his support and

guidance during the running of this thesis.

I would also like to thank my friends and classmates who take part in this research for their

collaborative effort during data collection. I want to offer my profound gratitude to everyone

whose assistance made this job possible.

The completion of this thesis would not have been possible without the guidance and support of

my family. I would like to thank my parents; whose love and guidance are with me in whatever I

pursue.

ii

TABLE OF CONTENTS

ACKNOWLEGMENTS .. i

TABLE OF CONTENTS .. ii

LIST OF ACRONYMS ... vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT ... ix

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1. Background of the Study .. 1

1.2. Statement of the Problem .. 2

1.3 Research Motivation ... 4

1.4. Research Questions ... 5

1.5. Objectives of the Study .. 5

1.5.1. General Objective ..5

1.5.2. Specific Objectives ..6

1.6. Scope and Limitations of the Study .. 6

1.7. Significance of the Research ... 6

1.8. Research Methododlogy .. 7

1.8.1. Literature Review...7

1.8.2. Data Collection ..7

1.8.3. Tools ..7

1.9. Thesis Organization .. 8

iii

CHAPTER TWO .. 9

LITERATURE REVIEW ... 9

2.1. Introduction ... 9

2.2. Why Machine Translation? ... 9

2.3. An Overview of Machine Translation .. 10

2.4. Approaches of Machine Translation ... 12

2.4.1. Rule Based Machine Translation (RBMT) ..12

2.4.2. Corpus-based Machine Translation ...16

2.4.3. Hybrid Machine Translation Approach ...20

2.4.4. Neural Machine Translation Approach ..21

2.5. Encoder-Decoder Architecture ... 23

2.6. Attention ... 25

2.7. Language Modelling ... 25

2.8. Neural Language Model (NLM) ... 26

2.9. Network Models in Neural Machine Translation ... 27

2.9.1. Recurrent Neural Network ...29

2.9.2. Long Short-Term Memory ...30

2.10. Related Work on Machine Translation ... 33

2.10.1. Machine Translation Involving Wolaytta Language ...33

2.10.2. Machine Translation Involving other Ethiopian Languages35

2.10.3. Machine Translation Involving Non- Ethiopian (Foreign) Languages..................39

CHAPTER THREE .. 42

THE WOLAYTTA LANGUAGE .. 42

3.1. Introduction ... 42

3.2. Overview of Wolaytta Language .. 42

iv

3.3. Morphology of Wolaytta Language .. 43

3.3.1. Inflectional Morphology and Derivational Morphology45

3.3.2. Derivational Morphology in Wolaytta ...50

3.4. Word Formation in Wolaytta .. 52

3.5. Wolaytta Language Writing System ... 53

3.6. Punctuation Marks in Wolaytta Language .. 54

3.7. Wolaytta Language Sentence Structure .. 54

CHAPTER FOUR ... 55

PROPOSED ARCHITECTURE AND RESEARCH METHODOLOGY 55

4.1. Introduction ... 55

4.2. Proposed Architecture of English-Wolaytta NMT ... 55

4.3. Corpus Collection and Preparation ... 57

4.4. Text Preprocessing .. 58

4.4.1. Normalization ..58

4.4.2. Data Cleaning...59

4.5. Tokenization and Padding... 59

4.6. Word Representation .. 60

4.7. Data Splitting for Model Training and Testing... 60

4.8. Encoder ... 61

4.9. Decoder ... 62

4.10. Attention Mechanism .. 62

4.11. Model Evaluation Metrics... 63

CHAPTER FIVE .. 64

EXPERIMENTAL RESULT AND DISCUSSION.. 64

5.1. Introduction ... 64

v

5.2. English-Wolaytta NMT Model Building and Training .. 64

5.2.1. English-Wolaytta NMT using Non-attention Mechanism64

5.2.2. English-Wolaytta NMT using Attention Mechanism ..65

5.3. English-Wolaytta NMT Testing and Translation ... 66

5.4. Discussion of the Result.. 67

CHAPTER SIX ... 69

CONCLUSION AND FUTURE WORKS ... 69

6.1. Introduction ... 69

6.2. Conclusion .. 69

6.3. Future Works .. 70

References ... 71

Appendix ... 78

Appendix A: .. 78

Appendix B: .. 79

vi

LIST OF ACRONYMS

AI Artificial Intelligence

BLEU Bilingual Evaluation Understudy

CNN Convolutional Neural Networks

EBMT Examples-Based Machine Translation

GNMT Google's Neural Machine Translation System

GRU Gated Recurrent Unit

HMM Hidden Markov Models

HMT Hybrid Machine Translation

LM Language Modeling

LSTM Long Short-Term Memory

ML Machine Learning

MT Machine Translation

NL Natural Language

NLM Neural Language Model

NLP Natural Language Processing

NMT Neural Machine Translation

RBMT Rule Based Machine Translation

RNN Recurrent Neural Networks

Seq2seq Sequence to Sequence

SMT Statistical Machine Translation

TPUs Tensor Processing Unit

vii

LIST OF FIGURES

Figure 2.1: General Steps of Rule-based Machine Translation .. 13

Figure 2.2: Major Tasks in Direct Machine Translation Approach .. 14

Figure 2.3: Machine Translation Pyramid .. 15

Figure 2.4: Statistical Machine Translation .. 19

Figure 2.5: The encoder-decoder architecture for NMT ... 24

Figure 2.6: Architecture of RNN .. 29

Figure 2.7: Gated Recurrent Units (GRU) .. 31

Figure 2.8: Long Short-Term Memory (LSTM) ... 32

Figure 3.1: Word Morphemes ... 44

Figure 4.1: Proposed Architecture for English-Wolaytta NMT ... 56

Figure 4.2: Sample English-Wolaytta Parallel Corpus ... 58

Figure 4.3: Sample word2index Representation ... 60

Figure 4.4: LSTM Encoder ... 61

Figure 5. 1 : English-Wolaytta NMT Translation Result ... 66

viii

LIST OF TABLES

Table 1.1: Hardware Tool ... 8

Table 3.1: Suffix Formation of Wolaytta Language ... 45

Table 3.2: List of Pronouns ... 46

Table 3.3: General Syllable Formulation of a Bi-radical Wolaytta Nouns 47

Table 3.4: Pluri-radical Wolaytta Nouns Form ... 47

Table 3.5: Case Markers ... 49

Table 3.6: List of Wolaytta Adjective with their Ending.. 49

Table 3.7: Derivational Morphology Nouns ... 51

Table 3.8: List of conjunctions ... 52

Table 3.9: Wolaytta Language Alphabet Letters .. 53

Table 5. 1 : Best Results using Encode-Decoder without Attention Mechanism 65

Table 5. 2 : Best Results using Encode-Decoder with Attention Mechanism 65

ix

ABSTRACT

Machine translation (MT) is one of the applications of natural language processing which involves

using computers to translate from one source language to another target language. For many years,

Statistical Machine Translation (SMT) dominated the field of machine translation technology.

Long sentences are broken up into small pieces in classical statistical machine translation, which

results in poor levels of accuracy. Neural Machine Translation (NMT) is a new paradigm that

swiftly superseded SMT as the predominant method of MT, developed with the development of

deep learning. NMT approach differs from SMT systems as all parts of the neural translation model

are trained jointly (end-to-end) to maximize the translation performance. In an encoder-decoder

design, the entire source sequence's input is condensed into a single context vector, that is then

sent to the decoder to create the output sequence. The major drawback of encoder-decoder model

is that it can only work on short sequences. It is difficult for the encoder model to memorize long

sequences and convert it into a fixed-length vector. One realistic solution to this problem is the

attention mechanism. The attention mechanism predicts the next word by concentrating on a few

relevant parts of the sequence rather than looking on the entire sequence. Hence, the objective of

this research work is to develop a neural machine translation system for English-Wolaytta using

attention mechanism.

The English-Wolaytta machine translation system has been trained on parallel corpus covering the

religious, and frequently used sentences or phrases which can be used in day to day

communication. A total of 27351 parallel English-Wolaytta sentences were prepared and the

system is trained and tested using 80/20 ratio. These data were preprocessed in the suitable format

in way to be used in neural machine translation. For building the proposed English-Wolaytta NMT

model, an LSTM encoder and decoder architecture with an attention mechanism has been proposed

in the Sequence-to-Sequence concept. In order to evaluate the efficiency of the proposed system,

BLUE score metrics is used, and for testing the efficiency of attention mechanism, we have

developed non-attention model and compared it with the attention mechanism. Hence, we have

proved that the attention mechanism has a better translation and has achieved a BLEU score of

5.16 and 88.65 accuracy.

Keywords: Machine Translation, Neural Machine Translation, English, Wolaytta, Attention

Mechanism, Encoder-Decoder Architecture, Natural Language Processing

1

CHAPTER ONE

INTRODUCTION

1.1. Background of the Study

Communication is the main tie that binds our world community. Language is the primary means

of communication among humans. Language also called Natural Language (NL) which refers to

any human spoken or written symbol that has evolved naturally for human communication.

Through natural language communication, we are able to share our ideas, opinions, views, and

emotions with another person. The purpose of language is creating an understanding of complex

and abstract thinking. It plays a vital role in helping people build a bridge of relationships. Various

natural language is used by people residing in different areas or belonging to different

communities.

To make communication possible in a multilingual environment, either people need to use a

common language when conveying a message or they need to adapt the source language and

culture to those of the people they want to communicate with. But language barriers are creating

huge gaps. Globalization and the rise of the internet as a global medium of communication has led

to an ever-increasing demand for translation systems. Translation systems have a significant role

in bridging both the linguistic and cultural differences that has long-standing between people of

different corner of the world. Recently, advances in technology have paved a way to positive

changes in translation making possible Interlingua communications. Natural Language Processing

(NLP) is one of these advancements.

NLP, or computational linguistics, is a fundamental area of machine learning (ML). It is the

capacity of a computer software to comprehend, interpret, and work with spoken and written

human language [1]. NLP contributes significantly to the survival and further development of

languages by offering state-of-the-art tools and applications to the speakers. It is a considerable

step forward in Artificial Intelligence (AI) [2]. NLP typically involves applications of Computer

Science and computational linguistics in its efforts to fill the gap between human communication

and computer understanding [1]. NLP has various applications including Machine Translation

(MT), Text summarization, Information extraction etc. [3].

2

Human-human, human-computer, computer-human, and computer-computer communication via

computing systems can be facilitated by NLP applications. Every language should be easily

comprehended by the computer in the NLP environment. Machine translation is the procedure that

enables a computer to comprehend the various languages spoken worldwide (MT).

Machine translation is a branch of computational linguistics which studies the use of computer

software to translate text or speech from one natural language to another [4]. It can be defined as

the capability of computers to automatically translate text between two natural languages while

maintaining the intended meaning and producing fluid text in the target language. Without the use

of human translators, these automatic translation systems transform one language into another

using cutting-edge technology, extensive dictionaries, and a set of linguistic principles [5]. Despite

being one of the oldest areas of study in artificial intelligence, machine translation has seen very

significant advancements in terms of translation quality due to a growing interest in human-

machine interactions, the availability of big data, improved algorithms, and a recent shift toward

large-scale empirical techniques. The demand for translation services is currently expanding across

numerous industries, including business, medicine, and the economy.

Machine translations can be classified according to their core methodology: the rule based

approach also known as Knowledge based approach which is a linguistic rich approach where

humans specify a set of rules to describe the translation process and the corpus based approach

which is entirely corpus based where knowledge is extracted from a parallel corpus.

Rule based machine translation approach involves sub approaches like direct approach, transfer

based approach and Interlingua machine translation approach. Sub approaches involved in corpus-

based machine translation include statistical phrase-based approach and neural-based approaches.

Example-based, Knowledge based approaches are termed as is less used approaches nowadays [3].

1.2. Statement of the Problem

Ethiopia is a multilingual, multiethnic and culturally a pluralistic nation with more than 80

different languages with over 200 dialects spoken. Languages in Ethiopia can be classified within

four major language groups, though the country is also home to several unclassified tongues. The

four main language groups in Ethiopia are Semitic, Cushitic, Omotic and Nilo-Saharan. Most of

3

the languages in Ethiopia are included in the Afro-Asia language family. Of these Ethiopian

languages’ majority are Cushitic and Omotic languages and some are Semitic languages [6].

Nearly 30 languages collectively referred to as "Omotic languages" and they are spoken in the

south-west of Ethiopia, close to the Omo River. The 28 Omotic languages are divided into southern

and northern sub-families among these [7].

The Wolaytta language, which is spoken in the Wolaytta Zone and some other areas of Ethiopia's

Southern Nations, Nationalities, and People's Region, is a member of the Northern Omotic

language family. The number of speakers of this language is estimated about 15.5 million

Populations (based on 1999E.C census) [8]); it is the native language of the Wolaytta people. It is

also spoken in different neighboring areas and various cities throughout the country by people

from Wolaytta region. In the region, the media of instruction in primary schools is Wolaytta

language and is offered as a program in Wolaytta Sodo University. The number of articles and

newspapers published in this language is increasing over the years and different Mass Medias are

streaming their programs this language [6]. The need for effective translation has become a matter

of urgency due to the ever-increasing amount of contents that are being created in English

language. Various research results, teaching materials and information available on the Internet

use these languages as their preferred language of communication.

Language constraints might still make it difficult to acquire information in the contemporary

globalized environment. In some cases, it is impossible to meet the demand for translation by using

solely human translators; as a result, tools like MT are becoming more and more popular since

they have the ability to solve this issue. The importance of using technology in people's daily lives

is also increasing. Not only in educational areas but also in social, financial, technological,

entertainments and cultural fields. As the necessity to use technology is increasing, so does the

demand for translation.

Despite the large number of speakers all over the country, there are very few computational natural

language tools available for Wolaytta. It is a morphologically rich language having many other

distinct linguistic characteristics. On the contrary it is still an under-resourced language. Just to

mention a few of the works done so far: Attention Based Amharic-to- Wolaytta Neural Machine

Translation by Workineh Wogasso [9], English- Wolaytta machine translation using Statistical

Approach by Melaku Mara [10], Bidirectional Dictionary Based machine translation for Wolaytta

4

Amharic by Temesgen Mengistu [11], a Hybrid Machine Translation System for English-to-

Wolaytta by Kidanemariam Firew [12]. This previous works uses traditional translational

approaches. Over the course of machine translation development, MT has changed greatly, from

systems that required hours and days of computing time to produce a translation of dubious quality,

to the current neural machine translation (NMT) systems that can process the same content in mere

seconds and with much more accuracy. Neural machine translation has many advantages over

traditional machine translation including higher translation accuracy, less need for human input,

quicker translation turnaround times and so on. However, to the researcher’s knowledge the neural

translation using attention-based model for English to Wolaytta has not yet been done.

This study uses neural machine translation (NMT) with attention approach to translate words from

English to Wolaytta. The proposed model is chosen because attention-based neural machine

translation has achieved significant performance in recent years and attentional neural machine

translation is efficient and produces fluent translation. It is becoming the mainstream machine

translation method in the current industry. For example, NMT with attention is the leading model

behind the popular services like google translate. In 2016 google announce the launch of Google

Neural Machine Translation system (GNMT), which utilizes state-of-the-art training techniques to

achieve the largest improvements to date for machine translation quality. Human evaluations show

that GNMT has reduced translation errors by 60% compared to the previous phrase-based system

on many pairs of languages: English ↔ French, English ↔ Spanish, and English ↔ Chinese [13].

During translation, the attention mechanisms selectively focuses on sub-parts of the sentence to

improve the performance of neural machine translations. To accomplish an efficient translation

with respect to accuracy as well as quality and to reach a better BLEU score between the language

pairs, the attention-based neural machine translation is proposed.

1.3. Research Motivation

The primary objective of MT is to eliminate language barriers by developing a machine translation

system that can translate one human language to another. It plays a vital role in strengthening

communications between people residing in different areas and in enabling peoples to use

documents and data produced in resource rich languages. There is a high need for translation due

5

to the requirement for information sharing among resource-rich and low resource languages.

Languages with a limited amount of parallel corpus resources benefit less from such a system than

languages with large translated resources. Among the languages with less translated documents

are Ethiopian languages such as Wolaytta.

Despite being widely spoken language in southern Ethiopia, Wolaytta is considered as less

resourced language. English is the universal language on the Internet and many documents are

written in English. Because of that non-English speakers are faced with the problem of

communication and limited access to resources and this problem is compounded in Wolaytta

language. Because it falls under the category of a resource-rich language, English is the ideal

choice to translate material from. Improving machine translation accuracy from resource rich

language like English to resource scarce languages like Wolaytta will make a significant

contribution. With the recent widespread use of Wolaytta language on publications and on social

media in Wolaytta Zone, improving the performance of translation from English language is of

great benefit to both the community, the private and public sector in the area. Since Wolaytta is

the official working language of Wolaytta zone, applying machine translation on the translation of

different educational books or other materials can contributes to different government institutions

like elementary education. English- Wolaytta Machine Translation can solve the aforementioned

problems. This has motivated us to work on Attention-based English-to- Wolaytta Neural MT.

1.4. Research Questions

The central questions of the study which is addressed by this research study are:

▪ What will the English-Wolaytta language pairs' performance of the attention-based NMT

approach be?

▪ How well do attention-based NMT models perform in translation tasks?

1.5. Objectives of the Study

1.5.1 General Objective

The general objective of this study is to develop an English-to-Wolaytta neural machine translation

using attention-based approach.

6

1.5.2 Specific Objectives

The following specific objectives are outlined in order to fulfill the study's general objective.

▪ To prepare English- Wolaytta parallel corpus

▪ To review techniques and methodologies used for machine translation

▪ To review related literatures to identify the linguistic behaviors of English and Wolaytta

languages.

▪ To design the architecture of the system

▪ To develop a model for English-Wolaytta machine translation

▪ To evaluate the performance of the developed model

1.6. Scope and Limitations of the Study

The main aim of this study is to develop an attention based neural machine translation for English

to Wolaytta. The study designed to operate only in one direction (unidirectional) i.e., from English

to Wolaytta. Because of having insufficient sources, the data is collected manually from limited

resources which makes the system limited to specific domains. The other limitation of this study

is a lack of computationally powerful machine that helps us to make different experiments to get

a more efficient model by changing different parameters setups and using different approaches.

1.7. Significance of the Study

The main contribution of this research work includes:

▪ After this study, it is expected that there will be better translation between the two language

pairs.

▪ This study can be used in the preparation of teaching materials in the areas in which

Wolaytta is spoken.

▪ The study will contribute to increase digital literacy by removing language barrier

▪ It will help with the development of teaching materials in the Wolaytta region and the

accurate translation of technical papers.

7

1.8. Methodology of the study

To accomplish the research a lot of methods, tools, and techniques were applied.

1.8.1 Literature Review

Reviewing several literatures on machine translation systems were conducted for other language

pairs to gain deep understanding of the research area. A detailed literature review on Neural

Machine translation approach in particular with regard to techniques used in the approach were

done. For further understanding of the linguistic behavior of both language pairs, different related

articles and books were reviewed.

1.8.2 Data Collection

The translation system tries to generate translations using the English-Wolaytta corpus based on

neural methods. To perform the experiment, English-Wolaytta parallel corpus were collected from

sources like the Holy Bible and simple sentences commonly used for daily communication

purpose. The simple sentences were prepared manually to conduct the experiment. Since Wolaytta

is under-resourced language, the corpora are from limited sources.

1.8.3 Tools

To implement the model of the English- Wolaytta neural machine translation system, Python

programming language is used. Python is chosen because of its high-recital tool for NLP and it is

open-source, with a variety of rich libraries, rich documentation, and support. Anaconda Navigator

which is a desktop graphical user interface (GUI) is used to help us use different very efficient

editors like Jupyter Notebook. The NMT was built using TensorFlow, one of the most popular

data science and machine learning frameworks, which is an open-source deep learning library with

Keras and NumPy library. Keras library was employed in this work on top of TensorFlow.

8

Table 1.1: Hardware Tool

Computer

Type

Operating

System

Processor System Type Installed

RAM

Storage

Laptop, HP

ENVY x360

Windows 11

Home

AMD Ryzen5

4500U with

Radeon Graphics

2.38 GHz

64-bit Operating

system x64-based

processor

8 GB 238.46 GB

SSD

1.9. Thesis Organization

This thesis report includes six chapters. Chapter two presents the literature review of Machine

Translation, Types of Machine Translation and their advantage and disadvantage, Neural Machine

Translation and the different architecture of NMT and algorithms. It also presents a review of

works done in the area of Machine Translation in Ethiopian and Foreign languages.

Chapter Three presents the overview of Wolaytta Language. The chapter represents the inflectional

and derivational morphology of the language.

Chapter Four discusses the steps that have been followed in the research work and the proposed

architecture of the of English-Wolaytta NMT model.

Chapter Five discusses the experiment and implementation of English-Wolaytta NMT model by

applying data processing and Encoder-Decoder with attention mechanism, models training, and

testing. It also presents the experiment result, evaluation and comparison of performance of the

model based on evaluation metrics.

Chapter Six presents the conclusion and future works for further research direction on this research

topic/domain.

9

CHAPTER TWO

 LITERATURE REVIEW

2.1. Introduction

In this chapter, review of literature in the field of machine translation has been made. The chapter

covers overview of machine translation, the need for machine translation and different approaches

of machine translation with special focus on neural machine translation approach. A review of

related research works which were done in the area of Machine Translation in Ethiopian and

Foreign languages is also provided.

2.2. Why Machine Translation?

In the context of modern globalization, people in various fields are now expanding their scope

activities from local and regional to international levels. Globalization is playing a major role in

this regard. It is combining social, cultural, economic, political and technological developments

and is creating a unified overall environment. Globalization supported by information and

communication technology has made the world a very small place. Keeping pace with the ever-

increasing globalization is making the need for translation greater than ever. Translation fills the

global communication gap between the communities speaking different languages. Difficulties in

understanding foreign language have reduced significantly since MT has come to the field. MT

has constantly been improved and upgraded through the enhanced programs of statistics, analysis

and data processing. Such popular services as Babelfish and Google Translate are often used to

meet the communication needs of the globalized world community, in particular on the Internet

platform.

The Internet World Statistics Report describes that the content available on the internet in different

languages varies, and the most dominant language on the internet is English [14] keeping in view

this issue there is a dire need of machine translation system to make the web content available to

everyone in their native language

Machine translation frameworks are expected to decode or translate creative works from any

language to local language. Such machine translation frameworks can break the language

obstruction by quickly making work accessible to the globe’s masses. Numerous web pages may

10

contain information related to our interest in a foreign language, and with the help of machine

translation, we understand the content present in those web pages. Machine translation can also

help commercial product manufacturers prepare product manual in many languages that can be

used by different countries. With the advancements in the internet, millions of users worldwide

can get the information in their native language with the help of machine translation. In modern

civilization, machine translations have growing need and importance in economics, business,

health care and industrialization. The social and political urgency of machine translation rises in

societies where more than one language is spoken. During the last decade, machine translation

technology has improved. With the emergence of personal computers and the increasing use of

computer-assisted tools, machine translation gained a strong momentum giving birth to

commercially available software and hardware with translation tools and powerful dictionaries.

Currently, machine translation is used by several companies and by governments. It is becoming

more and more crucial for companies to remain relevant in the fast-changing global economy. It

translates a vast amount of text in less time than a human translator, thus saving a lot of time.

2.3. An Overview of Machine Translation

Without a human being involved, a computer program may translate text from one language to

another using a process known as machine translation (MT), sometimes known as automated

translation. It is a field of practical research that incorporates concepts and methods from statistics,

artificial intelligence (AI), computer science, and linguistic programming [15].

The goal of machine translation is to create a system that can translate text from one language into

another while maintaining the original text's meaning. Because natural languages are extremely

complicated in terms of term word meaning, grammar rules, etc., MT requires a comprehensive

understanding of both the source language and the target language, including both languages'

grammar and semantic syntactic comprehension [16]. It begins the process by analyzing the input

in the source language and building an internal representation. This representation is changed and

converted into a format appropriate for the intended language. Finally, output is produced in the

intended language. On a fundamental level, MT simply swaps out words from one natural language

with words from another.

11

A translation may be done manually or automatically using machine translation. When using

computer-based translation tools, human translators assist machine translators in performing the

translation. When using human-aided machine translation, humans and computers work together

to translate texts. Human involvement occurs either before the translation process, known as pre-

editing, or after the translation process, known as post-editing. The distinction between machine

aided and human aided machine translation is frequently ambiguous, and the term "computer-aided

translation" might refer to either. However, the automation of the entire translation process is the

essence of machine translation [4].

Systems for translating texts are either created for two specific languages (bilingual systems) or

for multiple pairs of languages (multilingual systems). Bilingual systems can be created to work

in both directions and only one direction (unidirectional), such as from English into Wolaytta

language. When translation is unidirectional, just one direction from the source language to the

destination language is supported. Systems that are bidirectional function in both directions,

allowing one language to serve as the source and the other as the destination and vice versa. Most

bilingual systems are unidirectional, although multilingual systems are typically meant to be

bidirectional [4].

However, machine translation has advantages and disadvantages just like everything else. The

speed of machine translation is its main benefit. It is accessible at all times, quick, affordable, and

easily updatable. Utilizing it comes with certain trade-offs as well. It is unable to provide a

complete and accurate translation on its own. Even so, it eventually needs assistance from people.

Additionally, machine translation cannot understand the intricacies of culture and society or its

substance. The main problem for the machine translation paradigm is developing a program that

can comprehend text like humans do and produce new material in the target language that sounds

like it was produced by a human [17].

Machines are not yet intelligent enough to distinguish a word meaning based on context, and may

provide a bad translation. Also, the idioms, tone, cultural references upon which a language is

build and impart any particular message; cannot be understood by any machines.

Humans are not exempt from difficulties. For instance, no two human translators can translate the

same material into the same language pair in exactly the same way, and accurate translation may

12

need several rounds of revisions. Combining the efforts of the human mind and the machine results

in a higher quality translation. Although the quality of machine translation is significantly inferior

to that of human translation, text can be translated quickly, accurately, and effectively by

integrating machine translation with other technologies and human translators. There have been a

variety of methods developed to automate translation, each with advantages and problems of their

own [18].

2.4. Approaches of Machine Translation

Different strategies have been presented and put into effect since the idea of employing machines

for language translation procedures was developed. Rule-based machine translation and corpus-

based translation are the two basic paradigms that machine translation has historically followed.

The integration of rule-based and corpus-based MT systems has lately led to the development of

hybrid techniques and, most recently, neural machine translation approaches, which are currently

dominating the paradigms of machine translation [19].

2.4.1 Rule Based Machine Translation (RBMT)

The first method ever created in the field of machine translation is called Rule-Based Machine

Translation (RBMT), sometimes known as Knowledge-Based Machine Translation. Machine

translation systems based on linguistic data about the source and target languages are referred by

this generic term. RBMT systems provide translation using bilingual and monolingual dictionaries,

grammars, and transfer rules. Morphological, syntactic, and semantic information about the source

and target languages are managed during translation. To create linguistic principles, this

information is used. Rules are important at all phases of translation, including syntactic processing,

semantic interpretation, and contextual language processing [18].

13

Figure 2.1: General Steps of Rule-based Machine Translation [16]

Converting source language structures to target language structures is the aim of RBMT. Direct,

transfer-based, and Interlingua are the three sub-approaches that the methodology can use. The sub

methods vary in how thoroughly they analyze the source language and how much they try to

express meaning or intent between the source and target languages in a way that is not dependent

on either language [16].

2.4.1.1 Direct Approach

In this approach literal translation involves transferring the source language into the target

language without any intermediate languages. Without using an additional or intermediary

representation, source language words are translated. Word-to-word translation is done with or

without keeping the word's sense in this method. Systems for direct translation are essentially

unidirectional and bilingual [16]. There won't be any complicated architecture involved in this

approach. With the use of a bilingual dictionary, it performs word-by-word translation, usually

followed by some syntactic rearrangement. Such systems are heavily reliant on both the source

and target languages as a result of this direct mapping.

14

Figure 2.2: Major Tasks in Direct Machine Translation Approach [16]

2.4.1.2 Interlingua Approach

This method of machine translation (MT) involves converting the source language into a

representation that is independent of all other languages used in the translation process. The term

"neutral language" refers to this transitional tongue. Languages used as the source and target are

irrelevant. The Interlingua is then used to produce the target language. From now on, this type of

method just requires two modules: analysis and synthesis. For multilingual systems, the Interlingua

technique is undoubtedly the most appealing. One of the main benefits of this technique is that as

the number of target languages it may be converted into grows, the Interlingua gains in value. In

1992, Nyberg and Mitamura created KANT, the sole Interlingua machine translation system. It is

not simple work to develop an Interlingua language. To create completely neutral language, too

much work is needed [18].

2.4.1.3 Transfer-based Approach

Transfer-based machine translation produces a translation from an intermediate representation that

mimics the meaning of the source sentence. Contrary to Interlingua MT, it is somewhat reliant on

the language pair being translated. By examining the grammatical structures of both the source

language and the target language, a set of linguistic rules are established in this translation in order

to retain the meaning of a sentence. Translation can be divided into three phases in the transfer-

based approach: Analysis, transfer, and generation come first. The source language text is initially

examined using linguistic data to create a syntactic representation of the source language using a

15

source language parser. The second stage involves the transformation of the source syntactic

representation into the target syntactic representation. The target language text is produced using

the morphological analyzer in the last step of this translation methodology. Transfer-based systems

require rules for lexical, semantic, and syntactic transfer. The source parse tree can be changed to

resemble the target parse tree using syntactic transfer rules. Semantic role labeling is used in

semantic transmission. On a multilingual dictionary, lexical transfer rules are based. Lexical

ambiguity can be resolved by using the dictionary [18] [20].

Figure 2.3: Machine Translation Pyramid [18]

2.4.1.4 Advantages and Disadvantages of RBMT

Different approaches of MT have complementary pros and cons. Here are some of the advantages

and dis advantages associated with RBMT approach.

Advantages

A bilingual corpus is not necessary to construct a rule-based machine translation system. This

enables the development of translation systems for languages without any digital information or

similarities. The RBMT system is domain neutral and provides excellent out-of-domain quality

due to the rules' ability to be applied across a variety of domains. The addition of improved quality

and consistency is RBMT's additional benefit. Errors are simpler to identify and troubleshoot since

the system is more transparent. Even if the trigger scenario is extremely uncommon, a tailored rule

can correct each inaccuracy. Another RBMT advantage is reusability. The foundation of RBMT

systems typically consists of a robust source language analysis that is fed to a transfer step and

target language generator; the source language analysis and target language generation

16

components can be shared by multiple translation systems, necessitating the specialization of only

the transfer step. Additionally, a substantially related language analysis can be bootstrapped using

the source language analysis for one language. The needs of a wide range of linguistic phenomena

can be met by RBMT, which is extensible and capable of high accuracy in limited language sets.

Disadvantage

The fundamental disadvantage of rule-based machine translation is that a huge number of rules are

required to cover all language aspects, which necessitates extensive linguistic understanding. It is

quite expensive because it not only calls for linguistic proficiency but also intensive coding on the

part of the programmer, which takes a lot of time and linguistic resources. Large-scale rule

interactions, ambiguity, and idiomatic idioms are challenging to handle in RBMT. Rules must be

changed in order to increase the quality of an RBMT; but, changing just one rule does not ensure

that the RBMT will perform more accurately overall. Additionally, rule updates are typically

highly expensive. There are still certain linguistic details that need to be carefully set.

2.4.2 Corpus-based Machine Translation

A key paradigm for creating MT systems is rule-based techniques. To address the extensive

variances and temporal shifting properties of the actual text, such techniques struggle to acquire

the necessary information. Some statistical translation models and assisting tools had been created

to address this issue. A machine translation system with an architecture based on bilingual or

multilingual corpora analysis is known as corpus-based machine translation. Data with text and its

translation are called bilingual parallel aligned corpora. As an alternative to the rule-based method,

it was introduced. A significant amount of raw data is gathered in parallel corpora when using a

corpus-based technique, and this data is then used to extract translations for new sentences. The

untranslated data includes literature, dictionaries, grammars, and other resources. The translation

between the source and target languages is essentially the raw data [16].

The corpus-based method to machine translation has become one of the most extensively

researched areas in machine translation since 1989. Examples-Based Machine Translation

(EBMT), Statistical Machine Translation (SMT), and Neural Machine Translation are the three

variants of the corpus-based technique that have been recently classified. These strategies are

succinctly explained in the following subsections [16] [20].

17

2.4.2.1 Example-Based Machine Translation (EBMT)

Example-based translation, often referred to as Memory-based translation, is a type of corpus-

based machine translation that draws its primary information from bilingual corpora of parallel

texts. Makoto Nagao proposed the example-based translation approach in 1984. It is based on

analogical reasoning between two translation instances. A bilingual corpus is used by an example-

based translation at runtime as its primary knowledge basis. These algorithms use the source text

as input and search the corpus for the source examples that are most comparable to the source text.

Retrieving equivalent translations is the next stage. Recombining the obtained translations with

the final translation is the last step. The main principle is that if a sentence that has already been

translated reappears, the same translation is likely to be accurate once more. The system uses the

example that has already been translated as knowledge. This method extracts data from corpora

for analysis, transmission, and translation production [21] [22].

In EBMT, the translation process is essentially a mechanism for matching the input sentence

against the stored translated samples rather than utilizing explicit mapping rules to convert

sentences from one language to another.

Advantages of an EBMT

EBMT uses parallel texts as its main knowledge which avoids the need for manually derived rules

making quickly adaptable to many language pairs. Because EBMT a memory-based translation,

the translation memory saves the user effort of re translating the sentence and this saves the

processor time and user time. The other advantage of this model is it works well with small set of

data and possible to generate output more quickly by training the translation program.

Disadvantages of an EBMT

Even while EBMT does away with the requirement for manually developed rules, it still needs

analysis and generation modules to create the dependency trees required for both evaluating the

sentence and the examples database. Although parallel processing techniques can be used, EBMT's

computational efficiency, particularly for big databases, remains a concern. To create the

dependency trees required for the examples database and for analyzing the sentence, analysis and

18

generation modules are required. Because there are no effective techniques for cleaning noisy

corpora, the effectiveness of the EBMT system is hindered in cases where there are noisy corpora.

2.4.2.2 Statistical Machine Translation (SMT)

Statistical Machine Translation (SMT) is a type of machine translation in which translations are

produced using statistical models whose parameters are obtained through the examination of

bilingual text corpora. Warren Weaver first proposed the concept in 1949, but it wasn't until the

late 1980s that researchers at IBM's Thomas J. Watson research center revived it [23]. SMT seeks

to use statistical decision theory, which is based on the probability distribution function, to arrive

at the best translation decision. Empirical Machine Translation (EMT) systems use statistical

translation models that are built from the examination of monolingual and bilingual corpora to

perform statistical machine translation [22].

In SMT, a bilingual text corpus is utilized to examine the parameters of the statistical model and

statistical probabilities are employed to determine the likelihood of a translation. The availability

of a statistical table, which can be created using supervised or unsupervised statistical machine

learning techniques, is a key component of SMT. Statistics for phrases or languages are typically

included in statistics tables. Instead of utilizing linguistic translation methods, SMT calculates the

odds of a match statistically using two probabilistic models: The Language Model and the

Translation Model.

The idea of SMT is that document can be translated on the basis of probability distribution

function. And this function is generated easily by using Bayes theorem. In Bayes theorem

probability distribution P(t/s) is obtained from the product of P(s/t) and P(t), where P(s/t) is the

probability that the source sentence is a translation of the target sentence, and P(t) is the probability

of the target language. Three elements the language model, translation model, and decoder play a

prominent role in the SMT architecture as seen in Figure 2.4.

19

Figure 2.4: Statistical Machine Translation

The language model first determines P(t) using the monolingual corpus. The appropriate word

combinations in the target language are also its responsibility. Thus, it guarantees the output is

grammatically correct. Second, the translation model, which ensures that the target hypothesis

produced by the machine translation system corresponds to the source phrase, estimates P(s/t)

based on the parallel corpus. The Decoder, which actually does the translation, comes in third [24]

[23] Using the following equation, the decoder selects the sentence in the SL that has the highest

likelihood of being a feasible translation for a given sentence t in the target language.

P (t|s) = argmax (P (s|t)) ∗ P (t)) (2.1)

Depending on the fundamental modeling unit, statistical machine translation can be divided into

three groups. These three types of language modeling are word-based, phrase-based, and

syntactical-based.

Word-based Language Modeling: It is the statistical-based MT system's initial attempt. The

basic building block of this approach is words, as its name suggests. The target sentence is created

by translating each word in the input sentence word by word, then arranging those translated words

in a certain order. In word-based translation, the alignment of the words in the input and output

phrases typically follows particular patterns [22].

Phrase-based Language Modeling: A phrase or series of words is the basic building block of this

approach. Before translation, each source and target sentence are broken up into distinct phrases

rather than words. There is a creation of a word order using both the source and target languages.

20

Based on the vector of items with coordinating properties for the dialect succession pair, decoding

is performed [20] [22].

Syntactical-based Language Modeling: The translation rule serves as the basic building block

of this approach. The source language's word and variable order makes up the translation rule. a

target language syntax tree (having words or variables at leaves), The likelihood of the language

pair is expressed as a vector of feature values.

Advantages of SMT

The key benefit of this approach is that linguists don't need to customize the tool because it learns

translation techniques through statistical analysis of bilingual corpora. When expensive and

qualified corpora are readily accessible, SMT systems are simple to construct, simple to maintain,

effective, and deliver excellent quality. Another benefit of the SMT model that promotes more

natural transactions is better resource management. No specific pair of languages is the focus of

SMT systems.

Disadvantages of SMT

The main difficulty in SMT system is creating massive parallel corpus. SMT requires preparing

parallel text which can be costly for users with limited resources. Training SMT systems requires

high computational resources and it is difficult to perform error analysis. The other dis advantage

in SMT is it does not work well between languages that have significantly different word orders.

2.4.3 Hybrid Machine Translation Approach

Hybrid Machine Translation (HMT) is a new strategy created by utilizing both statistical and rule-

based translation approaches, and it has proven to be more effective in the field of MT systems.

By smoothly incorporating the advantages of both technologies, hybrid machine translation

approaches have been developed with the goal of resolving the issues brought on by RBMT and

SMT systems and producing translation output of greater quality [18]. It blends statistics and rules.

The hybrid technique can be implemented in a variety of ways, and generally speaking,

architectures having an SMT system or an RBMT system at their heart can be distinguished from

each other. The drawbacks of both approaches were taken out of the hybrid approach to machine

translation, which now offers a promising translation with high efficiency [22].

21

Advantages of Hybrid MT

This approach has a lot more power, flexibility and control when translating. Many issues can be

addressed at their root causes through rules that go beyond the capabilities on a statistical only

approach.

Disadvantages of Hybrid MT

But despite of its advantages, this approach has some demerits like: it requires a big dictionaries or

corpora, complexity of the system, domain specific nature of system, lexicon and linguistic

irregularities, etc. Hampers its commercial viability, etc.

2.4.4 Neural Machine Translation Approach

For many years, SMT dominated the field of machine translation technology. Long sentences are

broken up into small pieces in classical statistical machine translation, which results in poor levels

of accuracy. Neural machine translation was developed and frequently used to address this issue.

MT using a neural network that directly predicts the conditional probability of converting a given

source sentence to a target sentence is known as Neural Machine Translation (NMT). Neural

Machine Translation is a new paradigm that swiftly superseded SMT as the predominant method

of MT, developed with the development of deep learning.

The NMT approach does not have a separate language model, translation model, or reordering

model like the statistical technique does. Instead, one word at a time is predicted using a single

sequence model. The task of estimating the likelihood of a string of words is carried out by an

artificial neural network. NMT eliminates the need for wasteful feature engineering by modeling

the complete translation process with a single, sizable neural network. As opposed to SMT's

separately tuned components, NMT's training is end-to-end. Compared to rule-based and statistical

machine translation (SMT) systems, NMT has recently emerged as a viable methodology that has

produced notable advances [25].

Machine translation employing an "encoder-decoder" structure was first proposed by [26] in the

year 1997. A language model based on neural networks was created in 2003 by a team of

researchers at the University of Montreal headed by Yoshua Bengio [27], which solved the data

scarcity issue of conventional SMT models. Their efforts set the foundation for the use of neural

networks in machine translation in the future.

22

For machine translation, a brand-new end-to-end encoder-decoder structure was put forth in 2013

by Nal Kalchbrenner and Phil Blunsom [28]. Convolutional neural networks (CNN) are used in

this model to encode a given source text into a continuous vector, and recurrent neural networks

(RNN) are used as the decoder to convert the state vector into the target language. Their research

gave rise to the NMT, a technique that maps natural language using deep learning neural networks.

In contrast to the linear SMT models, NMT's nonlinear mapping describes the semantic

equivalence utilizing the state vectors that link the encoder and the decoder. Additionally, the RNN

is meant to be able to comprehend the meaning behind phrases of any length and resolve the "long

distance reordering" issue. However, the "exploding/vanishing gradient" problem makes it

difficult for RNN to truly handle the long-distance dependencies; as a result, the NMT model did

not initially attain a decent performance [29].

Sequence to sequence learning (seq2seq) was developed by [30] in 2014 using RNNs for both

encoder and decoder, and the Long Short-Term Memory (LSTM, a type of RNN) for NMT was

also introduced. The issue of "exploding/vanishing gradients" is controlled by the gate mechanism

that allows for explicit memory deletes and updates in LSTM, which allows the model to capture

"long-distance interdependence" in a phrase much better. The "long distance reordering" problem

was resolved with the advent of LSTM, while the "fixed-length vector" problem became the main

obstacle for NMT.

Since the "attention" method was first introduced by Yoshua Bengio's group [25], the "fixed-length

vector" problem has begun to be solved. When performing a prediction job, the neural network is

able to concentrate on relevant input components more thanks to the attention mechanism. Only a

small percentage of the source phrase is significant when the decoder is creating a word for the

target sentence; as a result, a content-based attention mechanism is used to dynamically construct

a (weighted) context vector depending on the source sentence. Then, rather than using a fixed-

length vector, the target word will be anticipated based on the context vectors. Since then, NMT

has significantly increased in performance, and the "attentional encoder-decoder networks" model

is now the most advanced one available.

23

Advantages of NMT

Because all components of the neural translation model are trained together (end-to-end), unlike

conventional translation systems, Neural Machine Translation exhibits greater performance in

translation. It also exhibits simplicity in contrast to earlier paradigms because it uses fewer

components, requires fewer processing steps, and uses less memory than SMT. It requires less

knowledge related to the structure of source and target language as well as, it allows to use human

and data resources more efficiently than RBMT. NMT systems can understand the broader context

of words and phrases to produce more accurate and fluent translations. By contrast, conventional

PBMT only considers the context of a few words on either side of the translated word. For

morphologically rich target language, NMT can select more correct word forms than RBMT. Also,

reordering errors in NMT are lesser than SMT.

Disadvantages of NMT

The main disadvantages of NMT is that it is time consuming to train NMT model. NMT requires

large training data to build competitive models. The other drawback of NMT system is: it performs

poorly when it comes to the translation of rare words. One reason for that is the limited vocabulary;

another is the unreliable training of rare word’s embedding as the word embedding represent both

source and target words. Also, it is difficult to fix errors in an NMT system because it uses a beam

search with almost no constraint for searching target words.

2.5 Encoder-Decoder Architecture

The encoder-decoder sequence to sequence network, commonly known as the standard algorithm

for NMT, is an architecture that can be used to create RNNs or Transformers. Recurrent neural

networks can be used to solve sequence-to-sequence prediction issues utilizing the encoder-

decoder approach. The encoder-decoder framework, which almost all neural machine translation

models use, typically consists of two recurrent neural networks (RNNs), one of which consumes

the input text sequence and the other of which produces translated output text [13].

The encoder and the decoder are two connected networks in the original encoder-decoder structure,

each serving a different purpose in the translation process. Each hidden state of the encoder

network compresses the variable-length sequence into a fixed-length vector after reading the

24

source sentence word-by-word when it gets a source sentence. Encoding is the name of this

procedure. The decoder then performs the opposite process by word-by-word translating the

thought vector to the target sentence from the encoder's final concealed state also known as the

thought vector. This procedure is also known as end-to-end translation since the encoder-decoder

structure directly handles the translation task from the source data to the target result, meaning

there is no discernible outcome in the middle process. The Encoder-Decoder structure of NMT

works on the basis of a semantic space intermediate vector that maps the source sentence to the

target sentence. In fact, both languages can use this intermediate vector to describe the same

semantic meaning [25] [30].

The process of Encoding and Decoding can be illustrated in the below figure.

Figure 2.5: The encoder-decoder architecture for NMT

The source and target sentence pairs will be X and Y, respectively. The encoder RNN turns the

source text X1, X2..., Xn into fixed-dimension vectors. Using conditional probability, the decoder

produces one word at a time.

P (Y |X) = P (Y |x1, x2, x3…. xn) (2.2)

The fixed size vectors encoded by the encoder are indicated in the equation by the x......xn. The

equation above is changed to the equation below using the chain rule, where the source phrase

vectors and symbols predicted up to this point are used to forecast the following word as it is being

decoded. The following expression then changes to:

P (Y |X) = P (yi |y0, y1, y2,...., yi−1;x1,x2,x3,...,xn) (2.3)

A softmax over the vocabulary terms is used to represent each term in the distribution. Different

neural networks, including long and short memory neural networks and gated recurrent neural

networks, can implement the encoder-decoder model because it is a general framework [31].

25

2.6 Attention

This encoder-decoder method could have a problem because a neural network needs to be able to

fit all the information from a source sentence into a fixed-length vector. Long sentences, especially

those that are longer than the sentences in the training corpus, may be challenging for the neural

network to handle as a result [32]. In 2015 Bahdanau, Cho, and Bengio [25] introduced a

modification to the encoder-decoder model that learns to align and translate concurrently in order

to address this problem. The suggested approach soft-searches for a collection of spots in a source

phrase where the most pertinent information is focused each time a word in a translation is

generated. The model then predicts a target word based on all previously generated target words

as well as the context vectors connected to these source positions. The encoder typically converts

the full source sentence into a fixed-length vector in the encoder-decoder architecture. The

translated word is predicted using the most pertinent information from the source sentence and the

previously created target words in the model with attention mechanism. By not having to encode

all of the information in the source sentence into a fixed-length vector, searching for the most

pertinent sections of the source phrase eases the encoder's workload.

The decoder receives information from each hidden state of the encoder through an interface

(attention) that connects the encoder and decoder. With the help of this framework, the model may

pick concentrate on the most important segments of the input sequence and then understand the

associations between them. This enables the model to effectively handle lengthy input sentences.

The attention mechanism lowers the cost of calculation for NMT.

2.7 Language Modelling

The process of giving sentences in a language a probability is known as language modeling (LM).

It explains the word order in a natural language. In order to provide a foundation for their word

predictions, language models examine corpora of text data. It can be thought of as the computation

of a single word's probability given every word that comes before it in a phrase. It makes an effort

to imitate the natural language's built-in regularities (in word order). With applications in speech

detection, text production, and machine translation, language modeling is a basic task in AI and

NLP [33].

26

The most crucial piece of information in the MT job is actually provided by the language model:

the likelihood that a specific word (or phrase), which is dependent on earlier words, will emerge.

Therefore, enhancing the LM will undoubtedly enhance translation performance. Statistical

language models and neural language models are the two main categories of language models

(NLM). The Statistical Language Models learns the probability distribution of words using

conventional statistical methods like N-grams, Hidden Markov Models (HMM), and specific

linguistic rules. It typically entails creating an n-th order Markov assumption, calculating n-gram

probabilities through counting, and then smoothing [33]. This language model is expressed as a

probability distribution over a sequence of strings (words). Learning the joint probability function

of word sequences in a language is one of the objectives of statistical language modeling. The

curse of dimensionality, which refers to the requirement for enormous quantities of training data

when learning very complicated functions, makes this inherently challenging. The number of

instances needed can expand exponentially as the number of input variables rises. When a large

number of distinct input variable value combinations must be distinguished from one another and

the learning process requires at least one example for each significant value combination, this is

known as the "curse of dimensionality”. The issue with language models arises from the enormous

number of word combinations that are feasible; for instance, there are 1050 different combinations

for a sequence of 10 words drawn from a vocabulary of 100,000 words [27].

Although probability of rare n-grams can be poorly predicted due to data scarcity, statistical

language models are easy to train (despite smoothing techniques). In order to address the n-gram

problem, Bengio et al. first suggested the neural language model in 2003 [27]. Better language

model development frequently leads to models that perform better on the NLP job they were

designed for. The goal of better language model training is beneficial in and of itself since it

frequently enhances the underlying metrics of the downstream work (such as the BLEU score for

translation). Due to the ease of the modeling stages, neural language models (NLMs) became the

preferred option.

2.8 Neural Language Model (NLM)

Continuous representations or embedding of words are used by neural language models also

known as continuous space language models to generate predictions. To simulate a language, these

models employ several types of neural networks. In order to lessen the effects of the curse of

27

dimensionality, NLM make use of their capacity to learn dispersed representations. By encoding

words in a distributed manner as non-linear combinations of weights in a neural net, neural

networks are able to overcome the problem of the curse of dimensionality. By parameterizing

words as vectors (word embedding) and using them as inputs to a neural network, this model can

address the problem of n-gram data scarcity [27]. As part of the training process, the parameters

are learned. Similar to non-neuronal approaches like Latent Semantic Analysis, word embedding

produced by NLMs have the feature that semantically similar words are also similar to one another

in the induced vector space. In both standalone LMs and when models are merged into bigger

models for difficult tasks like machine translation, NLM approaches outperform conventional

methods.

Although it has been demonstrated that NLMs perform better than count-based n-gram language

models, they are blind to sub word information (e.g. morphemes). As a result, it is difficult to

predict the embedding of unusual words, which causes significant perplexities for rare words (and

words surrounding them). This is particularly problematic for languages with complex

morphology and long-tailed frequency distributions, as well as for domains with dynamic

vocabularies [34]. To solve the difficulty of learning long-term dependency problem various

improvements were proposed. Some novel, effective methods, including Long Short-term

Memory RNN Language Model, character-aware models, factored models, bidirectional models,

caching, attention, etc., are proposed. Recently, attention mechanisms have been introduced to

improve NNLMs, which achieved significant performance improvements.

2.9 Network Models in Neural Machine Translation

The precise design of the neural networks utilized for machine translation varies between neural

machine translations. Recurrent neural networks (RNNs) and convolutional neural networks

(CNNs) are the two main strategies. RNNs translate texts by reading a sentence in one language

and forecasting an orderly series of words with the same meaning in another language, either

strictly left-to-right or right-to-left. RNNs are currently used by Google Translate and other

programs to search through databases of texts, statistically analyze them, and then offer the results

that are most plausible. RNNs therefore process information methodically and linearly. Despite

traditionally outperforming CNNs at language translation tasks, RNNs have a design flaw that may

be recognized by considering how they handle data. Because RNNs process words one at a time

28

in a strict left-to-right or right-to-left order, they don't naturally fit with the extremely parallel GPU

hardware that drives contemporary machine learning. Due to the requirement that each word wait

until the network has finished processing the preceding word, the computation cannot be fully

parallelized. RNN based NMT models however, differ in three main terms:

a) Some studies have chosen a straightforward unidirectional RNN in terms of

directionality—unidirectional or bidirectional. To accept the input sentence, Luong et al.,

for instance, employed unidirectional RNN directly. A different popular option that can

improve translation quality is bidirectional RNN. This is so that the model's ability to

accurately forecast the current word depends on how well it "knows" the information in

the context word. Clearly, this capability might be strengthened by a bidirectional RNN.

b) When comparing single layer RNN with multi-layer RNN in terms of depth, single layer

RNN typically performs worse than multi-layer RNN. Nearly all models with competitive

performance in recent years have used deep networks, indicating a tendency of adopting a

deeper model to produce the most up-to-date result and

c) In terms of type, frequently either an LSTM, a Gated Recurrent Unit, or a vanilla RNN

(GRU). Both LSTM and GRU are more resilient than a plain RNN in dealing with the

gradient exploding and vanishing problem. Another job for sequence processing has

similarly shown improved results for GRU and LSTM [35].

CNNs, on the other hand, have the ability to process data hierarchically, enabling them to search

for non-linear relationships in the data. This has implications for translation because it makes it

simpler for CNN to understand context and translate appropriately. Today, Facebook adopts

CNN's strategy for its translation services. Convolutional architecture is currently being taken into

account for machine translation. They are consequently more effective computationally. The fact

that information is processed hierarchically by CNNs, which makes it simpler to capture

complicated relationships in the data, is another benefit [36]. CNN-based models outperform

RNN-based NMTs in terms of training speed because of CNN's inherent structure, which enables

parallel computations for its various filters when processing input data. Additionally, the gradient

vanishing issue in CNN-based models is now simpler to overcome because to the model structure.

However, their translation quality suffers from two catastrophic flaws. The long dependency of

words can only be identified in high-level convolution layers because the initial CNN based model

29

can only capture word dependencies within the width of its filters; this unnatural nature frequently

results in a worse performance than the RNN based model. Second, when the sentence lengthens,

performance suffers significantly because the original NMT model compresses a sentence into a

fixed size of the vector. This results from the vector's finite capacity for representation. Early RNN-

based model proposals also exhibit a similar issue, which is eventually mitigated by the Attention

Mechanism [35].

2.9.1 Recurrent Neural Network

Recurrent neural networks (RNNs) are a subclass of neural networks that are particularly well

adapted for handling sequential input, such as text sentences where words depend on one another.

With hidden states, RNNs enable the use of prior outputs as inputs. This is ideal for modeling

languages because each word in a language is dependent upon the ones that come before it. The

hidden state is updated and used to process the subsequent word at each time step as a sequence is

processed one word at a time [37]. In order to analyze sequences, a recurrent neural network (RNN)

iterates through the sequence's elements while keeping track of its current state, which contains

data about what it has seen so far.

RNN is made to extract contextual data by identifying the relationships between different time

stamps. It is made up of a great deal of successive recurrent layers that are successively modeled

in order to map the sequence with other sequences. RNN is quite good at extracting contextual

information from the sequence. However, the network structure's contextual cues are reliable and

useful for achieving the data classification procedure. The length of the sequences doesn't matter

while using RNN.

Figure 2.6: Architecture of RNN

30

Using a pure deep RNN model, [30] proposed the first successful RNN-based NMT and obtained

performance that is comparable to the best SMT result. Google's Neural Machine Translation

System: Bridging the Gap between Human and Machine Translation is one example of a large-

scale system that swiftly adopted the RNN-based NMT technique, or RNMT, as the de-facto

standard for NMT [13].

Following RNMT, convolutional neural network-based approaches [38] to NMT have recently

drawn research attention due to their ability to fully parallelize training to take advantage of

modern fast computing devices such as GPUs and Tensor Processing Units (TPUs). Well known

examples are ByteNet and ConvS2S. The ConvS2S model was shown to outperform the original

RNMT architecture in terms of quality, while also providing greater training speed.

Most recently, the Transformer model [39] , which is based solely on a self-attention mechanism

and feed-forward connections, has further advanced the field of NMT, both in terms of translation

quality and speed of convergence. NMT has already been widely deployed in production systems

by Google, Microsoft, Facebook, Amazon, SDL, Yandex, and many more [40].

Although RNNs are often regarded as the standard text architecture, they come with their own set

of issues, including the inability to retain past material for extended periods of time and difficulty

producing lengthy relevant text sequences due to explosion or vanishing gradient issues. Due to

these factors, new architectures were created and established as the most advanced method for

various language production tasks, including Long Short-Term Memory (LSTM) [41] and Gated

Recurrent Units (GRU) [42].

2.9.2 Long Short-Term Memory

To stop the error gradient from declining over time and either disappearing entirely or growing

exponentially, Hochreiter and Schmidhuber created the Long Short-Term Memory (LSTM) in

1997 [43]. The LSTM is a memory cell, as its name suggests. Cells and gates both play a role in

memory modification and information retention. From the first to later time steps, the knowledge

is carried by the Cell States without disappearing.

The sigmoid activation, also known as tanh activation, is used by gates. Tanh activation ranges

from 0 to 1. The input gate, forget gate, and output gate are the three gates that make up an LSTM.

Forget Gate: The forget gate eliminates information that is no longer relevant in the cell state. The

31

gate receives two inputs, c_t (input at the current time) and h t-1 (prior cell output), which are

multiplied with weight matrices before bias is added. The output of the activation function, which

receives the outcome, is binary. If a cell state's output is 0, the piece of information is lost, however

if it is 1, the information is saved for use in the future. Input gate: The input gate is responsible for

adding important information to the cell state. The inputs h_t-1 and c_t is used to control the

information first using the sigmoid function, which filters the values that need to be remembered

in a manner similar to the forget gate. Then, using the tanh function, a vector is produced that

contains all possible values for h_t-1 and c_t and has an output range of -1 to +1. To extract the

useful information, the vector's values and the controlled values are finally multiplied. The output

gate's job is to gather pertinent data from the current cell state and display it as output. The tanh

function is first used to the cell to create a vector. The data is then filtered by the values to be

remembered using the inputs h_t-1 and c_t, and the information is then controlled using the

sigmoid function. The vector's values and the controlled values are finally multiplied and supplied

as input and output to the following cell, respectively [44].

Figure 2.7: Gated Recurrent Units (GRU)

32

The GRU, a more straightforward version of the LSTM, was released in 2014 [45]. This unit has

two gates that regulate how much information is remembered or forgotten: a reset gate and an

update gate. Each recurrent unit is produced by a gated recurrent unit (GRU), which was developed

to capture dependencies on various time scales. The GRU has gating units that regulate the flow

of information inside the unit without the use of separate memory cells, much like the LSTM unit

does. It only has three gates, unlike LSTM, and it doesn't keep track of the internal state of the cell.

The data that is kept in an LSTM recurrent unit's internal cell state is incorporated into the gated

recurrent unit's hidden state. The next Gated Recurrent Unit receives this group of data.

Figure 2.8: Long Short-Term Memory (LSTM)

Update Gate: The update gate assists the model in deciding how much historical data from earlier

time steps should be transmitted to the future. Forget Gate and Input Gate are combined to create

Update Gate. It is comparable to an LSTM recurrent unit's Output Gate.

Reset Gate: In order to prevent gradient explosion, this gate resets the previous information. The

amount of prior knowledge that should be forgotten is determined by Reset Gate. It is comparable

to how the Input Gate and Forget Gate work together in an LSTM recurrent unit.

Current Memory Gate (ht): Similar to how the Input Modulation Gate is, a component of the

Input Gate is utilized to provide some nonlinearity into the input as well as make the input Zero-

mean and it is incorporated into the Reset Gate. Making it a component of the Reset gate also

lessens the impact that knowledge from the past has on information that is being sent into the future

[44].

33

2.10 Related Work on Machine Translation

Many attempts were made to create a machine translation between various languages in the past.

This subsection examines some of the related works discovered while reading up on machine

translation research involving the Wolaytta language as well as other Ethiopian and foreign

languages.

2.10.1 Machine Translation Involving Wolaytta Language

Few studies have been done on the Wolaytta language using various techniques and resources.

This section will review existing research on machine translation, with a focus on the Wolaytta

language.

Bidirectional Dictionary Based Machine Translation for Wolayitegna-Amharic by Java

To help Amharic speakers use Wolayitegna and vice versa, Temesgen Mengistu [46] created a

bidirectional dictionary-based machine translation to convert Wolayitegna to Amharic. In order to

provide an exact translation for the experiment, 5400 dictionary entries were created in a MySQL

database, and Java was used to design the user interface. The bilingual dictionary served as the

foundation for a machine translation of these two languages in this research project. An

arrangement of source language words and their associated target language words is defined.

Dictionary-based translation uses bilingual corpus, which is defined in the form of a dictionary, as

its database throughout run time. The translation memory houses this database. The study adopted

the dictionary-based machine translation strategy since it is the most advised for languages with

comparable structures and little linguistic resources, like Wolaytta (Wolaytta and Amharic). An

Amharic definition for each word from the Wolaytta source language was provided in a bilingual

dictionary.

Words with multiple meanings were some of the difficulties the researcher encountered during this

research. Some words in Wolayitegna have the same spelling and pronunciation but a different

meaning depending on the context of the sentence. In order to translate between two languages,

dictionary-based machine translation uses a database-stored word-based dictionary. Another

difficulty encountered during this investigation was that Wolayitegna only accepts postfix while

Wolayitegna has no proposition and requires both prefix and postfix. This distinction made it

difficult to translate between two languages since, from a single root Wolayitegna word, we may

34

construct a number of words with postfixes that might or might not be derived from the same

Amharic word.

The researcher suggested that by incorporating more corpora and contextualizing grammatical

translation for both languages, the dictionary-based system may be made even better.

English-Wolayita Machine Translation using Statistical Approach

Melaku Mara [10] conducted the experiment with the goal of translating English text into Wolayita

text using a statistical machine translation method. 30,000 bilingual corpora from the spiritual

realm and 39,893 monolingual corpora from other sources were collected to meet the research

project's goal. In the parallel corpus, the researcher preprocessed data. Normalization,

tokenization, lower-case and clean, and sentence alignment are a few of the preprocessing task. A

variety of freely accessible tools were utilized, including the SRILM toolkit for language

modeling, MGIZA++ to align the corpus at the word level using IBM models (1–5), Moses for

decoding, and the Ubuntu operating system, which is appropriate for Moses environments.

Additionally, Wolaytta text is segmented using the unsupervised morpheme segmentation tool

Morfessor, and the BLEU score is used for evaluation.

In this study, both un segmented and segmented experimental groups were run in order to develop

SMT for the English-Wolaytta language pair. Six distinct corpora were used for each experiment

group. The parallel sentences were divided into groups of 5, 10, 15, 20, 25, and 30. 95 percent of

the sentences in each corpus were utilized for training, 2 percent were used for tuning, and 3

percent were used for testing. The un segmented corpus uses the previously divided parallel

sentences to perform BLEU scores of 4.91 percent, 6.30 percent, 7.21 percent, 7.60 percent, 7.96

percent, and 8.46 percent. The segmented corpus uses the previously divided parallel sentences to

perform BLEU scores of 9.83 percent, 11.38 percent, 12.70 percent, 12.77 percent, 12.93 percent,

and 13.21 percent.

By recording the results of each experiment, the researcher was able to determine that the

segmented approach had a superior BLEU score than the un segmented English-Wolaytta

combination, which was 8.46 percent. Based on the results of the studies, the researcher concluded

that larger corpora and morphological segmentation would result in greater performance. The

35

researcher also suggested that future studies should concentrate on morphological segmentation

and expanding the corpus size in order to further enhance the system's performance.

Attention based Wolaita-Amharic Neural Machine Translation

Workineh Wogasso conducted the study with the aim of creating an attention-based neural

machine translation strategy for an Amharic-to-Wolaita machine translation system [9]. He

gathered datasets from various sources, primarily religious books, totaling 9280 Amharic-Wolaita

parallel phrases. 80 percent of the total data from the corpus is used for the training set, while the

remaining 20 percent is used to test the system. Thus, the parallel corpus that makes up the training

set totals 7424 sentences, whereas the test set only has 1856. To implement the system, various

tools were employed. He employed the Python programming language along with a selection of

open-source deep learning libraries, including Keras, TensorFlow, and NumPy.

The Sequence to Sequence (Seq2Seq) model, based on Encoder-Decoder architecture, was used

to build the system by fusing Recurrent Neural Networks (RNN) with Gated Recurrent Units

(GRU). He used two separate methods in two trials to test the system's accuracy. The first

experiment had a BLEU score of 0.5960 and was carried out using a non-attention-based

methodology. The attention-based technique was used in the second trial, which had a BLEU score

of 0.6258.

The studies' findings indicate that the attention-based system performs better in translations, with

a BLEU score improvement of +0.02978, and requires less training time than the non-attention-

based system. The experiment's findings also shown that, as sentence length increases, the

attention-based model performs better than the non-attention-based approach.

2.10.2 Machine Translation Involving other Ethiopian Languages

Amharic-Arabic Neural Machine Translation

Ibrahim Gashaw and HL Shashirekha conducted a research to create a neural machine translation

between Amharic and Arabic [47]. The researchers created a modest size Amharic-Arabic parallel

text corpus using Quranic text corpora that were available on Tanzile in order to conduct the

experiment because Amharic and Arabic lack parallel corpora for the purpose of building NMT.

36

They manually divided the verses into separate Amharic-language source sentences and Arabic-

language target sentences. 13,501 Amharic-Arabic parallel phrases totaling 3.2 MB in size were

prepared, and they are divided into training (80%) and the remaining 20% for testing. Both the

Amharic and Arabic scripts were preprocessed, the sentences were manually separated and

aligned, and all punctuation was then deleted from the texts.

The researchers used an open-source OpenNMT system to create two LSTM and GRU-based

NMT models utilizing an attention-based encoder-decoder architecture. Bilingual Evaluation

Understudy is used to test the models (BLEU). They compared Google Translation System, a free

multilingual translation tool developed by Google to translate multilingual text, with the two

recurrent units LSTM and GRU based OpenNMT translation algorithm, finding that LSTM based

OpenNMT outperforms the other, with BLEU scores of 12 percent, 11 percent, and 6 percent for

LSTM, GRU, and GNMT, respectively. The outcome shows that LSTM-based NMT performs

better than GRU-based NMT.

It was regarded as a good performance for a small size corpus because their experiment was the

first one performed on an Amharic and Arabic parallel text corpus. Finally, the researchers

suggested that for improved performance, a lengthy experiment with lots of training data may be

used.

A Parallel Corpora for bi-directional Neural Machine Translation for Low Resourced

Ethiopian Languages

In this study, a team of researchers used neural machine translation to create parallel corpora for

English and Ethiopian languages such Wolaita, Gamo, Gofa, and Dawuro [48]. A parallel dataset

is gathered from the internet and pre-processed before being used in an NMT experiment. The

dataset was separated into a train, validation, and test set for the experimental purpose. 80 % of

the dataset was utilized for training, while 20 % was used for testing. The training set was further

split into training set and validation set, each comprising 70% of the training set. As a starting

point for neural machine translation, a bi-directional neural machine translation experiment has

been carried out using the gathered corpus. The test findings demonstrate that neural machine

translation performs well when compared to a baseline experiment with BLEU scores of 13.8 for

37

Wolaita-English and 8.2 for English-Wolaita. Comparatively speaking, the Wolaita-English

translation performs better than those of the other Ethiopian language pairs.

The experiment's findings demonstrate that the performance of neural machine translation depends

on the size of the dataset and improves as it grows. In addition to these factors, the morphological

diversity of the Ethiopian language also played a role in the poor results of neural machine

translation when Ethiopian was the target language. The researchers proposed that to improve the

performance of the NMT model, more datasets should be used, and alternative domains should be

used with more linguistic variables for Ethiopian languages.

Bi-Directional English-Afan Oromo Machine Translation Using Convolutional Neural

Network

By using convolutional neural networks on translations between these language pairs, Arfaso

Birhanu [49] hopes to improve the prior work on machine translation from English to Afan Oromo

by making the translation bidirectional. He gathered a total of 5550 parallel phrases to accomplish

his goal, including passages from the Bible, published conversational novels, regional and federal

Ethiopian governmental constitutions, Oromia regional revenue, and Oromia health sectors. A total

of 20% of the dataset was used for testing, while the remaining 80% was used for training. In order

to accomplish the goal, he put three study-designed systems into use and similarly trained the

systems to obtain an accurate comparison of their performance. For the bidirectional translation of

Afan Oromo and English, three different approaches were used: a word-based statistical technique

as a baseline, the RNN method as a competitive model, and convolutional neural networks.

The BLEU scores from English to Afan Oromo and Afan Oromo to English were 20.51 and 19.86

for the Baseline (STM) model, 22.79 and 21.67 for the RNN-based model, and 24.37 and 23.18

for the CNN-based model. In comparison to the baseline system, the CNN translations from

English to Afan Oromo and vice versa improved by 3.86 and 3.32 BLEU values, respectively. In

addition, the BLEU score improved over the RNN technique in the translations from English to

Afan Oromo and from Afan Oromo to English, respectively, by 1.58 and 1.51. When the results of

the CNN-based model were compared to those of the RNN-based model and the STM model, the

CNN-based model outperformed both in terms of translation quality and training requirements.

Finally, when the results of translation in the two directions are compared, translation from Afan

Oromo to English yields a higher BLUE score.

38

The researcher suggests that future study include more datasets to improve translation quality even

further and test the systems on GPU-based computers to further cut down on training time for the

systems.

Bidirectional Tigrigna – English Statistical Machine Translation

Mulubrahan Hailegebreal [50] conducted a study in order to create a statistical machine

translation-based translation system from Tigrigna to Amharic. The Holy Bible, the FDRE

Constitution, and basic sentences made up the corpus. The corpus was divided into five groups,

referred to as Corpus I, Corpus II, Corpus III, Corpus IV, and Corpus V, and prepared in a format

appropriate for use in the development process. Baseline (a phrase-based machine translation

system), morph-based (based on morphemes collected using an unsupervised method), and post-

processed segmented systems are the three sets of experiments that are carried out (based on

morphemes obtained by post-processing the output of the unsupervised segmented).

The language modeling, word alignment, segmentation goal, and automatic evaluation technique

were built using IRSTLM, GIZA++, Morfessor 1.0, and BLEU, respectively. 90% of the corpus

data were utilized for training, and 10% were used for testing. The experiment's findings indicate

that the post-processed segmented system outperforms the other two for the Tigrigna-English

language pair. The researcher found that using Tigrigna and English as the source and target

sentences, respectively, resulted in higher translation accuracy in each experiment. As a result, the

post-processed experiment employing corpus II produced a better result, with a BLEU score of

53.35 % for Tigrigna-English translations and 22.46 % for English-Tigrigna translations.

The researcher concludes by advising that segmenting only prepositions and conjunctions has

greatly improved the BLEU score. The translation quality may be further enhanced by carefully

segmenting various Tigrigna language derivational and inflectional morphs. This may be a topic

for research in order to enhance the functionality of a translation system for this language

combination.

39

2.10.3 Machine Translation Involving Non- Ethiopian (Foreign) Languages

Google's Neural Machine Translation system: Bridging the Gap between Human and

Machine Translation

The design and implementation of GNMT, a Google production NMT system, are presented by

Yonghui Wu, Mike Schuster, et al [13]. The system aims to address many NMT-related problems,

such as slower training times, inefficiency in handling rare words, and occasionally failing to

translate all words in the source sentence. To avoid delayed training, their model has a deep LSTM

network with 8 encoder layers and 8 decoder levels. They employ an attention mechanism that

joins the bottom layer of the decoder and the top layer of the encoder in order to increase

parallelism and hence shorten training time. They use low-precision arithmetic for their inference

computations to speed up translation. Additionally, they used sub-word units, also referred to as

word-pieces for inputs and outputs, to address unusual terms. The model was able to translate all

of the inputs by using a beam search strategy. Their model carefully adheres to the conventional

sequence-to-sequence learning architecture. An encoder network, a decoder network, and an

attention network make up its three parts. The WMT'14 English-to-French (WMT EnFr) and

English-to-German (WMT EnDe) corpora, which are widely used as benchmarks for Neural

Machine Translation systems, were employed in the experiment. They used a beam search method

to implement their plan.

They evaluate GNMT using Google's translation production corpora in addition to publicly

accessible corpora, which are two to three decimal orders of magnitude larger than the WMT

corpora for a particular language pair. They contrast the accuracy of their model with that of human

translators and Google Translates top production system for phrase-based machine translation

(PBMT). The training sets on WMT En Fr and En De have 36M and 5M sentence pairs,

respectively. In all instances, the 2014 News Test was used as the test sets to contrast with earlier

works.

The BLEU score metric was used to assess their system. The single model performs 38.95 BLEU

on WMT'14 English-to-French, which is an improvement of 7.5 and 1.2 BLEU from the single

model without an external alignment stated, respectively. Additionally, their models were totally

independent. The single model performs similarly on WMT'14 English-to-German, scoring 24.17

BLEU, which is 3.4 BLEU higher than a previous competitive baseline. Last but not least, when

40

compared to Google's previous phrase-based translation system on the aforementioned language

pairs, the GNMT model reduces translation errors by an average of 60%.

Sequence to Sequence Learning with Neural Networks

The creation of Sequence to Sequence Learning using Neural Networks for English to French

Machine Translation is presented by Ilya Sutskever, Oriol Vinyals, and Quoc V. Le [30]. They

provide a generic, end-to-end method for sequence learning in this study that places the bare

minimum of presumptions on the sequence structure. The input sequence is first translated into a

vector with a fixed dimensionality using a multilayered Long Short-Term Memory (LSTM), and

the target sequence is then extracted from the vector using a deeper LSTM. They used a subset of

12 million phrases with 348 million French words and 304 million English words from the

WMT'14 English to French dataset to train their models. With an input vocabulary of 160,000 and

an output vocabulary of 80,000, they used deep LSTMs with 4 layers, 1000 cells per layer, and

1000-dimensional word embedding.

The key output of their work is that, on the WMT'14 English to French translation problem, they

directly extracted translations from an ensemble of 5 deep LSTMs (each with 380M parameters)

using a straightforward left-to-right beam-search decoder, resulting in a BLEU score of 34.81. This

is unquestionably the best outcome that direct translation using big neural networks has ever

produced. They used the 33.30 BLEU score of an SMT baseline from the same dataset for

comparison. The LSTM used to generate the 34.81 BLEU score had an 80k word vocabulary,

hence any terms in the reference translation that were not in this vocabulary reduced the score.

This finding demonstrates that a phrase based SMT system outperforms a somewhat under-

optimized neural network architecture with lots of space for advancement.

Although the LSTM is capable of addressing issues with long-term dependencies, they found that

in the training and test sets, the LSTM learns far better when the source sentences are reversed but

not the target sentences, and they achieved a 36.5 BLEU score by doing so. Since doing so created

several short-term dependencies between the source and the target sentences and simplified the

optimization problem, they found it to be incredibly beneficial to reverse the order of the words in

the input phrase, which enhanced the LSTM's performance.

41

In conclusion, there have been numerous studies done in Ethiopian and foreign languages on

statistical, rule-based, hybrid, and neural machine translations between various languages. In the

majority of cases, statistical machine translation was employed, while several studies have

combined statistical and rule-based approaches. Machine translations frequently employed by the

statistical MT methodology; however, the goal of this work is to demonstrate how implementing

encoder-decoder architecture NMT with attention mechanism can be and implementing a new

machine translation system for English-Wolaytta Language.

42

CHAPTER THREE

THE WOLAYTTA LANGUAGE

3.1 Introduction

In this Chapter, a brief overview on Wolaytta language is provided. The chapter concerned on the

inflectional and derivational morphology of the language. The major Wolaytta word classes, which

are nouns, verbs, adjectives and conjunctions, also described in this chapter.

3.2 Overview of Wolaytta Language

Ethiopia's Wolaytta or Wolaytta is an administrative region. The Wolaytta people, whose ancestral

home is in the zone. The name "Wolaytta" is a representation of the people, place, and language

[51]. Gamo Gofa borders Wolaytta on the south, the Omo River on the west, which divides it from

Dawro, Kembata Tembaro on the northwest, Hadiya on the north, the Bilate River on the east,

which divides it from Sidama Region, and the Lake Abaya on the south-east, which divides it from

Oromia Region. Sodo serves as the administrative hub for Wolaytta. Areka, Boditi, Tebela, Bele,

Gesuba, Gununo, Bedessa, and Dimtu are further significant towns.

The native peoples refer to their language as "Wolaitta" (Wolayttattuwa in their language). The

Wolaytta Zone and neighboring areas of Ethiopia's Southern Nations, Nationalities, and People's

Region are home to Wolaytta, a North Omotic language of the Ometo group. It is the Wolaytta

people's native tongue [52].

The language is also referred to as Wolaitta doonna (literally mouth of Wolayitta) or Wolaitta

Kaalaa (literally word of Wolayitta). These words are said to relate to the Wolaytta verb root

walakk- to mix (v.t.)‘ and their derivatives such as walah-étt- to be mixed, to mingle with‘, waláh-

aa mixture‘, waláh-ett-aa mixing‘, this naming reflects the history or origin of Wolaytta people:

they claim that many races or tribes mixed with each other to form Wolaytta and so on [51].

The language is known by the common names Wolaytta and Wolaittattuwa. Other names for it

include Wolaita Doanaa and Wolaitta Kaalaa, which translate to mean "mouth of Wolaytta" (lit

word of Wolaytta). This language has been written in a number of different ways using the Latin

alphabet. This includes the terms Wolaytta, Wolaitta, and Welaita that [52] and others use. In this

43

instance, "Wolaytta" is used in the paper. Of the 20–25 languages/dialects that make up the

Afroasiatic Phylum, Wolaytta is an Omotic language. The Omotic language family is divided into

western and eastern Omotic by [53]. A part of western Omotic is Wolaytta. Then, the Eastern

Branch is separated into the south-eastern Banna, Hamar, and Karo languages, and the north-

eastern Ari and Dime languages. The Wester Omotic language further splits out into the maji and

Kafa Gimojan languages. Gimojan and Kafa languages make up the first group, while Nao, Sheko,

and Maji languages make up the second. Ometo, Jenjero, and Gimira are the three subgroups of

the Gimojan. Since the Sudan Interior Mission originally developed it in the 1940s, the Wolaita

language has been written in Latin script on official documents. A team led by Dr. Bruce Adams

later changed the writing method. In 1981, the New Testament was completed, and the entire Bible

followed in 2002.

The 1985 E.C.-published doctoral research on the Wolaytta language [51] and other studies utilize

a separate notation from Wolaytta called "Wolaittatto pitaliyaa xaafiyo wogaa," which translates

to "the custom in writing the Wolaytta letters”. Wolaytta language is the fourth most extensively

used in the nation after Oromifa, Tigrigna, and Amharic.

3.3 Morphology of Wolaytta Language

The study of word creation and structure is known as morphology. It deals with how words are

constructed out of morphemes, which are smaller meaning-bearing units. The smallest meaningful

unit in a language that has a meaning and cannot be further broken down into a meaningful unit is

known as a morpheme. Inflectional and derivational morphology are the two different types. When

word stems join with grammatical markers for things like person, gender, number, tense, case, and

mode, the process is known as inflectional morphology. Morphemes can be divided into two

categories: bound and free. In Wolaytta, there are two of them. In contrast to bound morpheme,

which cannot stand alone as a word, free morpheme may. Free morphemes can stand alone, such

as town and dog. Only other morphemes are found with bound morphemes, such as "un-."

Generally speaking, prefixes and suffixes make up bound morphemes.

While some morphemes are affixes, some are roots. Affix is a morpheme that joins with roots (or

stems), altering their meaning in predictable ways. Prefixes or suffixes are the two most common

types of affixes. The words re-read, unloved, and eta-agaa in Wolaytta are examples of prefixes

44

that come before roots. Eta-agaa, eta-asa, and eta-ayyo are prefixes in English. An affix that

follows a root is a suffix. Like -est, -er, and -s (quick-est, quick-er, read-s, book-s) [6]. The affixes

we just discussed are unique in yet another aspect. When they are connected to the base, they are

behaving in a specific way. They are either providing grammatical details or generating a new

word [52].

Figure 3.1: Word Morphemes

Among the Ethiopian languages Amharic and Tigrigna uses both types of affixes, Wolaytta

language does not have prefix and infix. Instead, Suffixation is the basic way of word formation

in Wolaytta. Most words in Wolaytta consist of a lexical stem and a grammatical ending. As stated

by [51] [10] , the lexical stem has the only suffix but not prefix. For example:

Table 3.1: Suffix Formation of Wolaytta Language

Word Stem Suffix

Keexiis Keexa -iis

Keexissiis Keexa -issiis

Keexidoogaapekka Keexa -idoogaapekka

45

Keexisisidaakaappekka Keexa -isisidaakaappekka

3.3.1 Inflectional Morphology and Derivational Morphology

Wolaytta, like the other Ethiopian languages, has an extremely rich morphology. Inflectional and

derivational morphology are the two different types.

When word stems join with grammatical markers for things like person, gender, number, tense,

case, and mode, the process is known as inflectional morphology. Parts of speech do not alter as a

result of inflectional modifications. Wolaita is extremely inflectional; a given word's root can take

on various forms. The Wolaytta language has the following inflection morphologies: siiqa,

siiqaasa, siiqaasu, siiqada, siiqadasa, siiqadii, siiqaidda, siiqais, siiqoosona, and siiqida.

Derivational morphology examines the modifications that lead to the change in word classes

(changes in the part of speech). For instance, a verb can be used to create a noun or an adjective.

The Wolaytta language's derivation morphology is "siiqakka," "siiqasa," which is derived from the

root word "siiqa." It is the act of creating new words from existing ones or their roots, frequently

by affixing suffixes like -kka and –asa [6].

3.3.1.1 Inflectional morphology of Wolaytta Language

A. Personal Pronouns: A personal pronoun is a pronoun that is primarily used with a specific

grammatical person, such as the first person (I), second person (you), or third person (as he, as

she). According to number (often solitary or multiple), grammatical or natural gender, case, and

formality, personal pronouns can also take on diverse forms. Basic distinctions based on personal

pronouns are common in most languages. These distinctions can be found in the fundamental

group of independent personal pronouns [10]. Some examples are shown in the following table.

Table 3.2: List of Pronouns

Wolaytta English

Tani I

A She

I He

46

Etti They

Nuuni We

Tana Me

Nuna Us

Eta They

Sentences are made less repetitious by the use of pronouns. Just like in English, a noun or another

pronoun can be replaced with a Wolaytta pronoun. They bear markings for their gender and

number. For instance, pronouns like "Ta/ tani" that denote "me" in the singular and can be either

masculine or feminine, "'a" that denotes "she" in the singular and can either be masculine or

feminine, I that denotes "he" in the singular, "etti" that denotes "they" in the plural and can either

be masculine or feminine, and "nu/nuni" that denotes "we" in the plural Wolaytta pronouns.

Common Nouns: The character sequence for Wolaytta nouns is C1V1C2V2, where C and V stand

for a consonant and a vowel, respectively. This indicates that the majority of Wolaytta stems are

in fact bi-radical1. A glottal stop can also be represented by C1. While V1 can be either a short or

long vowel or, less frequently, a diphthong, C2 can be either a plain or geminated consonant. Last

but not least, V2 denotes either the typical absolute case ending or a thematic vowel that denotes

the endings necessary for the grammatical function of the noun that are connected to the noun

stem. Although the majority of Wolaytta words are bi-radical (based on the number of consonants

in the word), there are a few that are Pluri-radical [52] [54].

Table 3.3: General Syllable Formulation of a Bi-radical Wolaytta Nouns

Sequence of Character Example Meaning

CVCV Kaisoi Thief

CVC: V: Shappa River

CV:CV: Keettaa House

CV:C: V: Keettaa Milk

Pluri-radical forms are also common in Wolaytta nouns. The following table illustrate the pluri-

radical Wolaytta nouns form.

47

Table 3.4: Pluri-radical Wolaytta Nouns Form

Noun Meaning

Gisttiyaa Wheat

Gallassatuppe Day

According to the endings that Wolaytta nouns adopt in their inflection grouped into four primary

types. The first class of nouns are those with an absolute case ending in -a and stress on the final

syllable. Asa means "person," aawa means "father," and tuma means "darkness." The second class

of nouns includes those whose absolute case ends in -iya and which stress their penultimate letter.

Morkkiya means "enemy," Penggiya means "the door," and Siya means "listen." The third type of

nouns are those with an absolute case ending in -uwa. Examples include "story," "trouble," and

"cotton," among others. Nouns in the absolute case that end in -(i)yu belong to the fourth class.

These phrases primarily apply to living things that are female. An illustration would be naiyu 'girl'

bollotiyu 'mother-in-law' [6] [52].

Wolaytta nouns have gender, number, and case markings.

I) Gender: The Wolaytta language uses the masculine and feminine genders. As mentioned above,

the fourth-class nouns are feminine, while the first, second, and third-class nouns are masculine.

The endings of feminine and masculine words are different from one another. In absolute case,

masculine ends in –a whereas feminine ends in –u [6].

Example: dorsa 'sheep', masculine vs. dorsiyo 'sheep', feminine, desha 'goat', masculine vs.

deshiyo 'goat', feminine, hage 'this, masculine' vs. hanna 'this, feminine, taagaa 'he/it is mine' vs.

taaro 'she/it is mine'

II) Numbers: Wolaytta word comprises both singular and plural forms, according to [52]. The

fundamental form of the noun is found in the single, and suffixes are used to make the plural. The basic

noun form often makes up the single, whereas a special suffix is employed to create the plural. Wolaytta

uses the morpheme -tv to make nouns plural, where -v stands for a terminal vowel that alters according

on the case inflection of the plural. The plural marker is -ta in the absolute case, where -v equates to -

a. The morpheme -tv is used by all four classes of nouns to create their multiple forms, but a noun's

class membership also manifests in its plural form.

Accordingly, the -a-ta ending is used to make First class nouns plural.

48

Example: Asa 'person' -- Asata 'persons', Achcha 'tooth’--- Achchata 'teeth'

When making plurals, nouns of the Second class have the -eta ending.

Example: hariya 'donkey'--- hareta 'donkeys’, Orgiya ‘he-goat' --- Orgeta 'he-goats'

The -o-ta ending designates nouns belonging to the Third class.

Example: Oduwa 'tale' --- Odota 'tales', Worduwa 'lie' --- Wordota 'lies'

Finally, fourth class nouns that refer to feminine beings use the plural form of the corresponding

masculine word.

Example: 7imattiyo 'female guest' ---7imatt-a-ta 'female guests'

Nouns of the second class and ending in -e-ta are similar to feminine nouns that lack a masculine

counterpart.

Example: Machchiyo ‘wife' ---machchota 'wives', mishshiriyo 'married woman' ---mishshireta

'married women'

III) Case: Wolaytta has a very difficult noun inflection. There are various cases in by adding case

endings to the noun stem or the absolutive case form, the inflection is accomplished. As a result,

the subject case terminates in -y (first three classes), -i (plural), and -(i)ya, but the absolutive case

is distinguished by the endings -a (1st class and plural), -iya (2nd class), -uwa (3rd class), and -

(i)yu (4th class), as we have previously seen above in the common noun section (4th class). The

genitive is either conveyed just by the noun stem or, more frequently, is identified by the extension

of the absolutive form's terminal vowel. The respective absolutive case and the object case of the

noun inflection are consistent [6] [52] [54].

The endings listed in the table below serve as a marker for the other cases.

49

Table 3.5: Case Markers

Case Marker (Morphemes)

Function Example

-ssi, -w or –yoo Dative case Garssassissi

-kko or -mati Directive case Garssakko

-ni Locative Garsani

-ppe Ablative Garsaappe

-ra Commutative case Garssara

B. Adjectives: A word that reveals more information about a noun is an adjective. It can also

change a noun or pronoun by adding phrases that describe, name, or quantify something. Typically,

an adjective will come after the noun or pronoun it modifies. In the Wolaytta language, adjectives

finish in -a, -iy, or -uwa.

Table 3.6: List of Wolaytta Adjective with their Ending

Adjectives ending in –a Adjectives ending in –iy Adjectives ending in –uwa

Geessha 'clean' Mal”iya 'sweet' Lo7uwa 'good/nice'

Cinca 'clever' Yashisiya ‘fierce’ yuushuwa 'round'

Since adjectives do not need to agree with their ruling noun in Wolaytta in terms of gender,

number, or case when they are used in the attributive position, they frequently remain unmodified

[52]. However, most adjectives ending in -uwa and a small number ending in -iya are replaced by

the endings -o and -e respectively when employed in the attributive position.

Example: Lo7-uwa 'good/nice' ➔ lo7o asa 'a good person'

haahuwa 'wide/far' ➔ haaho sohuwa 'a far place' luuliya 'straight' ➔ luule 7ogiya 'a straight

road'

The ending -uwa of an adjective will become -o when it is employed in the predicative position.

However, not every word that comes before a noun is an adjective. For instance, the demonstrative

determiner Ha plays the role of an adjective in the phrase Ha dorsay taga, "This sheep is mine."

C. Verbs: Similar to the majority of Ethiopian languages, Wolaytta has an extremely sophisticated

verbal system. Most verbs have a consonant-vowel-consonant pattern [51].

50

For example: Gela - ’enter’ Mooga - 'bury' Kera - 'split'

According to mood, tense, type of action, and aspect, Wolaytta verbs display a fairly complicated

inflection system [6]. Take the verb imma (give), for instance. Its past tense inflection is as follows:

Imm-asi --- I gave Imm-dasa – you gave Imm-su – she gave

Imm-isi ---- he gave Imm-ida --- we gave Imm-ideta – you gave (plural)

Imm-idosona – they gave

Similar to the Amharic language, Wolaytta verbs are placed at the conclusion of phrases, and the

sentences below use suffix-bound morphemes to assist identify the sentence's subject.

Tani 7osuwa wursasi 'I finished my job'

Verbs include shamasu, madasa, and wursasi in the three sentences above. The bound morphemes

"-su," "-dasa," and "-si" indicate that the third person has a feminine tag and that the second and

first-person pronouns are employed as the sentence's subjects. The Wolaytta language uses

suffixes to alter the form of verbs at any moment for person, gender, and number [6] [52] [54].

3.3.2 Derivational Morphology in Wolaytta

A. Verbs: Wolaytta uses several morphemes, like other Cushitic and Semitic languages of

Ethiopia, to create additional stems from roots or stems. In Wolaytta, this derivation process is

explicitly used by appending one or more morphemes to the verbal stem [6] [54]. They also

mentioned that there are three main types of verbal stems that can be formed from secondary

sources: iterative (or intensive), causative, and passive (or reflexive) [52] [54]. The Wolaytta

language uses the same morpheme, -erett-, which is frequently suffixed to its verbal stem, to

signify iteratives and intensive stems. Examples are "to break" and "to break many times or in

numerous pieces," respectively. Shissh-erett means "to gather many times or in many things" and

means to collect something. Only the morpheme -is-s, which is productive and causative, is used

in Wolaytta.

gel- 'enter'➔ gel-iss- 'let someone enter/put into’.

51

When creating the causative form of a verb with a primary stem ending in -y or -y-y, all instances

of -y are replaced with -sh-.

Example: uy-y- 'drink' ➔ ush-sh- 'let someone drink.

yuuy-y- 'turn, intr'➔ yuush-sh- 'turn,tr

B. Noun: Wolaytta nouns are created by combining the class suffixes -a and –uwa [6] [52] [54],

they can be used to convey action nouns as well as very concrete or abstract words as shown in

the following table.

Table 3.7: Derivational Morphology Nouns

Noun Suffix Derived Noun

hassay- ‘speak’ -a Hassaya/conversation

harg- ‘sick’ -ya harg-iya ‘sickness’

gulba- ‘knee’ -ta gulba-ta ‘knee’

wurse- ‘end’ -tta wurse-tta 'end

eeyya- ‘stupidity’ -tetta eeyya-tetta 'stupidity'

kaawo-tetta- ‘kingome’ -tetta kaawo-tetta 'kingdom'

C. Adjectives: Adjectives in the Wolaytta language can be created from verbal roots by adding

morphemes like -ta. Imma+ -ta imota, as an illustration. Additionally, it can come from nouns,

stems created by adding bound morphemes, and compound words.

D. Conjunctions: The word conjunction is used to join words together into phrases, clauses, and

sentences as well as to coordinate words. There are various terms that are used as conjunctions in

Wolaytta. Below is a list of some Wolaytta terms for conjunctions [10].

52

Table 3.8: List of conjunctions

English Conjunction Wolaytta Conjunction

And Nne

Or Woikko

So, Therefore Hegaa gishshau

For Aissi giikko

But Shin

Because Gishsha (do gishsha)

Even if Hanikkokka

Whenever Awudekka

Wherever Awannikka

3.4 Word Formation in Wolaytta

Words in Wolaytta can be created through compounding and affixation. Affixes are morphemes

that can function by themselves as a word. Out of the three affix types (prefix, suffix, and infix),

Suffixation is the only method of word creation used by Wolaytta. In Wolaytta, a single word can

take on numerous forms. This is true because Wolaytta words are relatively long due to the

repeated addition of suffixes [6].

Example: fayda ‘count’ ➔ fayduwa 'number'

 Be”a ‘see’ ➔ be”uwa ‘action of seing'

 Na”a ‘boy/son' ➔ na”iyo ‘girl/daughter'

Compounding is the second step in Wolaytta word construction. Combining two language forms

with distinct functions is known as compounding. Despite Wolaytta abundance in compounds,

compound morphemes are uncommon there and their generation is erratic [52]. As a result, it

might be challenging to identify the root of the compounds that form words.

53

3.5 Wolaytta Language Writing System

A Tagmemic Analysis of the Wolaytta Language by B. Adams states that the Wolaytta language

employs a Latin-based alphabet with twenty-nine basic letters, of which five (‘i’, 'e', 'a', 'o', and 'u')

are vowels, twenty-four ('b', 'c', 'd', 'f', 'g', 'h', 'j', ’k’, ’l’, ’m’, ’n’, ’p’, ’q’, ’r’, ’s’, ’t’, ’v’, ’w’, ’x’,

’y’, ’z’ and ‘7’). In addition, seven pair letters which are a combination of two consonant

characters such as ('ch','dh','ny', 'ph', 'sh', 'ts' and 'zh'). The Latin alphabet has now been included

into the mother tongue educational system, and numerous textbooks are now produced in Latin

[52].

Table 3.9: Wolaytta Language Alphabet Letters

Latiine Latiine

Woggaa Qeerra Woggaa Qeerra

A A R r

B B S S

C C T T

D D U U

E E V V

F F W W

G G X X

H H Y Y

I I Z Z

J J CH Ch

K K DH Dh

L L NY Ny

M M PH Ph

N N SH Sh

O O TS Ts

P P ZH Zh

Q Q 7 7

54

3.6 Punctuation Marks in Wolaytta Language

Similar to how it is done in English, white spaces are used to separate words in Wolaytta writings.

The punctuation used in English and other languages that employ the Latin writing system is the

same throughout all punctuation marks. For instance, the full stop (.) in a statement, the question

mark (?) in an interrogative sentence, and the exclamation mark (!) in a command or exclamatory

sentence all serve as markers for the conclusion of a sentence.

However, there are some apostrophe exceptions. Some books use the apostrophe in the alphabet

at glottal place 7. For instance, "lo77o" uses two apostrophes, "lo"o," whereas "de7iya" uses one,

"de'iya."

3.7 Wolaytta Language Sentence Structure

The fundamental sentence structures, or SVO, SOV, OSV, OVS, VSO, and VOS, are all feasible

depending on the locations of the Subject, Object, and Verb, or their permutations. The vast

majority of Afro-Asian languages have SOV word order. Consider Amaharic and Afan Oromo.

Since Wolaytta is an Omotic family language, it uses the SOV grammatical structure found in the

Afro-Asian language phylum as opposed to English's SVO (subject verb object) sentence structure.

"Addaami kattaa immiis," for instance, is a statement in the Wolaytta language. A subject is

"Addaami," an object is "Kattaa," and a verb is "Immiis." The sentence structure in English is

subject-verb-object. For instance, the English translation of the Wolaytta line above would be

"Adam given food," where Adam is the subject, "given" is the verb, and food is the object [10].

55

CHAPTER FOUR

PROPOSED ARCHITECTURE AND RESEARCH METHODOLOGY

4.1. Introduction

The objective of this study is to develop an English-Wolaytta neural machine translation with

attention mechanism. In order to achieve the objective appropriate approaches were studied and

chosen. Parallel English-Wolaytta corpus were collected and prepared in the way to be used for

NMT model. This chapter briefly discusses the proposed architecture, how the study has been

made, the tools and techniques that have been used for development of English-Wolaytta NMT

model.

4.2. Proposed Architecture of English-Wolaytta NMT

Neural machine translation is the state-of-the-art in machine translation that surpasses all existing

machine translation methods. It uses word vector representation that utilizes numerous amounts of

neural networks to predict the probability of word sequence. It translates sentences at once, that

other translation approaches could not do. In NMT the input sentence passes through the encoder

that designates the meaning of the input sentences, known as “thought vector/context vector” or a

sentence vector, which passes through a decoder that process the input to provide a translation.

This model is known as an encoder-decoder architecture [13].

Just as there is a successive change in other translation approaches, through time, there are also a

promising improvement in neural machine translations. Initially it was implemented by sequence

to sequence RNNs methods like LSTM, GRU and CNN. Later, attention mechanism added. Now

it has been brought forth with supper improvements “Transformer with attention”. In this study

encoder-decoder/sequence to sequence (seq2seq) with attention mechanism is implemented to

develop the English-Wolaytta NMT. The following Figure 4.1 shows the proposed architecture of

the study.

56

Figure 4.1: Proposed Architecture for English-Wolaytta NMT

While working with NMT, there must have parallel corpus that will be used to train and test the

NMT model. The corpora that are pre-processed must also be split into the training, validation and

test data sets. From these data the source and target validation data; the source and target train data

are used to preprocess the first phase. The training steps takes the training and validation files to

create the models for the translation step. This is where the best performing NMT architecture is

57

chosen and tuned with an appropriate parameter like batch size, epoch and so on. At the end of the

training, there will be certain models created by which the translation will take place. The model

created here, together with source test data set predicts an appropriate target translation. The

predicted target translation is tested with target test data set (reference) to check the performance

of the proposed model. The following section and subsection discuss all the steps and the methods

followed to build the proposed English-Wolaytta NMT model.

4.3.Corpus Collection and Preparation

To create an effective translation model, machine translation research heavily relies on parallel

corpora of the source and target languages. Hence, the first step of any machine translation task is

collecting a source and target language parallel corpus. The corpus which was used in this research

study was collected and prepared from religious domain and some common words which are used

in daily communication purpose. The religion domain corpus mainly constitutes bible contents

which is extracted from the online source1 for both English and Wolaytta language of bible

scriptures. A total of 27351 parallel English-Wolaytta sentences were collected.

After collecting the corpus of the source (English) and target (Wolaytta) languages, the next task

was preparing the parallel corpus manually for both languages because of the scarcity of parallel

corpus. All of the data in the collected corpus was subsequently converted to plain text, cleaned

up from the blank lines and noisy characters, and its encoding was converted to UTF-8

automatically to make it ready for training of the system. There is a number of preprocessing

activities which were carried out to get a cleaned corpus and prepared it in a format that needs to

be applicable for the system. These preprocessing includes lower-case, cleaning, normalization,

tokenization, and padding. The following Figure 4.2 shows sample collected English-Wolaytta

corpus.

1 https://ebible.org/bible/

https://ebible.org/bible/

58

Figure 4.2: Sample English-Wolaytta Parallel Corpus

4.4. Text Preprocessing

After preparing the manually collected English-Wolaytta corpus, the text preprocessing task has

been performed before using it on the neural network machine translation model development.

There are different activities which are undertaken in text preprocessing to prepare a cleaned

corpus that helps to build an efficient translation model. These activities are described as follows

in the following subsections.

4.4.1. Normalization

Normalization is a method used to clean noise from unstructured text or sentence [55]. In this

study, normalization is used to convert the English word or phrase with the same pronunciation

and different writing representation to same word or phrase which are called contraction. In

English language phrases like ‘can’t’ and ‘cannot’, ‘she’s’ and ‘she is’ represent the same meaning

with different pronunciation and it can be used interchangeably without any meaning differences,

therefore, those type of phrases or words are normalized by converting from its contraction/ short

form of representation to its full representation. In this study, texts or phrases of the English

language is performed by using the code in Appendix A.

59

4.4.2. Data Cleaning

The collected parallel English-Wolaytta corpus is not cleaned. Hence, the corpus needs to be

cleaned by removing irrelevant characters, numbers, punctuation marks, blank values, special

characters and so on. To preprocess and get a cleaned dataset from the prepared parallel corpus a

python script is created by using a regular expression (RE) from NLTK to remove the unwanted

characters, punctuation marks including spaces between paragraphs and numbers in the corpus.

Appendix B demonstrates the implementation code used to clean the prepared parallel English-

Wolaytta corpus.

4.5. Tokenization and Padding

Tokenization is a process in which a word or a sequence breaks up into keywords, words, symbols,

etc. A word or a group of words may be used to do tokenization. In addition, a paragraph or

sentence may be divided into phrases or words. Tokenization simply split strings or tokenize words

in a sentence. The splitting can be performed by using space delimiter and it is performed in whole

document [55]. In this study, word tokenization is applied to split the English and Wolaytta

sentences into words to better use them for further machine translation activities. In order to find

the boundaries of the sentence, <start> and <end> tag was added as an indicator of the start and

end of a sentence so that the model knows as it reached the start and end of words in input sentence

and output sentence.

Padding is a way of making each sequence of word ids in the same length in order to batch them

together. Padding can be added at the end of the sequences to make them the same length because

sentences can vary in length. This type of data is given to the encoder component, which creates a

contextual association between words. When a sequence contains a longer sentence, an

improvement method is required to aid in the storage of the longer phrase's context. In order to fix

the length of a text, padding is the process of taking a value and adding pad characters to the left,

right, or both sides of the string [56]. We did that by using a built-in function called

tf.keras.preprocessing.sequence.pad_sequences ([inputs]), which results in padding being added

to the end of each English and Wolaytta sequence to make them all the same length. The

implementation code is demonstrated inside preprocess function in Appendix B.

60

4.6. Word Representation

The original sequential data in NMT is not adequate for the neural network to read. It requires

representation in a suitable format in some way. The input data must be numerical since a neural

network consists of a sequence of addition and multiplication operations. Each word of the

sentence in the data must be recognized and represented by a distinct index in order to transform

it into appropriate format. One method of transforming each unique word into individual numbers

is known as one-hot representation. To transform vocabulary words into a representation of a

specific id, we used a built-in technique called index_word method in our study.

After identifying the unique tokens, the initial index is represented by 0 (zero), and the last index

is represented by the sum of all the unique tokens minus one. Hence, only the words given in vector

representation will be able to be processed by the neural network that uses this vocabulary as

showed in Figure 4.3.

Figure 4.3: Sample word2index Representation

4.7. Data Splitting for Model Training and Testing

Once the prepared corpus is preprocessed, the preprocessed data are used to train and test the neural

network machine translation model. To do this, the prepared corpus should be classified as source

train, source validation, source test, target train, target validation and target test. In this study,

80/20 corpus splitting were applied. The 20 percent testing data has also further split into validation

set.

61

4.8. Encoder

Encoder is one component of NMT architecture that accepts a single element as an input sequence,

processes it, gathers data about the element, and propagates it [32]. When reading a phrase with m

words or an input sequence of length L, it will take L time steps because it only reads one element

or word at a time. A thought vector or context vector representing the meaning of the source

language must be created by the encoder. Following are some examples of notations used in the

encoding process: The RNN’s internal states at time step t are ht and ct; the input at step t is xt; and

the output at step t is yt.

Take the question, "What is your name?" as an example. This string of letters can be thought of as

a four-word statement. Here, the letters x1 stand for "What," x2 for "is," x3 for "your," and x4 for

"name." Four-time steps will be read from this sequence, as shown in figure below. When the time

t = 1 comes around, it remembers that the RNN cell has read "What," when the time t = 2 comes

around, it remembers that the RNN has read "What is," and when the time t = 4 comes around, the

final states h4 and c4 remember the full sequence "What is your name." Initial vectors for the initial

states h0 and c0 are zero. The encoder determines the thought vector using a list of words as input.

Figure 4.4: LSTM Encoder

A sentence from a specified source language is transformed into a thought vector using a high-

dimensional vector of real numbers or components. Concisely representing the source language

sentence and choosing how to initialize the initial states of an encoder with zeros are the major

goals of the context vector (v). The context vectors serve as the decoder's initial state. The context

vector is used as the beginning state by the RNN decoder instead of starting with zero.

62

4.9. Decoder

The decoder is another component of NMT. The decoder's purpose is to convert the context vector

into the desired translation [32]. The most recent input data and the system's previous outputs, the

encoder produces a context vector as its final output. This context vector will be sent into the

decoder either with or without the use of the attention-based mechanisms. The last layer of the

encoder network will be connected to the attention layer of the network if the attention mechanism

is used [32]. RNN network serves as the encoder and decoder. In our model, we have used one of

the special kinds of RNN network called LSTM since it is most familiar for both Encoder and

Decoder part of NMT on text-based translation [57].

4.10. Attention Mechanism

One of the major advances in machine translation that helped the neural machine translation

systems is the attention mechanism [58]. As discussed in previous subsection in a basic Encoder-

Decoder based RNN architecture, the encoder encodes the entire source language sequences of

data into a single real-valued vector which is the context vector, and then passes it to the decoder

to create the output sequence. Consequently, the Decoder only has access to the Encoder's output

context vector. Because of this, representing the full input sequence as a single vector is inefficient

and unable to represent for increasingly complex sentences and expansive vocabulary. The

attention mechanism, which has lately gained prominence in neural network training, is one

practical approach to solving such an issue. Encoder-Decoder architecture with attention

mechanisms predicts a target word based on the context vectors associated with the source

language position and the previously generated target words, as opposed to Encoder-Decoder

architecture without attention, which uses the source representation only once to initialize the

decoder hidden state.

By incorporating an attention mechanism, we were able to resolve the fundamental Encoder-

Decoder difficulty. An attention mechanism to the Encoder-Decoder reduces the higher dimension

vector into the lower dimension vector, to address the increasing number of vocabulary size

problems of the basic Encoder-Decoder based technique [25]. It is helpful to focus on the source

sequence's most pertinent information. So, it is helpful to focus only on the relevant information

other that taking whole information at once. Self-attention is represented by the following formula.

63

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = softmax ((QKT) /√dk) V - (1) (4.1)

Where Q represents the matrix that contains the query result, K represents all keys, and V are

values. Each symbol represents the vector representations of all words in the sequence [59].

4.11. Model Evaluation Metrics

Various techniques have been proposed to evaluate any machine translations accuracy of

translation performance. Bilingual evaluation understudy (BLEU), which compares the system's

output with reference sentences that have been translated by humans, is one of these metrics. The

core concept of BLEU is the measurements of this proximity. A high-quality translation is one that

is more similar to a competent human translation. The BLEU score value is between 0 and 1. Most

often, it is expressed as a percentage from 0 to 100. The more similar the translation is to a human

translation, the higher the BLEU score [60].

64

CHAPTER FIVE

EXPERIMENTAL RESULT AND DISCUSSION

5.1. Introduction

In this chapter, the experimental result gained from the English-Wolaytta NMT model training and

testing are presented in detail. Finally, the chapter concludes with a review of the study's findings

and details on evaluation metrics.

5.2. English-Wolaytta NMT Model Building and Training

For building the proposed English-Wolaytta NMT model LSTM encoder and decoder architecture

with an attention mechanism has been proposed in the Sequence-to-Sequence concept. Simple

RNNs have a hidden state where they keep the details of the data they have seen up to that point.

However, simple RNNs cannot preserve long-term dependencies because they have vanishing

gradient difficulties for extended sequences as we have seen in the literature part [61]. Long-term

dependencies, which are frequently present in time series data, are preserved by LSTMs. Given

that a word toward the end of the sentence may frequently be extremely dependent upon a word

toward the beginning of the sentence, this is a highly desired quality in a MT model. The LSTM

architecture was chosen to carry out the work of NMT in this research due to its numerous benefits.

For better understanding of the efficiency of attention mechanism we have employed both attention

and non-attention mechanism to compare their result. We have also trained the model numerous

times by adjusting the number of hyper parameters, including the epoch, batch size, optimization

functions and learning rate. Thus, the model is trained with parallel English-Wolaytta corpus by

using batch size of 100 and 128, epoch number of 5, 10, 15, 30, 38 and 50 and two optimization

function which are Adam and RMSProp with learning rate of 0.1 and 0.01. The following

subsection describes the result gained from the experiment.

5.2.1. English-Wolaytta NMT using Non-attention Mechanism

In this experiment, the English-Wolaytta NMT model is built with an Encoder-Decoder

architecture without attention mechanism and trained with the training corpus set. As we have

discussed earlier different hyper parameter values are used interchangeably to check their effect

on the performance of the English-Wolaytta NMT translation accuracy. By setting the different

65

parameters, the best performing hyper parameter combination are recorded. Hence, Table 5.1

shows top three best results gained from the encoder- decoder without attention mechanism based

on the different hyper parameter setups.

Table 5.1: Best Results using Encode-Decoder without Attention Mechanism

Rank Epoch Batch Size Optimization Function Learning Rate BLUE Score

1 50 100 Adam 0.01 2.35

2 5 128 Adam 0.01 1.78

3 15 100 Adam 0.01 0.63

5.2.2. English-Wolaytta NMT using Attention Mechanism

In this experiment, the English-Wolaytta NMT model is built with an Encoder-Decoder

architecture with attention mechanism and trained with the training corpus set like we did in the

non-attention. Table 4.2 illustrate top three best results gained from the encoder- decoder with

attention mechanism English-Wolaytta NMT using different hyper parameter settings.

Table 5.2: Best Results using Encode-Decoder with Attention Mechanism

Rank Epoch Batch Size Optimization Function Learning Rate BLUE Score

1 15 128 Adam 0.01 5.16

2 50 100 Adam 0.1 4.59

3 10 100 RMSProp 0.01 3.14

Based on the findings of the above different experiments, English-Wolaytta NMT built with

attention mechanism has got a better result than non-attention. This is because Encoder-Decoder

without attention mechanisms cannot handle large number of sentences. As the length of the

sentence increases, the inter-dependency of words is loosely related and unable to handle a large

number of vocabulary sizes. In addition to that, we have seen that the performance of the NMT

model depends on the hyper parameter settings like batch size, epoch, and optimization function

and so on. The Encoder-Decoder model with LSTM are tuned with these hyper parameters in the

translation as seen in the above sections, and accordingly the BLEU score shown above confirms

66

right. All the above model has shown that Encoder-Decoder model with attention mechanism can

achieve better translation accuracy.

5.3. English-Wolaytta NMT Testing and Translation

After the training step is over at some points the succeeding step is to run a model test and start

the encoder and decoder processes. By providing the data to the encoder and receiving the output

at the decoder, we can make predictions. For the neural architecture, translation is done in a step-

by-step, end-to-end process which predicts the possible best translations taking a model with test

data and it gives best possible translations. The best possible translation predicted is used to

evaluate the performance of that model. This translation attempt is somehow close to Wolaytta

sentence but it lacks the exact translation because of the data size. The smaller is the data size the

poor is the result. The following figure illustrates the translation result gained from the experiment.

Figure 5.1: English-Wolaytta NMT Translation Result

67

5.4. Discussion of the Result

The general objective of this thesis work is to develop English-Wolaytta machine translation model

using deep learning neural machine translation approach. For achieving this, different

preprocessing steps were done. After that the model is built and trained with Encoder-Decoder

architecture with and without attention mechanism using LSTM. Based on our experimental

findings, better outcome is obtained when an attention mechanism is used instead of a non-

attention mechanism. However, it is difficult to obtain a translation model that is more effective

given the short amount of data employed in this study. Even if a small dataset is used, the maximum

BLEU score of 5.16 and accuracy of 88.65 is recoded by playing with this small corpus and

changing various hyper parameters. From our experimental finding we have seen that NMT has

become a successful machine translation technique as a result of increased processing capacity.

Sentences can be translated by NMT with remarkable accuracy using the Encoder-Decoder

architecture. Machine translation is also becoming more effective with the addition of attention

mechanisms which solves the problem of Encoder-Decoder model to handle a larger number of

vocabulary sizes available within the data.

One can see that the English-Wolaytta translation result from our experimental result score

demonstrates that the attention-based approach is better to the non-attention-based approach.

However, the outcomes from both experiments were only based on smaller corpora. The accuracy

improves together with the corpus size, and the BLEU score result can likewise increase

proportionally.

Our experimental findings indicate that English-Wolaytta non-attention-based NMT has

interesting translation results, with a BLEU score of 2.35 and accuracy of 86.91 in relation to our

small datasets. Additionally, utilizing an attention-based approach has greatly improved our

results, with a 2.81 BLEU improvement over a non-attention-based system. Additionally, when

we looked at training time efficiency, the attention-based system outperformed the non-attention-

based system. Additionally, when compared to non-attention-based systems, attention-based

systems can store longer contextual relevancies of terms found in larger sentences of datasets.

Therefore, in this research work an attempt has been made to answer the research questions set out

at the beginning of the research. The first research question was “What will be the performance of

68

attention-based NMT approach to English-Wolaytta language pairs?” It is answered by doing

different experiments with limited resource and the best result we have got from the various

experiments has achieved BLUE score of 5.16. The second research question which is “How well

do attention-based NMT models perform in translation tasks?” is answered by implementing both

attention and non-attention mechanism in order to evaluate the efficiency of the attention

mechanism in the translation task and we have proved that it has a better translation accuracy than

the non-attention based model.

69

CHAPTER SIX

CONCLUSION AND FUTURE WORKS

6.1. Introduction

In this chapter, the researcher concludes the overall work of the study and provides

recommendation for other problems to be investigated by summarizing the research, research

findings, and significant contributions of the study. It also highlights the outcomes that resulted

from the research experiments as well as the work that will need to be done in the future by anyone

or any group interested in working on tasks connected to machine translation between the English

and Wolaytta language pairs or any other language pairs.

6.2. Conclusion

The design and implementation of an English-Wolaytta Neural Machine Translation (MT) system

is the main emphasis of this research work. A highly important use of natural language processing

is machine translation, which uses devices like computers to automatically translate vast amounts

of text from a source natural language to a destination natural language. Machine translation is

now a particularly difficult research topic in the fields of computational linguistics and natural

language processing on a global scale. The employment of a multilingual machine translation

system as a language learning aid can help one become familiar with both known and undiscovered

natural languages. Natural language is a crucial component of human life. One of the most

significant and efficient forms of communication is natural language. It helps in connecting

individuals from other communities and civilizations. Even though Wolaytta is one of a recognized

language in Ethiopia, there are relatively few electronic resources available for it and there no

much MT systems for the Wolaytta language. Therefore, the researcher encouraged to prepare

English-Wolaytta parallel text corpus and the development of an English-Wolaytta machine

translation system.

For comparing the translation outcomes of the proposed English-Wolaytta MT system, the Neural

Machine Translation (NMT) which is the state-of-art approach has been used to develop the

English-Wolaytta MT system. For doing so, a Deep Learning Encoder-Decoder (seq2seq) with

and without attention model for translating from English-Wolaytta was proposed. The parallel

70

English Wolaytta parallel corpus was prepared from some common sentences and religious

domain to train the English-Wolaytta NMT system. The parallel English-Wolaytta corpus of 56900

tokens has been used, and out of these total tokens, 12,120 were English tokens, and 44,780

Wolaytta tokens. This corpus was used to train and test the seq2seq with attention and non-

attention mechanism by using LSTM and the translation accuracy of the English-Wolaytta NMT

system has been assessed using the BLEU score. After extensive experimentation, the suggested

system achieves a BLEU score of 5.16 and 88.91 accuracy.

6.3. Future Works

The followings are some further future works or recommendations based on the findings of this

study:

▪ Recommend to train the NMT model with a powerful processing machines by adding more

datasets to improve the translation quality since neural networks require more data and

powerful processing machines to function more effectively and get accurate translation.

▪ Recommend to add and expand the corpus from various domains including business,

tourism, health, entertainment and so on to make it work for most purposes.

▪ Recommend future researchers who are interested in this work to expand this system by

making it bidirectional in the future so that resources written in both languages can be

translated with ease.

▪ Recommend to increase the performance of the NMT model by using the most recently

used architecture called transformer model.

▪ Recommend to develop and implementing the English-Wolaytta NMT system in web

based or mobile application to make it more operational and useful for the users.

▪ Additionally, this research could be very beneficial for future study to work on speech to

text or text to speech translation.

71

References

[1] G. G. Chowdhury, "Natural language processing," Annual Review of Information Science and

Technology, pp. 51-89, 2003.

[2] A. Karakanta, J. Dehdari and J. van Genabith, "Neural machine translation for low-resource

languageswithout parallel corpora," NLP in Low-Resource Languages, vol. 32, no. 1, pp. 167-

189, 2018.

[3] M. Singh, R. Kumar and I. Chana, "Neural-Based Machine Translation System

Outperforming Statistical Phrase-Based Machine Translation for Low-Resource Languages,"

in Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 2019.

[4] W. J. Hutchins, "MACHINE TRANSLATION: A BRIEF HISTORY," in Concise History of

the Language Sciences, Oxford: Pergamon, From the Sumerians to the Cognitivists, 1991,

pp. 431-445.

[5] N. Ashraf and M. Ahmad, "Machine Translation Techniques and their Comparative Study,"

International journal of computer applications, vol. 125, no. 7, pp. 25-31, September 2015.

[6] L. L. FEREDE, DEVELOPMENT OF STEMMING ALGORITHM FOR WOLAYTTA TEXT,

ADDIS ABABA: Maters Thesis, ADDIS ABABA UNIVERSITY, JULY, 2003.

[7] M. L. Bender, J. D. Bowen, R. L. Cooper and F. C. A, Language in Ethiopia, London: Oxford

University Press, 1976.

[8] E. Commission, "BRTE Project," 1 November 2019. [Online]. Available:

http://brte.futureplan.ie/about/overview-wolaita/. [Accessed 15 January 2022].

[9] W. W. Gaga, Attention-based Amharic-to-Wolaita Neural Machine Translation, Addis

Ababa: Masters Thesis, Addis Ababa University, October 2020.

72

[10

]

M. Mara, English-Wolaytta Machine Translation Using Statistical Approach, Addis Ababa:

Masters Thesis, Addis Ababa uNIVERSITY, July 2018.

[11

]

T. M. Helana, "Bidirectional Dictionary Based Machine," International Journal of Innovative

Science and Research Technology , vol. 5, no. 4, April – 2020 .

[12

]

K. Firew, A Hybrid Machine Translation System for English to Wolaytta Language, March

2020.

[13

]

Y. Wu, M. Schuster, Z. Chen and Q. V. Le, "Google's Neural Machine Translation System:

Bridging the Gap between Human and Machine Translation," arXiv:1609.08144v2 [cs.CL],

October 2016.

[14

]

J.Johnson, "Statista," 26 January 2020. [Online]. Available:

https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-

internet/#:~:text=As%20of%20January%202020%2C%20English,percent%20of%20global

%20internet%20users. [Accessed 05 Feb 2022].

[15

]

D. Arnold, L. Balkan and S. Meijer, Machine Translation: an Introductory Guide, UK: NCC

Blackwell LTD, November 27, 2000.

[16

]

M. Irfan, "Machine Translation," Bahria University, Islamabad, October 2017.

[17

]

J. Daba, Bidirectional English – Afaan Oromo Machine Translation Using Hybrid Approach,

Addis Ababa: Masters Thesis, Addis Ababa University, November 2013 .

[18

]

M. D. Okpor, "Machine Translation Approaches: Issues and Challenges," IJCSI International

Journal of Computer Science, vol. 5, no. 2, September 2014.

[19

]

I. R. Trigueros, "Machine translation systems and quality assessment: a systematic review,"

Language Resources and Evaluation 56(2):1-27, pp. 1-27, June 2022.

73

[20

]

S. Abdul Basit Andrabia and A. Wahid, "A Review of Machine Translation for South Asian

Low Resource Languages," Turkish Journal of Computer and MathematicsEducation, vol.

12, no. 5, pp. 1134-1147, 5 April 2021.

[21

]

R. Sinhal and K. Gupta, "Machine Translation Approaches and Design Aspects," IOSR

Journal of Computer Engineering, vol. 16, no. 1, pp. :22-25, January 2014.

[22

]

A. P. J., "Machine Translation Approaches and Survey for Indian Languages," The

Association for Computational Linguistics and Chinese Language Processing, vol. 18, no. 1,

pp. 47-78 , March 2013.

[23

]

S. Dubey, "Survey of Machine Translation Techniques," International Journal of Advance

Research in Computer Science and Management Studies, vol. 5, no. 2, pp. 39-51, February

2017.

[24

]

R. A. Sinhal and K. O. Gupta, "Machine Translation Approaches and Design Aspects," IOSR

Journal of Computer Engineering (IOSR-JCE), , vol. 16, no. 1, p. Jan 2014, 25-28.

[25

]

D. Bahdanau, K. Cho and Y. Bengio, "NEURAL MACHINE TRANSLATION BY

JOINTLY LEARNING TO ALIGN AND TRANSLATE," in in Proceedings of the 3rd

International Conference on Learning Representations (ICLR),, Montreal, 2015.

[26

]

R. P. Neco and M. L. Forcada, "Asynchronous translations with recurrent neural nets," in in

Computer Science Proceedings of International Conference on Neural Networks (ICNN'97),

Alacant, Spain, June 1997.

[27

]

Y. Bengio, R. Ducharme, P. Vincent and C. Janvin, "A neural probabilistic language model,"

Journal of Machine Learning Research, vol. 3, no. 1, p. 1137–1155, 2003.

[28

]

N. Kalchbrenner and P. Blunsom, "Recurrent continuous translation models," in in

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,

Seattle, Washington, USA, January 2013..

74

[29

]

R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training Recurrent Neural

Networks," in in In International Conference on Machine Learning, Montreal, February

2013.

[30

]

I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to Sequence Learning with Neural

Networks," in in Proceedings of the 27th International Conference on Neural Information

Processing Systems, December 2014..

[31

]

K. Revanuru, K. Turlapaty and S. Rao, "Neural Machine Translation of Indian Languages,"

in in COMPUTE 2017: 10th Annual ACM India Conference, Banglore, India, November

2017.

[32

]

K. Cho, B. van Merrienboer and D. Bahda, "On the Properties of Neural Machine Translation:

Encoder–Decoder Approaches," in in Proceedings of SSST-8, Eighth Workshop on Syntax,

Semantics and Structure in Statistical Translation, Doha, Qatar, October 2014.

[33

]

S. F. Chen and J. Goodman, An Empirical Study of Smoothing Techniques for Language

Modeling, Cambridge, Massachusetts: Harvard University, August 1998.

[34

]

Y. Kim, Y. Jernite, D. Sontag and Alexander , "Character-Aware Neural Language Models,"

in in Proceedings of the AAAI Conference on Artificial Intelligence, California USA, 2016.

[35

]

S. Yang, Y. Wang and X. Chu, A Survey of Deep Learning Techniques for Neural Machine

Translation, Hong Kong Baptist University, 18 Feb 2020.

[36

]

S. S. Hosseini, Recurrent VS Convolutional Neural Machine Translation: Translating Persian

Verbal Inflections into English, 2018.

[37

]

C. C. Aggarwal, Neural Networks and Deep Learning, USA : IBM T.J Watson Research

Center, 2018.

[38

]

Y. LeCun, L. Bottou , Y. Bengio and a. P. H, "GradientBased Learning Applied to Document

Recognition," in On Proccedings of the IEEE, 1998.

75

[39

]

A. Vaswani, N. Shazeer and N. Parmar, "Attention is All you Need," in in 31st Conference

on Neural Information Processing Systems, Long Beach, CA, USA, 2017.

[40

]

F. Stahlberg, "Neural Machine Translation: A Review and Survey," Journal of Artificial

Intelligence Research (JAIR), 4 December 2019.

[41

]

A. Graves, Generating Sequences With Recurrent Neural Networks, arXiv:1308.0850,

August 2013.

[42

]

J. Chung, C. Gulcehre and K. Cho, "Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling," in in NIPS 2014 Workshop on Deep Learning, December

2014.

[43

]

S. Hochreiter and J. Schmidhuber, "LONG SHORT-TERM MEMORY," Neural

Computation, vol. 9, no. 8, p. 1735–1780, 1997.

[44

]

S. A. Zargar, Introduction to Sequence Learning Models: RNN, LSTM, GRU, North Carolina,

April 2021.

[45

]

J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of gated recurrent neural

networks on sequence modeling," in NIPS 2014 Workshop on Deep Learning, December

2014.

[46

]

T. Mengistu, "Bidirectional Dictionary Based Machine Translation for Wolayitegna-Amharic

by Java," International Journal of Innovative Science and Research Technology, vol. 5, no.

4, April – 2020..

[47

]

I. Gashaw and H. L. Shashirekha, Amharic-Arabic Neural Machine Translation, December

2019.

[48

]

A. L. Tonja, M. M. Woldeyohannis and M. G. Yigezu, "A Parallel Corpora for bi-directional

Neural Machine Translation for Low Resourced Ethiopian Languages," in 2021 International

Conference on Information and Communication Technology for Development for Africa

(ICT4DA), Bahir Dar, Ethiopia, November 2021.

76

[49

]

A. Birhanu, Bi-Directional English-Afan Oromo Machine Translation Using Convolutional

Neural Network, Addis Ababa, Ethiopia: Master’s Thesis, Addis Ababa University, October

2019.

[50

]

M. Hailegebreal, A Bidirectional Tigrigna – English Statistical Machine Translation, Addis

Ababa, Ethiopia: Master’s Thesis, Addis Ababa University, June, 2017.

[51

]

M. WAKASSA, A Descriptive Study of the Modern Wolaytta Language, Japan: Doctoral

Dissertation the University of Tokyo, May 2008.

[52

]

M. Lamberti and R. Sottile, "The Wolaytta Language," Journal of African languages and

linguistics, vol. 23, pp. 79 - 87, 2002.

[53

]

F. a. H. C., "Non-Semitic languages: Cushitic and Omotic," in Language in Ethiopia, London,

Oxford Univ. Press, pp. 34-53, 1976.

[54

]

D. BELDADOS, Automatic Thesaurus Construction from Wolaytta Text, Addis Ababa:

Master’s Thesis, Addis Ababa University, JUNE 2013.

[55

]

D. S. Vijayarani, M. J. Ilamathi and A. P. M. Phil, "Preprocessing Techniques for Text

Mining.," International Journal of Computer Science & Communication Networks, 2015.

[56

]

K. Mo, "Hands-on NLP Deep Learning Model Preparation in TensorFlow 2.X," 17 Aug 2020.

[Online]. Available: https://towardsdatascience.com/hands-on-nlp-deep-learning-model-

preparation-in-tensorflow-2-x-2e8c9f3c7633. [Accessed 2021 20 Dec].

[57

]

G. Genthial, . L. Liu, . B. Oshri and . K. Ranjan., "Natural Language Processing with Deep

Learning [Lecture notes]," 2019. [Online]. Available: https://web.stanford.edu/class/cs224n/

readings/cs224n2019-notes06-NMT_Seq2Seq_attention.pdf..

[58

]

"Analytics Vidhya," An Intuitive Understanding of Word Embeddings: From Count Vectors

to Word2Vec, 19 October 2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/.

[Accessed 04 June 2022].

77

[59

]

Y. Liu a, L. Ji, R. Huang, T. Ming a and C. Gao, "An attention-gated convolutional neural

network for sentence classification," Intelligent Data Analysis journal, vol. 3, pp. 1-19, 28

Dec 2018.

[60

]

Y. Zhang and S. Vogel , "Significance tests of automatic machine translation evaluation

metrics," Machine Translation, vol. 24, no. 1, pp. 51-65, March 2010.

[61

]

M. Phi, "Medium," 24 Sep 2018. [Online]. Available:

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-

explanation-44e9eb85bf21. [Accessed 16 June 2022].

78

Appendix

Appendix A: Normalization

def clean_text(text):

 '''Clean text by removing unnecessary characters or contractions and altering the format of

words.'''

 text = text.lower()

 text = re.sub(r"i'm", "i am", text)

 text = re.sub(r"he's", "he is", text)

 text = re.sub(r"she's", "she is", text)

 text = re.sub(r"it's", "it is", text)

 text = re.sub(r"that's", "that is", text)

 text = re.sub(r"what's", "that is", text)

 text = re.sub(r"where's", "where is", text)

 text = re.sub(r"how's", "how is", text)

 text = re.sub(r"\'ll", " will", text)

 text = re.sub(r"\'ve", " have", text)

 text = re.sub(r"\'re", " are", text)

 text = re.sub(r"\'d", " would", text)

 text = re.sub(r"\'re", " are", text)

 text = re.sub(r"won't", "will not", text)

 text = re.sub(r"can't", "cannot", text)

 text = re.sub(r"n't", " not", text)

79

 text = re.sub(r"n'", "ng", text)

 text = re.sub(r"'bout", "about", text)

 text = re.sub(r"'til", "until", text)

 return text

lang.English=lang.English.apply(clean_text)

Appendix B: Implementation Code

Attention Based English-Wolaytta Neural Machine Translation

Load important libraries

import re

import matplotlib.pyplot as plt

import time

import numpy as np

import tensorflow as tf

from keras.layers import Embedding,LSTM,Dropout,Dense,Layer

from keras import Model,Input

from keras.utils import plot_model

from keras_preprocessing.sequence import pad_sequences

from nltk.translate.bleu_score import corpus_bleu

from tensorflow.keras.optimizers import Adam

import collections

import keras.backend as K

80

Preprocess dataset

source = "English.txt"

target = "Wolayita.txt"

def preprocessing(source,target, max_num_input=26000):

 # open and read source and target datasets

 source_data = open(source,'r',encoding='utf8').readlines()

 target_data = open(target,'r',encoding='utf8').readlines()

 # check if source and target datasets are equal

 assert len(source_data) == len(target_data)

 print("Length of source Language :",len(source_data))

 print("Length of target Language :",len(target_data))

 # limit input data

 if max_num_input > 0:

 max_num_input = min(len(source_data), max_num_input)

 source_data = source_data[:max_num_input]

 target_data = target_data[:max_num_input]

 # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize

each sentence.

 source_sen = [[re.sub('[\W]', '', str(token.lower())) for token in sen.strip().split(' ')] for sen in

source_data]

 # target

 target_sen = [[re.sub('[\W+0-6+8-9]', '', str(token.lower())) for token in sen.strip().split(' ')] for

sen in target_data]

81

 # # remove punctuation

 # target_sen = re.sub('[\W+0-6+8-9]', '', str(target_sen))

 # for the target sentences, add <sos> and <eos> tokens to each sentence

 for sent in target_sen:

 sent.append('<end>')

 sent.insert(0,'<start>')

 # create the common_words objects for each file

 source_dict = common_words(source_sen)

 target_dict = common_words(target_sen)

 # For the source sentences. we'll use this to split into train/dev/test

 split_size = len(source_sen)//10

 # get the sents-as-ids for each sentence

 source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in

source_sen]

 # Use 8 parts (80%) of the sentences for training and pad upto maximum sentence length

 source_train = pad_sequences(source_words[:8*split_size], padding='post')

 # Use 1 parts (10%) of the sentences for evaluation and pad up to maximum sentence length

 source_eva = pad_sequences(source_words[8*split_size:9*split_size],padding='post')

 # Use 1 parts (10%) of the sentences for test and pad upto maximum sentence length

 source_test = pad_sequences(source_words[9*split_size:],padding='post')

 eos = target_dict.word2ids['<end>']

 # for each sentence, get the word index for the tokens from <start> to up to but not including

<end>,

82

 target_words = [[target_dict.word2ids.get(tok,target_dict.UNK) for tok in sent[:-1]] for sent in

target_sen]

 # select the training set and pad the sentences

 target_train = pad_sequences(target_words[:8*split_size],padding='post')

 # the label for each target word is the next word after it

 target_train_labels = [sent[1:]+[eos] for sent in target_words[:8*split_size]]

 # pad the labels. Dim = [num_sents, max_sent_lenght]

 target_train_labels = pad_sequences(target_train_labels,padding='post')

 # expand dimensions Dim = [num_sents, max_sent_lenght, 1].

 target_train_labels = np.expand_dims(target_train_labels,axis=2)

 # get the labels for the dev and test data. No need for inputs here. no need to expand dimensions

 target_eva_labels = pad_sequences([sent[1:] + [eos] for sent in target_words[8 * split_size:9 *

split_size]], padding='post')

 target_test_labels = pad_sequences([sent[1:] + [eos] for sent in target_words[9 * split_size:]],

padding='post')

 # we have our data.

 train_data = [source_train,target_train,target_train_labels]

 eva_data = [source_eva,target_eva_labels]

 test_data = [source_test,target_test_labels]

 return train_data,eva_data,test_data,source_dict,target_dict

common_words

Extract common words from dataset

class common_words():

83

 def __init__(self, sents):

 word_counter = collections.Counter(tok.lower() for sent in sents for tok in sent)

 self.vocab = []

 self.vocab.append('<pad>') #zero paddings

 self.vocab.append('<unk>')

 # add only words that appear at least 4 times in the corpus

 self.vocab.extend([t for t,c in word_counter.items() if c > 10])

 self.word2ids = {w:id for id, w in enumerate(self.vocab)}

 self.ids2word = dict([(value, key) for (key, value) in self.word2ids.items()])

 self.UNK = self.word2ids['<unk>']

 self.PAD = self.word2ids['<pad>']

Load the datasets

Let's load the datasets using the load function defined earlier.

train_data,eva_data,test_data,source_dict,target_dict = preprocessing(source,target,

max_num_input=26000)

let's now quickly check the data structure.

eva_data[0]

test_data

The Neural Translation Model (NMT)

For the NMT the network (a system of connected layers/models) used for training differs slightly

from the network used for inference. Both use the seq-to-seq encoder-decoder architecture.

class AttentionLayer(Layer):

84

 def compute_mask(self, inputs, mask=None):

 if mask == None:

 return None

 return mask[1]

 def compute_output_shape(self, input_shape):

 return (input_shape[1][0],input_shape[1][1],input_shape[1][2]*2)

 def call(self, inputs, mask=None):

 encoder_outputs, decoder_outputs = inputs

 decoder_outputs_transpose = K.permute_dimensions(decoder_outputs,pattern = (0,2,1))

 luong_score = K.batch_dot(encoder_outputs,decoder_outputs_transpose)

 luong_score = tf.nn.softmax(luong_score,axis = 1)

 encoder_vector = tf.math.multiply(tf.expand_dims(encoder_outputs,axis = -2) ,

tf.expand_dims(luong_score,axis = -1))

 encoder_vector = tf.reduce_sum(encoder_vector,axis=1)

 # [batch,max_dec,2*emb]

 new_decoder_outputs = K.concatenate([decoder_outputs, encoder_vector])

 return new_decoder_outputs

class seq2seqModel(object):

 def __init__(self,source_dict,target_dict,use_attention):

 # the number of hidden units used by the LSTM

 self.hidden_size = 200

 # the size of the word embeddings being used

 self.embedding_size = 100

85

 # the dropout rate for the hidden layers

 self.hidden_dropout_rate=0.2

 # the dropout rate for the word embeddings

 self.embedding_dropout_rate = 0.2

 # batch size

 self.batch_size = 100

 # the maximum length of the target sentences

 self.max_target_step = 100

 # vocab size for source and target; we'll use everything we receive

 self.vocab_target_size = len(target_dict.vocab)

 self.vocab_source_size = len(source_dict.vocab)

 # intances of the dictionaries

 self.target_dict = target_dict

 self.source_dict = source_dict

 # special tokens to indicate sentence starts and ends.

 self.SOS = target_dict.word2ids['<start>']

 self.EOS = target_dict.word2ids['<end>']

 # use attention or no

 self.use_attention = use_attention

 print("number of tokens in source: %d, number of tokens in target:%d" %

(self.vocab_source_size,self.vocab_target_size))

 def build(self):

 #-------------------------Train Models------------------------------

86

 source_words = Input(shape=(None,),dtype='int32')

 target_words = Input(shape=(None,), dtype='int32')

 # The train encoder

 # Create two randomly initialized embedding lookups, one for the source, another for the

target.

 # Creating the embedding lookups...

 embeddings_source = Embedding(self.vocab_source_size,self.embedding_size)

 embeddings_target = Embedding(self.vocab_target_size,self.embedding_size)

 # Look up the embeddings for source words and for target words. Apply dropout to each

encoded input

 # Looking up source and target words...'

 source_word_embeddings = Dropout(0.3)(embeddings_source(source_words))

 target_words_embeddings = Dropout(0.3)(embeddings_target(target_words))

 # An encoder LSTM() with return sequences set to True

 # Creating an encoder'

 encoder_outputs, encoder_state_h, encoder_state_c =

LSTM(self.hidden_size,recurrent_dropout=self.hidden_dropout_rate,return_sequences=True,retu

rn_state=True)(source_word_embeddings)

 encoder_states = [encoder_state_h,encoder_state_c]

 # The train decoder

 decoder_lstm =

LSTM(self.hidden_size,recurrent_dropout=self.hidden_dropout_rate,return_sequences=True,retu

rn_state=True)

87

 decoder_outputs_train,_,_ =

decoder_lstm(target_words_embeddings,initial_state=encoder_states)

 if self.use_attention:

 decoder_attention = AttentionLayer()

 decoder_outputs_train = decoder_attention([encoder_outputs,decoder_outputs_train])

 decoder_dense = Dense(self.vocab_target_size,activation='softmax')

 decoder_outputs_train = decoder_dense(decoder_outputs_train)

 # compiling the train model.

 adam = Adam(learning_rate=0.01,clipnorm=5.0)

 self.train_model = Model([source_words,target_words], decoder_outputs_train)

 self.train_model.compile(optimizer=adam,loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

 # at this point you can print model summary for the train model

 print('\t\t\t\t\t\t Train Model Summary.')

 self.train_model.summary()

 print(plot_model(self.train_model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True))

 #-------------------------Inference Models------------------------------

 # The inference encoder

 self.encoder_model =

Model(source_words,[encoder_outputs,encoder_state_h,encoder_state_c])

 # at this point you can print the summary for the encoder model.

 print('\t\t\t\t\t\t Inference Time Encoder Model Summary.')

88

 self.encoder_model.summary()

 # The decoder model

 # specifying the inputs to the decoder

 decoder_state_input_h = Input(shape=(self.hidden_size,))

 decoder_state_input_c = Input(shape=(self.hidden_size,))

 encoder_outputs_input = Input(shape=(None,self.hidden_size,))

 # create decoder for inference

 # Get the decoded outputs

 # print('\n Putting together the decoder states')

 # get the inititial states for the decoder, decoder_states

 # decoder states are the hidden and cell states from the training stage

 decoder_states = [decoder_state_input_h,decoder_state_input_c]

 # use decoder states as input to the decoder lstm to get the decoder outputs, h, and c for test

time inference

 decoder_outputs_test,decoder_state_output_h, decoder_state_output_c =

decoder_lstm(target_words_embeddings, initial_state=decoder_states)

 # Task 1 (b.) Add attention if attention

 if self.use_attention:

 decoder_outputs_test = decoder_attention([encoder_outputs_input,decoder_outputs_test])

 # Task 1 (c.) pass the decoder_outputs_test (with or without attention) to the decoder dense

layer

 decoder_outputs_test = decoder_dense(decoder_outputs_test)

89

 # put the model together

 self.decoder_model =

Model([target_words,decoder_state_input_h,decoder_state_input_c,encoder_outputs_input],

 [decoder_outputs_test,decoder_state_output_h,decoder_state_output_c])

 # you can now view the model summary

 print('\t\t\t\t\t\t Decoder Inference Model summary')

 print(self.decoder_model.summary())

 def time_used(self, start_time):

 curr_time = time.time()

 used_time = curr_time-start_time

 m = used_time // 60

 s = used_time - 60 * m

 return "%d m %d s" % (m, s)

 def train(self,train_data,dev_data,test_data, epochs):

 start_time = time.time()

 # for epoch in range(epochs):

 # print("Starting training epoch {}/{}".format(epoch + 1, epochs))

 epoch_time = time.time()

 source_words_train, target_words_train, target_words_train_labels = train_data

self.history=self.train_model.fit([source_words_train,target_words_train],target_words_train_lab

els,batch_size=self.batch_size,epochs=epochs)

 # print("Time used for epoch {}: {}".format(epoch + 1, self.time_used(epoch_time)))

 dev_time = time.time()

90

 # print("Evaluating on dev set after epoch {}/{}:".format(epoch + 1, epochs))

 # self.eval(dev_data)

 # print("Time used for evaluate on dev set: {}".format(self.time_used(dev_time)))

 self.train_model.save('aeng_wol_model.h5')

 self.encoder_model.save('aeng_wol_modele.h5')

 self.decoder_model.save('aeng_wol_modeld.h5')

 print("Training finished!")

 print("Time used for training: {}".format(self.time_used(start_time)))

 print("Evaluating on test set:")

 test_time = time.time()

 self.eval(test_data)

 print("Time used for evaluate on test set: {}".format(self.time_used(test_time)))

 def get_target_sentences(self, sents,vocab,reference=False):

 str_sents = []

 num_sent, max_len = sents.shape

 for i in range(num_sent):

 str_sent = []

 for j in range(max_len):

 t = sents[i,j].item()

 if t == self.SOS:

 continue

 if t == self.EOS:

91

 break

 str_sent.append(vocab[t])

 if reference:

 str_sents.append([str_sent])

 else:

 str_sents.append(str_sent)

 return str_sents

 def eval(self, dataset,print_outputs = False):

 # get the source words and target_word_labels for the eval dataset

 source_words, target_words = dataset

 vocab = self.target_dict.vocab

 # using the same encoding network used during training time, encode the training

 encoder_outputs, state_h,state_c =

self.encoder_model.predict(source_words,batch_size=self.batch_size)

 # for max_target_step steps, feed the step target words into the decoder.

 predictions = []

 step_target_words = np.ones([source_words.shape[0],1]) * self.SOS

 for _ in range(self.max_target_step):

 step_decoder_outputs, state_h,state_c =

self.decoder_model.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=self.

batch_size)

 step_target_words = np.argmax(step_decoder_outputs,axis=2)

92

 predictions.append(step_target_words)

 # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover

the batch_size sentences

 predicted = self.get_target_sentences(np.concatenate(predictions,axis=1),vocab)

 Actual = self.get_target_sentences(target_words,vocab,reference=True)

 # score using nltk bleu scorer

 score = corpus_bleu(Actual,predicted)

 print("Model BLEU score: %.2f" % (score*100.0))

 #Modification

 if print_outputs:

 sources =

self.get_target_sentences(np.array(source_words[0:len(source_words)]),self.source_dict.vocab)

 return sources, predicted, Actual

Training Without Attention

Architecture

#Clear session prior to creating the architecture

tf.keras.backend.clear_session()

model = seq2seqModel(source_dict, target_dict,False)

model.build()

Training and test evaluation

model.train(train_data,eva_data,test_data,50)

plo model history

model.history.history['loss']

93

model.history.history['accuracy']

model.history.history.keys()

model.history.history.keys()

summarize history for accuracy

plt.plot(model.history.history['accuracy'])

plt.plot(model.history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

summarize history for loss

plt.plot(model.history.history['loss'])

plt.plot(model.history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

def eval1(dataset,print_outputs = False):

 # get the source words and target_word_labels for the eval dataset

 source_words = dataset

94

 vocab = model.target_dict.vocab

 loaded_modele = tf.keras.models.load_model('eng_wol_modele.h5', compile=False)

 # using the same encoding network used during training time, encode the training

 encoder_outputs, state_h,state_c =

loaded_modele.predict(source_words,batch_size=model.batch_size)

 # for max_target_step steps, feed the step target words into the decoder.

 predictions = []

 step_target_words = np.ones([source_words.shape[0],1]) * model.SOS

 loaded_modeld = tf.keras.models.load_model('eng_wol_modeld.h5', compile=False)

 for _ in range(model.max_target_step):

 step_decoder_outputs, state_h,state_c =

loaded_modeld.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=model.b

atch_size)

 step_target_words = np.argmax(step_decoder_outputs,axis=2)

 predictions.append(step_target_words)

 # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover

the batch_size sentences

 predicted = model.get_target_sentences(np.concatenate(predictions,axis=1),vocab)

 #Modification

 if print_outputs:

 sources =

model.get_target_sentences(np.array(source_words[0:len(source_words)]),model.source_dict.vo

cab)

 return sources, predicted

95

def proprocessing(source):

 # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize

each sentence.

 a=[]

 source_sen = [re.sub('[\W]', '', str(token.lower())) for token in source.split(' ')]

 a.append(source_sen)

 # get the sents-as-ids for each sentence

 source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in

a]

 print('source_words',source_words)

 source_test = pad_sequences(source_words,padding='post')

 return source_test

def translate2():

 # Prints out a set number of translations from the test set

 data=input('Please enter the text input: ')

 data=proprocessing(data)

 sources, candidates = eval1(data,print_outputs=True)

 example_no = 2

 for i in range(example_no-1):

 print(f"Output:{i+1}")

 print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}")

 print(f"Predicted translation: {' '.join(candidates[i]).replace('<pad>', '').replace('<unk>', '')}")

translate2()

96

load HDF5 format

#loaded_model = tf.keras.models.load_model('eng_wol_model.h5')

def translate(model, sentence = 15):

 # data=input()

 sources, Predicted, Actual = model.eval(test_data,print_outputs=True)

 for i in range(sentence-1):

 print(f"example:{i+1}")

 print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}")

 print(f"Predicted translation: {' '.join(Predicted[i]).replace('<pad>', '').replace('<unk>', '')}")

 print(f"Actual translation: {' '.join([l[0] for l in Actual][i]).replace('<pad>', '').replace('<unk>',

'')}")

load HDF5 format

loaded_model = tf.keras.models.load_model('eng_wol_model.h5')

translate(model)

#Clear session prior to creating the architecture

tf.keras.backend.clear_session()

model_attention = seq2seqModel(source_dict, target_dict,True)

model_attention.build()

Training and test evaluation

model_attention.train(train_data,eva_data,test_data,50)

model_attention.history.history['loss']

97

model_attention.history.history['accuracy']

model.history.history.keys()

summarize history for accuracy

plt.plot(model.history.history['accuracy'])

plt.plot(model.history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

summarize history for loss

plt.plot(model.history.history['loss'])

plt.plot(model.history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

plot_model(model_attention, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

translate(model_attention)

Translate from user input

def eval1(dataset,print_outputs = False):

98

 # get the source words and target_word_labels for the eval dataset

 source_words = dataset

 vocab = model.target_dict.vocab

 loaded_modele = tf.keras.models.load_model('aeng_wol_modele.h5', compile=False)

 # using the same encoding network used during training time, encode the training

 encoder_outputs, state_h,state_c =

loaded_modele.predict(source_words,batch_size=model.batch_size)

 # for max_target_step steps, feed the step target words into the decoder.

 predictions = []

 step_target_words = np.ones([source_words.shape[0],1]) * model.SOS

 loaded_modeld = tf.keras.models.load_model('aeng_wol_modeld.h5', compile=False,

custom_objects={"AttentionLayer": AttentionLayer })

 for _ in range(model.max_target_step):

 step_decoder_outputs, state_h,state_c =

loaded_modeld.predict([step_target_words,state_h,state_c,encoder_outputs],batch_size=model.b

atch_size)

 step_target_words = np.argmax(step_decoder_outputs,axis=2)

 predictions.append(step_target_words)

 # predictions is a [time_step x batch_size x 1] array. We use get_target_sentence() to recover

the batch_size sentences

 predicted = model.get_target_sentences(np.concatenate(predictions,axis=1),vocab)

 #Modification

 if print_outputs:

99

 sources =

model.get_target_sentences(np.array(source_words[0:len(source_words)]),model.source_dict.vo

cab)

 return sources, predicted

def proprocessing(source):

 # changing to lowercase,remove punctuation, strip trailing/leading whitespaces and tokenize

each sentence.

 a=[]

 source_sen = [re.sub('[\W]', '', str(token.lower())) for token in source.split(' ')]

 a.append(source_sen)

 # get the sents-as-ids for each sentence

 source_words = [[source_dict.word2ids.get(token,source_dict.UNK) for token in sen] for sen in

a]

 print('source_words',source_words)

 source_test = pad_sequences(source_words,padding='post')

 return source_test

def translate2():

 # Prints out a set number of translations from the test set

 data=input('Please enter the text input: ')

 data=proprocessing(data)

 sources, candidates = eval1(data,print_outputs=True)

 example_no = 2

 for i in range(example_no-1):

100

 print(f"Output:{i+1}")

 print(f"Source sentence: {' '.join(sources[i]).replace('<pad>', '').replace('<unk>', '')}")

 print(f"Predicted translation: {' '.join(candidates[i]).replace('<pad>', '').replace('<unk>', '')}")

translate2()

