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1. Introduction 

The aim of this paper is to illustrate the tail distribution 

estimation of a claim size for Ethiopian vehicle 

insurance dataset. The illustration focuses on the 

graphical visualization of the claim size, and providing 

point and confidence intervals of estimates. We 

considered the right tail of the claim size distribution, 

and it is considered as a negative returns or losses. 

Then we used the estimation results to quantify the risk 

measures. The two risk measures considered are Value 

at Risk (VaR) and Expected Shortfall (ES). These two 

measures are used to predict how much can the claim 

size can rise. VaR is equal to the smallest claim size 

such that the probability of obtaining a greater claim 

size, is less than or equal to some predetermined 

probability 𝛼. Further, ES can be summarized as the 

average of the claim size that are greater than VaR. 

Hence, when calculating VaR, a lower limit of “the 

worst claim size” is obtained, while when calculating 

ES the average of these ”worst claim sizes” is produced 

[see McNeil et al. (2005) and Hull (2018)]. 

A number of models exist for computing VaR and 

ES. Here, we focus on two different models based on 

extreme value theory. Extreme value theory is used to 

analyze events that happen rarely, i.e., extreme events. 
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In our setting, rare events consist of large claim sizes in 

the vehicle insurance dataset. The two models based on 

extreme value theory are called block maxima and 

peaks-over- threshold (POT). Both models have the 

same objective; fit a distribution to the sample of 

extrembservations. However, the models assume that 

the data follow different distributions. Also, which 

observations from the original sample that should be 

considered as extreme, differs in the two models [see 

Coles (2001) and Dowd (2005)]. 

We first consider the block maxima method using 

GEV distribution, which allows the determi- nation of 

the VaR and ES. Second, we model the exceedances 

over a given threshold using GPD, which enables us to 

estimate high quantiles of the claim paid distribution 

and the corresponding ES. GEV and GPD are two 

different distributions, but they have the same purpose: 

model the distribution of the extreme claim size. In 

particular, we can note that shape parameter, denoted 

ξ, is contained in both distributions, and it should 

therefore take similar values (and same sign) in the two 

distributions (Coles, 2001). In this paper, a positive ξ is 

obtained in both models, which is the 

case in Gilli and Kellezi (2006). Dowd (2005) and 

McNeil et al. (2005) express that the case ξ < 0 is often 

not of great interest since most of insurance data are 

more heavily tailed. 

A B S T R A C T  

We study the Ethiopian vehicle insurance dataset using the models block maxima and peaks-

over-threshold based on extreme value theory for estimating the risk measures, Value-at-Risk 

and Expected Shortfall. The extreme observations are fitted to the generalized extreme value 

distribution and the generalized Pareto distribution using maximum likelihood estimation. 

When estimating the model parameters and risk measures, the difference in estimates between 

the models is observed. 
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The remaining of this paper is summarized as 

follows. We start with a Section 2 of the brief review 

of extreme value theory and risk measures. Before the 

main results are given in Section 4, the data used and 

exploratory data analysis are presented in Section 3. 

We close the paper with a discussion and conclusion of 

the results in Section 5. 

2. Background 
2.1. Extreme Value Theory 

Assessing the probability of extreme events in 

summarizing its distribution with a risk measure is an 

important issue mainly in managing a risk of financial 

portfolios, since the viability of the insurance industry 

depends on probabilistic calculations of risk. Extreme 

Value Theory (EVT) has recently become one of the 

main theories in developing statistical models for 

extreme insurance losses and can be useful in defining 

supplementary risk measures, because it provides more 

appropriate distributions to fit extreme events. The 

heavy-tailed nature of insurance claims requires that 

special attention be put into the analysis of the tail of a 

loss distribution. Since a few large claims can 

significantly impact an insurance portfolio, statistical 

methods that deal with extreme losses have become 

necessary for actuaries. For example, in insurance a 

typical problem might be pricing or building reserves 

for products which offer protection against catastrophic 

losses, such as excess of loss reinsurance in order to 

price certain reinsurance treaties, which is often 

necessary to model losses in excess of some high 

threshold value, i.e., to model the largest r upper order 

statistics. There are two principal kinds of model for 

extreme values. 

 

2.1.1. Block Maxima 

These are models for the largest observations collected 

from large samples of identically distributed 

observations. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent 

identically distributed random variables with 

distribution F(x). The inference is generally focused 

around the maximum 

Mn  =  max(X1 , X2 , . . . , Xn)                        (2.1)  

the sequence. The distribution of (2.1) is easily derived 

by applying the rules for independent and identically 

distributed random variables as 

𝐹𝑀𝑛(𝑥)  =  𝑃(𝑋1 < 𝑥, 𝑋2 < 𝑥, . . . , 𝑋𝑛 < 𝑥) 

                      =  P(𝑋1 < 𝑥)P(𝑋2 < 𝑥). . . P(𝑋𝑛 < 𝑥) 
           = ∏ 𝐹(𝑥)   =  [𝐹(𝑥)]𝑛𝑛

𝑖=1                   (2.2) 

An asymptotic approximation to [F(x)]𝑛 is based 

on the Fisher - Tippet theorem (1928). Given that 𝑥 <
 𝑥+, where 𝑥+ is the upper end-point of F (that is, the 

smallest value of x such that F (x)  =  1), [F (x)]n →  0 

as n →  ∞. The asymptotic approximation is based on 

the introduction of sequences of normalizing constants 

an and bn  and adjusting the distribution in (2.1) such 

that 

 P (
Mn − bn
an

≤ 𝑥) 

=  [F(an𝑥 + 𝑏𝑛)]
n  →  G(𝑥)                              (2.3) 

The Fisher and Tippet (1928) theorem states that if G(x) 
converges to some non-degenerate distribution function, 

then G(x) is said to be belong to a three-parameter 

family, Generalized Extreme Value Distribution (GEV) 

of the form 

 G(𝑥/𝜇, 𝛽, ξ)

=

{
 
 

 
 exp (− [1 + ξ

𝑥 − 𝜇

β
]
+

−
1
ξ
) , if   ξ ≠ 0

exp (−exp (−ξ
𝑥 − μ

β
)) , if   ξ = 0,

                      (2.4)  

  

where x+ = max(x, 0).  

The GEV, G(x/μ, β, ξ) distribution with β > 0 scale 

parameter, μ ∈ ℝ location parameter and  ξ ∈ ℝ 

shape parameter is defined on {x ∶  1 +  ξ (x −
 μ)/β >  0}. 
The shape parameter, ξ of the GEV distribution 

defines a type of distribution, meaning a family of 

distributions specified up to location and scaling. 

The GEV subsumes three types of extreme value 

distributions which are known by other names 

according to the value of 𝜉: when ξ > 0 the 

distribution is a Fréchet distribution; when ξ = 0 it 

is a Gumbel distribution; when ξ < 0 it is a Weibull 

distribution. 

Weibull:  Φ(x/α) = {
exp[−(−x)α]  if x ≤ 0 
1                         if x > 0

,      𝛼

> 0 

Gumbel: Λ(x/α) = exp[−e−x],   x ∈ ℝ 

Fre´chet:   Ψ(x/α)

= {
0                               if x ≤ 0 
exp[−x−α]              if x > 0

,   𝛼 > 0 



 
 
3                                    Journal of Business and Administrative Studies (2023) Vol. 15(1), 1-14 

 

 

 
 

 

Figure 1: The density function of a standard GEV distribution in three cases: Weibull (𝜉 = −0.5); Gumbel (𝜉 = 0); 

and Fréchet (𝜉 = 0.5), and their corresponding distributions. In all cases 𝜇 = 0 and 𝛽 = 1.  

 

The density and distribution function of the GEV 

distribution are shown in the left and right panels of 

Figure 1, respectively for the three cases  ξ =  −0.5, ξ =
0 and ξ = 0.5, corresponding to Weibull, Gumbel and 

Fre´chet types, respectively. Observe that the Weibull 

distribution is a short-tailed distribution with a so-called 

finite right endpoint. The right endpoint of a distribution 

will be denoted by xF  =  sup {x ∈  ℝ ∶  F (x)  <  1} . 
The Gumbel and Fre´chet distributions have infinite 

right endpoints, but the decay of the tail of the Fre´chet 
distribution is much slower than that of the Gumbel 

distribution. 

The estimates of unknown parameters of GEV are 

obtained by minimizing the negative log likelihood 

with respect to parameter vectors (μ, β, ξ). The log 

negative likelihood of GEV can be written as 

ℓ(μ, β, ξ)  =  nlogβ + (1 +
1

ξ
)∑ log [1 +n

i=1

ξ (
xi−μ

β
)] + ∑ [1 + ξ (

xi−μ

β
)
−
1

ξ
]n

i=1 , 

provided that [1 + ξ (
xi−μ

β
)] > 0 for i =

 1,2, . . . , n. 

2.1.2. Peaks-Over-Threshold 

The block maxima method has the major defect that it 

is very wasteful of data. To perform an analyses only 

the maximum losses in large blocks are retained. For 

this reason it has been largely superseded in practice by 

methods based on threshold exceedances, where all data 

that are extreme in the sense that they exceed a 

particular designated high level are used. Therefore, 

Peaks-Over- Threshold (POT) models are generally 

considered to be the more useful for practical 

applications, due to their more efficient use of the (often 

limited) data on extreme values in modeling the behavior 

of extreme values above a high threshold. An 

additional advantage of POT is that it provides with risk 

estimates that are easy to compute. Within the POT 

class of models one may distinguish two styles of 

analysis. These are the semi-parametric models built 

around the Hill estimator and the fully parametric 

models based on the generalized Pareto distribution 

(GPD). This paper highly concentrate more on the latter 

style of analysis for a reasons of relative simplicity in 

giving statistical estimates error using the techniques of 

maximum likelihood inference. The excess distribution 

above the threshold u can be defined as the conditional 

probability 

Fu(y) = P(X − u ≤ y | X > u) =
F(y + u) − F(u)

1 − F(u)

=
F(x) − F(u)

1 − F(u)
, y > 0.         (2.5) 

The methodology is based on the asymptotic 

approximation of Y = X − u to the GPD, the rescaled 

excesses above a suitably high level u, should the non-

degenerate limiting distribution exist Pickands (1975). 

For those distributions F that satisfy that the distribution 

in (2.3) converges to (2.4), it can be shown that for large 

enough u there exists a positive function σ, such that 

(2.5) is well approximated by the cumulative 
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distribution function of the GPD that takes the form 

                            G(y/σ, ξ)

=

{
 
 

 
 
1 − (1 +

ξ

σ
𝑦)

−
1
ξ
  if   ξ ≠ 0

1 − exp (−
1

σ
y)     if   ξ = 0  

                        (2.6) 

     

where x+  =  max(x, 0), defined on {y ∶  y >  0} and 

(1 +  ξ y/σ >  0) with shape parameter ξ ∈ ℝ - known 

as the Extreme Value Index (EVI) and threshold 

dependent scale parameter σ. 
The GPD is applicable to very wide classes of 

underlying distributions of Y according to Smith 

(2009). The three cases ξ <  0, ξ =  0 and ξ >  0 

correspond to different types of tail behavior. The case 

ξ <  0 arises in distributions where there is finite upper 

bound on the claims which are possible in generally 

speaking and it might be thought that this case would 

apply in practice. It would be expected to detect such 

a limit only if there is a tendency for claims to 

cluster near the upper limit. The second case, ξ =
 0, which can be obtained by a formal limit ξ →  0 

in (2.6) typically arises in cases with an exponentially 

decreasing tail. This arises not only when the 

distribution of Y is indeed exponential, but also from 

many other common distributions such as gamma, 

Weibull, normal, lognormal etc, so it might be 

expected to find the estimated value of ξ close to 0 in 

practice. However the third case, ξ >  0, which is 

usually referred as Pareto tail is of more concern 

because this corresponds to a genuinely long tailed 

distribution and most relevant for insurance risk 

managers.  

In the use of GPD, a critical issue in practice is 

the selection of an appropriate threshold u, or 

equivalently the selection of an adequate number of 

upper order statistics. There is a trade off between bias 

and variance in threshold selection Bawa et al. (2001). 

If this is set too high so that the asymptotic theorem 

can be considered to be essentially exact, there will not 

be enough data over the threshold to calculate good 

estimates of σ and ξ. However, it is not actually wanted 

u to be too low since there will not be point in basing 

the estimates on claims which are too small to be 

considered large claims, and to do so could induce a 

bias associated with lack of fit of the GPD. 

There are numerous ways of choosing the threshold 

as well as quantifying the uncertainty of u. A diagnostic 

graphical tool which has been introduced by Davison 

and Smith (1990) is the sample mean excess plot, which 

is also known as the sample mean residual life (MRL) 

plot is a very helpful for the selection of the threshold u 

through visualizing description of the GPD behavior for 

different values of u This is based on the fact that the 

mean of a GPD distributed variable Y is given by 

 E(Y)  =  
σ

1 − ξ
                                                        (2.7) 

and for the introduced an excess u 

   E(Y − u |Y > u)  =  
σ

1 − ξ
                                  (2.8) 

The mean of a GPD should theoretically have linear 

property which means by introducing a high threshold 

z >  u should yield 

E(Y − z |Y > z) =
σ + ξz

1 − ξ
 ,

σ + ξz > 0             (2.9) 

which gives the average of the excesses of Y over 

varying values of a threshold z and is a linear 

transformation of (2.7). Thus the excess distribution 

over higher thresholds remains a GPD with the same ξ 
parameter but a scaling that grows linearly with the 

threshold z. Provided that ξ < 1, the mean excess 

function is given by 

                       E(z)  =  
σ + ξ(z − u)

1 − ξ

=
ξz

1 − ξ
−
σ − ξu

1 − ξ
                 (2.10) 

where u ≤  z <  ∞ if 0 ≤  ξ <  1 and u ≤  z ≤  u −

 σ/ξ if ξ <  0. The linearity of the mean excess function 

(2.10) in z is commonly used as a diagnostic for data 

admitting a GPD model for the excess distribution. It 

forms the basis for the following simple graphical 

method for choosing an appropriate threshold. 

Empirically, the mean excess function is defined by the 

points (u, 𝑒𝑛(u)) , where en (u) is the sample mean 

excess function estimated as  

𝑒𝑛(u)  =  
∑ (𝑌𝑖 − 𝑧)1[𝑌𝑖>𝑢]
𝑛
𝑖=1

∑ 1[𝑌𝑖>𝑢]
𝑛
𝑖=1

                          (2.11) 

and is the sum of the excesses (Y1  −  z), . . . , (Yn  −  z) 
over the threshold z divided by the number of data points 

which exceeds the threshold z. The sample mean excess 

function describes the expected overshoot of a threshold 

given that exceedance occurs and is an empirical estimate 

of the mean excess function that is defined in (2.8). The 

estimated mean excess function defined in (2.9) should 

be linear. Whenever the points show an upward trend, it 

is a sign of heavy tailed behavior. Exponentially 

distributed data approximately would give an horizontal 

line and data from a short tailed distribution would show 

a downward trend, as noted in Corradin (2002).  

Another graphical tool used to choose the threshold is the 

Hill graph. Let Y(1)  ≥  Y(2)  ≥ · · · ≥  Y(n) be associated 
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𝑘,𝑛 

descending ordered statistics of (Y1, Y2, . . . , Yn) which are 

independent and identically distributed (iid) random 

variables Brilhante et al. (2013). Assuming that the 

distribution of these random variables is heavy-tailed, 

the Hill estimator Hill (1975) of tail index ξ using k +  1 

ordered statistics is defined by 

𝐻𝑛,𝑘 =
1

𝑘
 ∑log (

Y(i)

Y(k+1)
).                                   (2.12)

𝑘

𝑖=1

 

Obviously, the Hill estimator is function of these extreme 

random variables {Y(1), Y(2), . . . , Y(k)} which depends on 

the chosen threshold. A Hill plot is therefore constructed 

by the Hill estimator of a range of k value versus the 

value of k or the threshold, i.e. is defined by a set of 

points {(k, Hk,n
−1  ), 1 ≤  k ≤  n −  1}. The value of 𝑌𝑘 

above which the Hill estimator tends to be stable can be 

chosen as the optimal threshold u. The Hill estimator is 

closely related to the mean excess function. It is 

asymptotically equal to the reciprocal of the empirical 

mean excess function of log (Y) evaluated at the 

threshold log(Y(k+1)). An important feature of the Hill 

estimator to keep in mind is the variance-bias trade off 

that occurs when choosing the number of upper order 

statistics to use. Choosing too many of the largest order 

statistics can lead to a biased estimator, while too few 

increases the variability of the estimator. 

2.2. Risk Measures 

2.2.1. Value at Risk 
Value at Risk (VaR) helps to quantify the amount of 

capital needed for covering loss in portfolio. It is defined 

as the α-th quantile of the negative returns or losses of a 

portfolio distribution. In other words, for some given 

confidence level α ∈ (0,1), the VaR of our portfolio at 

the confidence level α is given by the smallest number ℓ 

such that the probability that the loss L exceeds ℓ is no 

larger than (1 − α) . Formally, 

 VaRα =  inf{ℓ ∈ ℝ: P(L > ℓ)  ≤ 1 − α} 

                          =  inf{ℓ ∈ ℝ: FL(ℓ) ≥ α},                 (2.13) 

where 𝐹𝐿 is defined as the distribution function. Typical 

values for α are α = 0.95 or α = 0.99. Note that by its 

definition the VaR at confidence level α does not give 

any information about the severity of losses which occur 

with a probability less than 1 − α. This is clearly a 

drawback of VaR as a risk measure. 

2.2.2. Expected Shortfall 
Expected Shortfall (ES) or the tail conditional expectation 

quantifies the average loss given that we have lost at least 

VaR. ES is computed by taking the average of losses that 

are larger than VaR. In other words, For a loss L with 

E (|L|)  <  ∞ and distribution function FL the expected 

shortfall at confidence level α ∈  (0, 1) is defined as  

𝐸𝑆𝛼 = 𝐸(𝑋 / 𝑋 > Var𝛼)  =
1

1−𝛼
∫ 𝑞𝑢(𝐹𝐿) 𝑑u ,
1

𝛼
 where 

𝑞𝑢(𝐹𝐿)  =  FL
−1(u) is the quantile function of 𝐹𝐿. 

Expected shortfall is thus related to VaR by 

𝐸𝑆𝛼 =
1

1 − 𝛼
∫VaR𝑢(𝐿) 𝑑u

1

𝛼

 

Instead of fixing a particular confidence level α, we 

average VaR over all levels u ≥  α and thus we look 

further into the tail of the loss distribution. Obviously 

ESα depends only on the distribution of L and obviously 

ESα  ≥  VaRα. 

3. Preliminary Data Analysis 
3.1. The data 

The data used for this analysis were provided from a 

large database of the Ethiopian Insurance Corporation, 

one of the biggest insurance companies in Ethiopia. It 

consists of policy and claim information of vehicle 

insurance at the individual level. The dataset originally 

contains n = 288, 763 

unique individual contracts, represented by the 

observations (𝐗1, Y1), . . . , (𝐗n, Yn) of p =  10 

predictors of 𝐗 =  ( X1 , . . . , Xp)  ∈  ℝ
p and the 

response variable Y ∈  ℝ represents claim size, from 

July 2011 to June 2018. The response variable is 

originally in Ethiopian birr and it is converted to USD 

at the official exchange rate at the time of data analysis. 

Furthermore, the analysis depends on the natural 

logarithmic transformation of  the response variable for 

a better visualization.  

3.2. Exploratory Plots for the Distribution 

of claim paid 

The purpose of statistical graphics is to provide visual 

representations of quantitative and qualitative 

information. As a methodological tool, statistical 

graphics comprise a set of strategies and techniques 

that provide the researchers with important insights 

about the data under examination and help guide for 

the subsequent steps of the research process. The 

objectives of graphical methods are to explore and 

summarize the contents of large and complicated data 

sets, address questions about the variables in an 

analysis (for example, the distributional shapes, ranges, 

typical values and unusual observations), reveal 

structure and pattern in the data, check assumptions in 

statistical models, and facilitate greater interaction 
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between the researcher and the data. Various graphical 

methods were examined to visualize data in raw and 

amalgamated formats. Additionally, beyond graphical 

exploratory data analysis, some methods to quantify 

fits of the data with some distributions are discussed. 

Graphical visualization in this analysis starts with 

a distribution of large claims. Accordingly, more than 

70% of the sum of all claims is created by only the 10% 

highest claims as shown in Figure 2. 

 
Figure 2: All claim sizes falling in an interval of 𝑌 ∈ (4.5, 6.5) in (black points) and the 97.5% quantile (red line) of 

all claims. 

 

Even for 𝑌 ∈ (4.5, 6.5), extreme points can be 

seen, which indicates the important contribution of 

single large claims to a total risk exposure. 

In Figure 2, it can be easily seen that some 

observations are much larger than the rest of the 

sample, specifically, two outliers (6.47 and 6.48) can 

be seen which may of course need some concern for 

any reason. These two largest claims could possibly 

happen due to a total loss, i.e. when a complete 

facility was lost and it may represent total losses. The 

second largest three claims are 6.3, 6.2 and 6.08. This 

shows that a particular concern should be drawn prior 

to the use of extreme value methods, which are 

applied in the rest of this section, when there is a 

possibility that these represent some separate 

process. Ideally one would like to do a separate 

analysis of claims resulting from total losses, but 

with only few such claims available, this is not 

practicable. The most of outliers will therefore be 

combined with the rest of the data for most of the 

analysis, but their separate origins do need to be bear 

in mind in interpreting the results. 

The most widely recognized graphical tool to display and 

examine the frequency distribution and a density of a 

single continuous variable is the histogram. A histogram 

is non-parametric procedure, in a sense, constructed 

without assuming a statistical model and estimating its 

parameters from data. 
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Figure 3: Frequency histogram and superimposed density plot representations of claim paid distribution. 

The histogram plot in Figure 3 has a peak at the 

smaller values, more variability in the higher values 

and a bit long right tail. knowing this ahead of time is 

helpful to design a best fitting model later on. 

Another common tool to visualize the observed 

distribution of data is by plotting a smoothed 

histogram commonly referred as empirical density, 

the curve superimposed on the histogram with blue 

line. The empirical densities overcome some of the 

disadvantages caused by the arbitrary discrete bins 

used in the basic histograms. 

Although it is helpful to examine the observed 

data distribution, often we are examining the 

distribution to see whether it meets the assumption of 

the statistical analysis we hope to apply. As it can 

be seen from Figure 3, the empirical density plots 

shows that the claim paid variable is horizontal line 

(in fact some degree of smoothness is applied by 

default), which indicates this variable has a heavy 

right tail. 

By proceeding claim paid examination, a quantile-

quantile (Q-Q) plot can be considered as diagnostic 

tool to assess whether data fit or are close to a 

specific expected distribution. Q-Q plots can be used 

to judge whether observations follow a variety of 

distributions such as: normal, exponential and 

generalized Pareto distributions. 

Figure 4: A Q-Q plot of claim paid empirical distribution against theoretical Generalized Pareto distribution (GPD). 

A threshold of u =  4.58 USD, above which 97.5% of claim payments fall is selected. Thus, 1,478 exceedance 

observations are left and the estimated parameters of GPD are: ξ =  0.11 and σ =  0.34. 
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A Q-Q plot graphs the observed data quantiles 

against theoretical quantiles from the expected 

distribution. With a Q-Q plot, if the data perfectly 

match the expected distribution, the points will fall 

on a straight line. In Figure 4, we can see that the data 

are reasonably Generalized Pareto distributed (GPD), 

as all points fall fairly closely to the straight line except 

for few points, which can be considered as outliers. 

Moreover, since the plot has a curved pattern with the 

slope increasing from left to right, then the data has 

a long right tail Keen (2010), even beyond the GPD 

can accommodate. Although testing whether data are 

consistent with a specific distribution, in this case 

GPD, is common, real data may be closer to many 

other distributions. 

 
Figure 5: A normal distribution (left panel) and an exponential distribution (right panel) Q-Q plot of claim paid. The 

two distributions were fitted to the 1,478 exceedance observations. 

 

The maximum likelihood estimator(s) of the 

parameters for normal and exponential distributions 

were directly computed from the empirical claim 

paid data. Considering a nature of claim paid variable 

such as its range, a Q-Q plots shown in Figure 5 are 

done to evaluates the fit of claim paid variable with 

a specified expected quantile functions from normal 

and exponential distributions. The plots show that 

the exponential theoretical distribution for claim paid 

is unreliable. But in the case of normal distribution, 

it is some how close to that of the GPD Q-Q plot as 

the points are seem to be symmetric with a line. 

Another way to examine whether the observed 

distribution appears consistent with an expected 

distribution is to plot the empirical density against 

the density for the expected distribution. 
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Figure 6: A theoretical curve (red line) and claim paid empirical density plot (black line) with smoothing factor of 2, 

from GPD (left panel), normal(middle) and exponential(right panel) distributions. 

 

From Figure 6, it can be seen that the claim paid data 

appear to be close to a GPD distribution, although not 

perfect. For a better comparison between the normal, 

exponential and GPD fits, a log likelihood (LL) is 

employed. LL  commonly used for model comparison 

and tells us about how likely the data are to come from 

that distribution with those parameters. In comparing 

fit of the distributions, the one that provides the higher 

log likelihood is a better fit for the data. Accordingly, 

the L L is higher for the GPD (LL =  268.39) than 

the normal distribution (LL =  −190.57) and the 

exponential distribution (LL =  −3823.17) with 

only one unit difference in the degrees of freedom. 

These results suggest that the GPD should be picked 

for claim paid data. More details about the GPD 

model and extreme value analysis are discussed in 

Section 2.1. 

4. Results 
4.1. Modeling using GEV 

The maximum claim paid data across the levels of 

manufacturer company are shown in Figure 7. No 

obvious trend is observed. 
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Figure 7: Scatter plot of maxima claim paid across manufacture company for Ethiopian vehicle insurance dataset. 

 

Figure 7 represents maximum claim paid across 

manufacturer company, showing extreme claim paid 

using block maxima method. The highest four amount 

of claim paid, which seem to be outliers occurred in 

USD are 3.05m, 2.99m, 2.01m and 1.22m, that 

correspond to FIAT, SKY BUS, IVECO and 

BISHOFTU, respectively. 

For GEV estimation, the Block Maxima of maximum 

claim paid across manufacturer company are 

extracted. The blocks n =  314 types of 

manufacturer company have been chosen to be 

reasonably large, so the GEV model is fitted to the 

n =  314 across the manufacturer’s maxima using 

maximum likelihood estimation. The point MLE of 

the parameters (μ;  β;  ξ) for the GEV distribution and 

their respective 95% CI’s are summarized in Table 

4.1. Based on these estimates, VaR is calculated by 

(2.13) and VaR estimate is also presented in Table 

4.1. 

 Lower 

bound 

Point 

estimate 

Upper 

bound 

�̂� 3.30 3.42 3.54 

�̂� 0.91 0.99 1.08 

ξ̂ 0.14 0.22 0.30 

VaR0.01̂   ___ 12.96 ___ 

𝐸𝑆0.01̂ ___ 14.52 ___ 

Table 4.1: Point and 95% CI estimates of GEV 

parameters, and point estimates of risk measures. 

 

The CI results shows that the confidence interval of ξ 
does not contains 0 and both lower and upper bounds 

are positive, which means the Fréchet distribution 

could be a more accurate model in the entire GEV 

family. 

Since we have our estimated parameters of GEV, 

we can calculate the risk measures (VaR and ES), 

which are contained in Table 4.1. Notice that at 99% 

VaR and ES are 12.96 and 14.52, which indicate that, 

with probability 0.01, the insurance company makes 

claim payment of at least 12.96 and on a long position 

the claim payment will reach up to 14.52 on an 

average. 

4.2. Modeling using GPD 

The mean excess plot in left panel of Figure 8 is in fact 

fairly linear over the entire range of the claim size 

distribution and its upward slope leads us to expect 

that a GPD with positive shape parameter 𝜉 could be 

fitted to the entire dataset. However, there is some 

evidence of a “kink” in the plot below the value 285, 

000 and a straightening out of the plot above this 

value, so we have chosen to set our threshold at 𝑢 = 

285, 000 and fit a GPD to excess claim sizes of 58 

observations above this threshold, in the hope of 

obtaining a model that is a good fit to the largest of the 

claim sizes. If the data really follow a GPD, then this 

plot should stay close to a straight line of slope 𝜉/(1 − 

𝜉) , provided ξ <  1 (Smith, 2009). The apparent 

exception to linearity of the mean excess plot is at the 

right-hand end of the plot, but in fact this is not such a 

significant matter because in this region there are very 

few data points- the mean excess is computed from a 

very small number of exceedances and hence has a 

lot of sampling variability. On the basis of this plot, 

the evidence in favour of the GPD seems good. The 

ML parameter estimates are ξ̂
 
=  0.4 and σ̂ = 5.31 

with standard errors 0.15 and 3.62, respectively. Thus 

the model we have fitted is essentially a heavy-tailed, 

infinite-variance model. A picture of the fitted GPD 

model for the excess distribution F̂u(y −  u) is also 

given in right panel of Figure 8, superimposed on 

points plotted at empirical estimates of the excess 

probabilities for each claim size; note the good 

correspondence between the empirical estimates and 

the GPD curve. The Hill estimator (the reciprocal 

of ξ) in Figure 9 concise with the mean excess plot, 

indicating that the Hill estimator starts to be stable 

after the vertical red line, which is drawn at 

threshold of 𝑢 = 285, 000. The estimates of tail index 

𝛼 obtained are between 1.25 and 2.5, suggesting 𝜉 
estimates between 0.4 and 0.8, all of which 

correspond to infinite-variance models for these data. 

The tail index 𝛼 estimates based on 𝑘 = 50, . . . , 120 

order statistics mostly range from 1.25 to 2.5, 

suggesting a 𝜉 value in the range 0.4 − 0.8, which is 

larger than the values estimated in with a GPD model. 

In Figure 9, it can be noted that the high 

variability in the left region (the one determined by 

the largest order statistics) of the plot is not a 

welcome feature, since it makes difficult the proper 

selection of the number of upper order statistics 

involved in the estimation of the tail index. An 

important question that often arises in practice is 

whether one should ignore those observations, thus 

ignoring useful information about the behavior of the 

tail, or include them and get a biased estimate of α. 
Even though the values of α seem to be decrease as a 

number of exceedences increase, it can be seen that 

for the ideal case of setting, to a large extent the plots 

perform satisfactorily allowing the data analyst to 

identify correctly the underlying value of the tail 

index. 

In insurance we might use the model to estimate the 

expected size of the insurance claim, given that it 

enters a given insurance layer. Thus we can estimate 
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the expected claim size given exceedance of the 

threshold of USD 285, 000 or of any other higher 

threshold by using (2.10) with the appropriate 

parameter estimates. 

 
Figure 8: Sample mean excess plot (left panel) and on the right panel is Empirical distribution of excesses(black 

points) and fitted GPD (blue points). 

 
Figure 9:  Hill plots of four different thresholds together with 95% confidence interval, and their respective 

estimated the tail indices α = 1/ξ′s. The four 𝜉 estimators obtained are ξ̂
 
=  0.56, 0.6, 0.59, 0.57 by setting the 

corresponding thresholds u =  280000, 285000, 300000, 315000. The number of exceedences k is plotted on the 

horizontal axis while the estimation of the reciprocal of ξ is plotted on vertical axis. 
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Figure 10: Claim size distribution with the 99% VaR marked as a vertical line; the mean claim is shown with a dotted 

line and the 99% expected shortfall is marked with a dashed line. 

 

Figure 10 illustrates the notion of VaR. The 

probability density function of a claim size 

distribution is shown with a vertical line at the value 

of the 99% VaR. Note that the estimated mean claim 

size is (E (L)  =  3.7), while the 99% estimated VaR 

and ES values are approximately 5.84 and 5.87, 

respectively; indicating that there is a 1% chance 

that the insurance company makes claim payment of 

at least 5.84. Denoting by μ the mean of the claim 

size distribution, sometimes the statistic VaRmean
∶

=  VaRα −  μ is used for capital-adequacy purposes 

instead of ordinary VaR.  The distinction between the 

ordinary VaR and VaRmean is of little relevance in 

market risk management, where the time horizon is 

short and μ is close to zero. It becomes relevant in 

credit where the risk-management horizon is longer. 

In particular, in loan pricing one uses VaR
mean 

to 

determine the economic capital needed as a buffer 

against unexpected losses in a loan portfolio. Taking 

the expectation of the claim size distribution into 

account is also important in the growing field of 

asset-management risk. The 99% expected shortfall 

value is 5.87, which is much higher than the expected 

claim size value of 3.7 in this case. 

5. Discussion and Conclusion 

The purpose of this study was to analyze the tail 

distribution of claim size for Ethiopian vehicle 

insurance dataset using EVT. We used both GEV and 

GPD distributions in block maxima and peaks-over-

threshold methods, respectively. GEV and GPD are 

two different distributions, but in this context their 

purpose is the same; they show the distribution of 

extreme claim size. Also, the shape parameter ξ is 

the same parameter in the two distributions. 

Theoretically, we should get the same estimation of ξ 

in the methods (Coles, 2001). A weaker hypothesis is 

that the sign of ξ should be the same in the models, 

which the case in this study. This is also the case in 

Gilli and Ke llezi(2006). Even though we obtained 

ξ̂
 
>  0 in both models, the magnitudes are different; 

ξ̂
 
=  0.22 in GEV and ξ̂

 
=  0.4 in GPD. 

One of the objectives of this paper is to answer 

the question, How much can the claim size fall 

beyond certain level of threshold. To answer this 

question, we use the two risk measures VaR and ES. 

However, how the risk measures should be estimated 

is not straightforward; there exist several methods for 

this purpose [see Hull (2018)]. Here, we focus on the 

block maxima and POT methods. Before estimating 

VaR and ES, the parameters of the distributions 

must be estimated: 

( μ;  β;  ξ) in GEV and (σ;  ξ) in GPD. Since we 

obtained different estimators of ξ in GEV and GPD, 

we obviously get different estimators of VaR and ES. 

The 99% VaR and ES estimators in GEV are 

12.96 and 14.52, respectively, while in the GPD, the 

estimators are 5.84 and 5.87, respectively. This arises 

an interesting question such as; which one of the the 

two methods that produces the more accurate 

estimates of VaR and ES. Performing the 

“Backtesting” strategy is the popular approach to 

evaluate the estimates of VaR and ES, which is 

beyond the scope of this paper and the next step 

research of the author. 

It is possible that the choice of α influence the 

result. A small α needs to be chosen for the formulas 

of VaR and ES to be accurate [see Dowd (2005)]. 

Here, we let α =  0.01, but an even smaller α should 

be even better. Since POT extract the extreme events 

more efficient than GEV, it is possible that POT is 

more sensitive to the choice of α than GEV. A 

solution is then to chose a smaller α . On the other 

hand, this would imply that fewer observations will 
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be considered as extreme, which also can lead to poor 

estimates. Choosing another value of α could also 

bring some new light on the discussion. 

 

 

 

References 

J. Bawa, L. Trenner, S. Coles, and P. Dorazio. An 

introduction to statistical modeling of extreme 

values. Springer, 2001. 

M. F. Brilhante, M. I. Gomes, and D. Pestana.  A 

simple generalisation of the hill estimator. 

Computational Statistics & Data Analysis, 57(1):518–

535, 2013. 

S. Coles. An introduction to statistical modeling of 

extreme values. , 2001. 

S. Corradin. Economic risk capital and reinsurance: an 

extreme value theory’s application to fire claims of 

an insurance company. Sixth International Congress 

on Insurance: Mathematics and Economics, Lisbon, 

2002, 2002. 

A. C. Davison and R. L. Smith. Models for 

exceedances over high thresholds (with discussion). 

Journal of the Royal Statistical Society, Series B 

(Methodological), 52(3), 1990. 

K. Dowd. Measuring market risk. , 2005. 

R. Fisher and L. Tippet. Limiting forms of the 

frequency distribution of the largest or smallest 

member of a sample. 1928. 

M. Gilli and E. Kellezi. An application of extreme 

value theory for measuring financial risk. 

Computational Economics, 27(207 - 228):2 – 3, 2006. 

B. M. Hill. A simple general approach to inference 

about the tail of a distribution. Annals of Statistics, 

13, 1975. 

J. C. Hull. Risk management and financial institutions. , 

2018. 

K. J. Keen. Graphics for Statistics and Data Analysis 

with R. Texts in Statistical Science. CRC Press, 

Taylor & Francis group, Chapman & Hall/CRC, NY, 

USA, 2010. 

J. McNeil, P. Embrechts, and R. Frey. Quantitative risk 

management concepts, techniques and tools. 

Princeton University Press Princeton and Oxford, 

2005. 

J. I. Pickands. Statistical inference using extreme value 

order statistics. Annals of Statististics, 1975. 

R. L. Smith. Extreme value analysis of insurance risk. 

Department of Statistics and Operations Research, 

University of North Carolina,Chapel Hill, NC 27599-

3260, 2009. 

 

Appendix 

The following R code is used to generate all the results 

and figures, preferably in RStudio. motor_data.csv 

dataset can be provided upon request.  

> rm(list = ls()) ; setwd(); library(fExtremes); 

library(ggplot2); library(tidyverse); library(cowplot); 

library(dplyr); set.seed(4444) 

> Weibull_x <- gevSim(model = list(xi = -0.5, mu = 0, 

beta = 1), n = 1000) 

> Gumbel_x <- gevSim(model = list(xi = 0, mu = 0, beta 

= 1), n = 1000) 

> Frechet_x <- gevSim(model = list(xi = 0.5, mu = 0, beta 

= 1), n = 1000) 

> dens_dat <- bind_rows(tibble(Distribution = "Weibull", 

x = as.numeric(Weibull_x)), 

+                 tibble(Distribution = "Gumbel", x = 

as.numeric(Gumbel_x)), 

+                 tibble(Distribution = "Frechet", x = 

as.numeric(Frechet_x)))  

> dens_plt <- ggplot(data = dens_dat) + 

geom_density(aes(x = x, color = Distribution)) +  

+   labs(x = expression(x), y = expression(g(x))) + xlim(-

3,10) + theme_bw() + theme(legend.position = 

"none");dens_plt 

> cdf_plt <- ggplot(dens_dat) + stat_ecdf(aes(x = x, color 

= Distribution)) + labs(x = expression(x), y = 

expression(G(x))) +   xlim(-3,10) + 

theme_bw();cdf_plt 
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> dens_cdf_plt <- plot_grid(dens_plt, 

cdf_plt);dens_cdf_plt 

> motor_claimed <- read.table("motor_data.csv", header 

= TRUE, sep = ",") 

> obs.idx = 1:length(motor.claimed$CLAIM_PAID) 

> high_claims_plt <- ggplot(motor.claimed, 

aes(x=obs.idx, y=CLAIM_PAID)) + geom_point() +  

  xlab("Observation index") + ylab("Claim size") + 

stat_quantile(quantiles = 0.975, col=2 ) + 

ylim(c(4.5,6.5)) + annotate("text", x = 6.3e4, y = 5.4, 

label = "q(0.975)") + theme_bw();high_claims_plt 

> histogram_claim_plt <- ggplot(data=motor.claimed, 

aes(x=CLAIM_PAID)) + geom_histogram(aes(y = 

..density..),alpha = 0.5, position = 

"identity")+geom_density( 

    col = "blue")+xlab("Claim 

paid")+theme_bw();histogram_claim_plt 

> threshold <- quantile(motor.claimed$CLAIM_PAID, 

probs = 0.99)[[1]] 

> z <- density(motor.claimed$CLAIM_PAID) 

> mydf <- data.frame(x = z$x, y = z$y) %>%  mutate(area 

= x >= threshold) 

mycols <- list("white", "black") 

> density_claim_plt <- ggplot(data=mydf, aes(x=x, 

ymin=0, ymax=y,fill=area)) +  

  geom_ribbon() + geom_line(aes(y=y)) + 

theme_classic() +  

  annotate("text", x = 

mean(motor.claimed$CLAIM_PAID) + 0.35, y = 0.6, 

label = "italic(E(L))==2.97", parse = TRUE) +  

geom_vline(xintercept = 

mean(motor.claimed$CLAIM_PAID), linetype = 3) + 

  annotate("text", x = threshold + 0.25, y = 0.6, label = 

"VaR", parse = TRUE) + 

  geom_vline(xintercept = threshold, linetype = 1) + 

  annotate("text", x = threshold + 1.25, y = 0.6, label = 

"ES", parse = TRUE) + 

  geom_vline(xintercept = threshold + 1, linetype = 2) + 

scale_fill_manual(values = mycols) + 

  theme(legend.position = "none") + xlab("Claim Size") + 

ylab("Probability Density");density_claim_plt 

> library(ismev); probs <- 0.975 

> threshold = quantile(motor.claimed$CLAIM_PAID, 

probs = probs, na.rm = TRUE) 

> gpd.ml = gpd.fit(motor.claimed$CLAIM_PAID, 

threshold=threshold) 

> exc.data = 

motor.claimed$CLAIM_PAID[which(motor.claimed

$CLAIM_PAID>threshold)] 

> scale.est = gpd.ml$mle[1]; shape.est = gpd.ml$mle[2] 

> library(tea) 

> qq.gpd <- qqgpd(exc.data, nextremes = 

length(exc.data), scale = scale.est, shape = shape.est) 

> hlplot <- hillplot(motor.claimed$CLAIM_PAID, 

orderlim = c(15,2e2), y.alpha = FALSE,try.thresh = 

c(5.47, 5.45, 5.5, 5.55),lwd = 1, main = "", ylab = 

expression("Tail Index - " ~ xi),  xlab = "Number k of 

upper order statistics", legend.loc = NULL) 

> max_claim <- numeric() 

> for (i in 1:length(unique(motor.claimed$MAKE)))  

{max_claim[i] <- 

max(motor.claimed$CLAIM_PAID[which(motor.clai

med$MAKE==unique(motor.claimed$MAKE)[i])])} 

> gev_max_claim_plt <- ggplot() +theme_bw() + 

geom_point(aes(x = seq(1, 

length(unique(motor.claimed$MAKE))), y = 

max_claim)) +  labs(x = "Manufacturer Company", y 

= "Maximum Claim size") 

 

 

 

 


