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Abstract 

 
The increasing demand for accurate and efficient plant species classification has spurred 

advancements in deep learning techniques, particularly Convolutional Neural Networks (CNNs). 

Recognizing the complexity of botanical structures and the potential applications in biodiversity 

monitoring and environmental conservation, this research systematically explores the capabilities 

of CNNs in achieving precise plant species identification. 

Despite progress in deep learning for image classification, challenges persist in developing a 

standardized and reliable methodology for plant species classification. Variations in botanical 

structures and the need for adaptability to diverse datasets pose significant hurdles. This study 

addresses these challenges by implementing a rigorous research protocol, encompassing 

meticulous design, comprehensive dataset utilization, and fine-tuning processes for a CNN model. 

The specific problem addressed is the lack of a standardized approach that ensures high precision 

and adaptability in plant species classification using deep learning. 

The research strictly adhered to a standard research protocol, encompassing rigorous training and 

fine-tuning processes for the CNN model. These procedures aimed to optimize the model's 

performance, enabling it to recognize subtle patterns and unique characteristics inherent to 

different plant species. The proposed approach demonstrated a significant achievement, boasting 

an impressive accuracy rate of 93.50%, highlighting the efficacy and reliability of the CNN-based 

methodology. 

The detailed analysis of CNN's decision-making process provides valuable insights into the critical 

features essential for accurate plant species classification. Furthermore, our findings contribute to 

the broader understanding of leveraging deep learning techniques for intricate biological 

classification tasks, emphasizing the potential of CNNs in addressing challenges related to plant 

species identification with high precision and efficiency. 

Keywords: Plant species classification, Convolutional Neural Network (CNN), Deep Learning, 

Image Recognition, Biodiversity, Accuracy
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CHAPTER ONE 
 
 

                                             INTRODUCTION 

 
1.1. Background of the study 

 

Ethiopia, renowned for its unparalleled biodiversity and diverse ecosystems, encompasses a wide 

array of plant species across its varied landscapes, from highlands to lowlands. This unique wealth 

of flora establishes Ethiopia as a biodiversity hotspot, necessitating advanced methods for plant 

species classification. The identification and categorization of plant species play a pivotal role in 

ecological research, biodiversity conservation, agricultural management, and environmental 

monitoring [1]. 

Traditional methods of plant species classification heavily rely on the expertise of botanists and 

taxonomists, who manually assess morphological features such as leaf shape, flower structure, 

stem characteristics, and growth habits. However, this manual approach is time-consuming, 

subjective, and contingent on the availability of trained experts. 

Recognizing the limitations of conventional methods, recent years have witnessed a surge of 

interest in leveraging technological advancements, particularly in the realms of computer vision 

and machine learning, to automate and enhance plant species classification [2]. 

The focal point of this study is to harness the power of deep learning algorithms to revolutionize 

the accuracy of plant species classification. In the realm of botany, where experts traditionally 

identify plant species based on morphological characteristics, a time-consuming and error-prone 

process, machine learning offers an innovative solution. By employing machine learning 

approaches, the study aims to automate plant species classification, making it faster and more 

precise. Through training machine learning algorithms on extensive datasets of plant images, these 

algorithms can adeptly recognize unique characteristics of each plant species, facilitating efficient 

classification [3]. 

This study bears relevance to biodiversity conservation and ecological research, where precise 

identification of plant species is imperative for comprehending their distribution and diversity in 

diverse ecosystems [4]. Moreover, it holds potential benefits for agriculture, enabling farmers to



2  

swiftly identify crop species for effective crop management and pest control. In essence, this 

research endeavors to significantly elevate our capacity to accurately identify plant species, 

offering multifaceted applications in conservation, agriculture, and ecology. 

In the realm of computer vision, deep learning has emerged as a revolutionary force, empowering 

models to autonomously learn and extract intricate features from raw data. Convolutional Neural 

Networks (CNNs) have proven instrumental in plant species classification tasks, effectively 

capturing spatial features from images. This confluence of deep learning and botanical science 

holds promise for reshaping how we understand and interact with the rich tapestry of plant life that 

Ethiopia and other biodiverse regions present. 

 
 

1.1.1. Digital image processing 

 
Digital image is composed of a finite number of elements, each of which has a particular location 

and value. The digital elements are picture elements, image elements and pixels. Pixel is the term 

used most widely to denote the elements of digital image. An image is a two-dimensional function 

that represents a measure of some characteristic such as brightness or color of a viewed scene. An 

image is a projection of a 3-D scene into a 2D projection plane. An image may be defined as a 

two-dimensional function f (x,y), where x and y are spatial (plane) coordinates, and the amplitude 

of fat any pair of coordinates (x,y) is called the intensity of the image at that point . Figure 1- 

1shows that how images are preprocessed [5]. 
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Fig1-1: How Digital Image processing works [5] 

 

 
 

1.1.2. Steps in Digital image processing 

 
Digital image processing passes through the following steps. The first step is image acquisition 

Collect high-quality digital images of plants representing different species [6]. The images should 

capture relevant plant parts, such as leaves, flowers, or whole plants, depending on the 

classification task. Prepare the images for further analysis by applying preprocessing techniques. 

This may include resizing the images to a consistent resolution, correcting for brightness and 

contrast variations, and removing noise or artifacts. The main goal of pre-processing is noise 

suppression (usually the origin of the noise is digitizing and transmission), removal of distortion 

given by the scanning device, eventually suppress or highlight other attribute, which are important 

for the following tasks, such as segmentation, edge detection and feature extraction [7]. 

Image segmentation is Separate the plant regions of interest from the background and other objects 

present in the image. Techniques like thresholding, edge detection, or clustering can be used to 

identify and extract the plant regions accurately [8]. In some cases, a combination of different 

segmentation methods or advanced techniques like hybrid segmentation approaches or graph cuts 

can be employed to achieve more accurate segmentation results, such as K-means clustering or 

Mean-shift clustering, can be utilized to group pixels with similar properties. Clustering algorithms 

assign pixels to different clusters based on similarity in terms of color, texture, or other feature 

descriptors. This can help separate plant regions from the background or distinguish different parts 

of the plant, such as leaves or flowers [9]. 

The feature extraction technique plays an important role in image classification. The features are 

the main parameters that are involved for classification of image. Extract meaningful features from 

the segmented plant regions. These features may include shape descriptors (such as area, perimeter, 

compactness), texture descriptors (such as gray-level co-occurrence matrix or local binary 

patterns), color features (such as color histograms or color moments), or any other relevant 

features. The choice of features depends on the characteristics that differentiate plant species. 

Model Training is Select a suitable classification algorithm or model and train it using the labeled 

dataset. This involves associating the extracted features with their corresponding plant species 

labels. With the advancements in deep learning, convolutional neural networks (CNNs) can be
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trained to perform pixel-level segmentation. Fully Convolutional Networks (FCNs) or U-Net 

architectures are commonly used for semantic segmentation tasks, including plant region 

segmentation. These networks learn to classify each pixel as foreground or background, producing 

pixel-wise segmentation maps [10]. 

 
Edge detection techniques aim to identify boundaries between different regions based on 

discontinuities in pixel intensities. Various edge detection algorithms, such as Canny edge 

detection or Sobel edge detection [11]. With the advent of technological advancements, 

particularly in computer vision and machine learning, the landscape of plant species classification 

has witnessed a paradigm shift. Traditional methods heavily relied on the discerning eyes of 

botanists and taxonomists to meticulously analyze morphological features. However, this process 

is not only time-consuming but also contingent on the availability of highly trained experts. 

 
The integration of machine learning algorithms into plant species classification has opened up new 

avenues. By leveraging large datasets of plant images, machine learning algorithms can be trained 

to recognize nuanced characteristics of each species. This automated approach significantly 

accelerates the identification process while enhancing accuracy [12]. 

 
Deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a 

transformative force in computer vision tasks. CNNs are well-suited for plant species 

classification, as they excel in capturing intricate spatial features from images. The ability of CNNs 

to automatically learn and extract complex features from raw data has revolutionized the accuracy 

and efficiency of plant species identification [13]. 

 

 
Digital image processing forms a crucial component in the journey of automating plant species 

classification. Images, composed of finite elements known as pixels, undergo a series of steps to 

enhance their utility in classification tasks. These steps include preprocessing techniques like 

resizing, brightness correction, and noise removal. Figure 1-1 illustrates the intricate process of 

digital image processing [14]. Image segmentation takes the spotlight in the realm of digital image 

processing for plant species classification. This step involves separating plant regions of interest 

from the background and other objects in the image. Techniques such as thresholding, edge
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detection, and clustering are employed for accurate identification and extraction of plant regions. 

The subsequent step involves extracting meaningful features from the segmented plant regions. 

These features, encompassing shape descriptors, texture descriptors, and color features, serve as 

crucial parameters for image classification. The choice of features is dictated by the distinctive 

characteristics that differentiate plant species. The journey of plant species classification 

culminates in model training, where a suitable classification algorithm or model is selected [15]. 

Convolutional Neural Networks (CNNs), such as Fully Convolutional Networks (FCNs) or U-Net 

architectures, stand out for their ability to perform pixel-level segmentation. Concurrently, edge 

detection techniques, such as Canny or Sobel edge detection, contribute to identifying boundaries 

between different plant regions [15]. 

1.2. Motivation of the study 

 

Plant species classification is an important task with a wide range of applications in different fields, 

including agriculture, conservation and ecological research. However, traditional methods of 

identifying plant species, such as visual identification by human experts, can be time-consuming, 

subjective, and prone to error. The development of deep learning approaches such as convolutional 

neural networks (CNNs) has revolutionized the field of image recognition and classification. These 

approaches can be trained on large image data sets in order to automatically recognize and classify 

objects with high accuracy. In the context of plant species classification, deep learning approaches 

can help overcome some of the limitations of traditional methods by providing faster, more 

objective, and more accurate means of identifying plant species from images. This can have 

important implications for agriculture, where plant species classification can help improve crop 

yields and optimize resource allocation, and for conservation and ecological research, where 

accurate plant species identification is essential for the understanding and management of 

ecosystems. 

In general, the motivation for using deep learning approaches to plant species classification is to 

provide a more efficient, reliable, and accurate means of identifying plant species from images, 

with the potential to impact a wide range of domains and applications. 

1.3. statement of problem 

 

The problem articulated in the given statement revolves around the limitations and challenges 

associated with traditional methods of classifying plant species, primarily dependent on manual 
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processes conducted by experts or field guides. These manual approaches are characterized by 

being time-consuming, expensive, and susceptible to variations in accuracy based on the 

proficiency and experience of the identifier. This issue is particularly significant given the urgency 

of addressing threats to plant biodiversity and ecosystem services, which are further compounded 

by factors such as climate change and human activities[16]. 

Deep learning approaches, with the potential to automate classification from images of leaves, 

flowers, or fruits, offer a promising solution. However, their effectiveness is influenced by factors 

such as the quality of training data, the choice of the machine learning algorithm, and the 

complexity of the plant species. Therefore, there is a critical need to assess the current state of deep 

learning applications in plant species classification, alongside an exploration of the associated 

challenges and limitations. 

This study aims to address these challenges by investigating and developing a model capable of 

detecting and classifying plant species from input images, utilizing a fusion of image processing 

and cutting-edge deep learning technologies. This study pioneers a model that categorizes plant 

species images with enhanced precision through the incorporation of deep learning techniques, 

specifically Convolutional Neural Networks (CNN) [17]. This innovative approach seeks to 

elevate the accuracy and efficiency of plant species classification, contributing to a more advanced 

and automated solution in the realm of biodiversity conservation and ecological research. 

 
1.4 Research Question 

 
in this research an attempt is made to explore and answer the following research questions. 

 
1. Can deep learning models effectively classify plant species based on visual features 

extracted from images? 

2. What are the key methodologies employed in classifying plant species using deep 

learning models based on visual features from images? 

3. To what extent is the proposed approach performing in detecting and classifying plant 

species? 

4. How to evaluate Plant species classification using evaluation parameter?
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1.5 Objective of the study 

 

1.5.1. General objective 

 
The general objective of this study is to build a model for plant species classification using a deep 

learning approach. 

1.5.2. Specific objectives 

 

1. To prepare diverse datasets for Plant species classification. 

2. To investigate and identify suitable deep learning architectures and image processing 

techniques for experimentation. 

3. To train and optimize a deep learning model using, to achieve high accuracy and 

robustness in Plant species classification. 

4. To compare the performance of the different deep learning algorithms and identify the 

most suitable approach for accurately classifying plant species. 

5. To evaluate the effectiveness of the proposed plant species classification. 

 
1.6. Scope and Limitation of the study 

 
The scope of a research study on plant species detection using deep learning approaches would 

depend on the specific research question and objectives. However, some possible areas of focus 

could include: 

• The selection of plant species or groups of species to be identified 

• The choice of image data sources and the creation of a labeled dataset for training and 

testing the deep learning models 

• The design and optimization of deep learning architectures and pre-processing techniques 

for plant species classification 

• The evaluation of model performance using various metrics and comparison with 

traditional methods of plant species classification 

• The analysis of factors that may impact the accuracy and generalizability of the models, 

such as lighting conditions, image resolution, and dataset size and quality.



8  

Some possible limitations of this research include: 

 

• The potential constraints arise from the restricted availability and quality of image data 

pertaining to the chosen plant species, posing a potential influence on the effectiveness and 

applicability of the deep learning models. 

• The training process of deep learning models demands substantial computational resources, 

presenting a possible hindrance, especially for smaller research teams or those facing 

limitations in accessing computing infrastructure. 

• Deep learning models are commonly perceived as "black boxes," implying that deciphering 

the rationale behind the model's classification may be challenging. This lack of 

interpretability could restrict its suitability for applications where understanding the 

decision-making process is crucial. 

• The precision of deep learning models in classifying plant species might be susceptible to 

uncontrollable factors, such as variations in plant morphology due to environmental or 

genetic influences, which are intricate to regulate or consider. 

1.7. Significance of the study 

 
Beyond the realms of conservation and agriculture, the integration of deep learning, specifically 

the Convolutional Neural Network (CNN) approach, in plant species classification holds profound 

significance for educational settings. This cutting-edge technology serves as a dynamic tool for 

enriching the educational experience, particularly in the realm of plant species classification. By 

employing interactive platforms and educational applications, students are afforded hands-on 

experiences that not only enhance their proficiency in deep learning-based plant species 

classification but also deepen their understanding of ecosystems and the pivotal role of 

biodiversity. 

The study's contribution extends beyond conventional teaching methods, creating an immersive 

and engaging learning environment. As students actively participate in the classification process 

using deep learning, they not only acquire practical skills but also develop a heightened awareness 

of the critical role that plants play in maintaining ecological balance. This innovative approach 

transcends traditional educational boundaries, fostering a generation of environmentally conscious 

individuals who appreciate the intricate relationships within ecosystems.



9  

At the forefront of technological innovation, this study in deep learning-based plant species 

classification is poised to catalyze advancements in algorithmic capabilities. As deep learning 

algorithms continue to evolve, the scope of applications in plant species classification is anticipated 

to broaden significantly. The ongoing refinement of these algorithms to discern subtle differences 

in plant features and adapt to diverse environmental conditions will substantially elevate the 

accuracy and versatility of these systems. 

This continuous evolution holds the promise of breakthroughs in the global monitoring and 

management of plant species. By delving into the intricacies of plant species classification, this 

study not only contributes to the conservation of endangered plants and enhances sustainable 

agriculture practices by reducing herbicide usage but also positions itself at the forefront of 

education technology. 

In conclusion, the study on deep learning-based plant species classification has far-reaching 

implications for conservation, agriculture, and education. It not only aids in the conservation of 

endangered plants and enhances sustainable agriculture practices but also empowers the next 

generation of environmental stewards. With technology continually advancing, the potential for 

further innovations in deep learning-based plant species classification remains high, promising 

positive impacts across various fields and encouraging a more sustainable and informed approach 

to plant-related challenges. 

 
1.8. Methodology of the study 

 

Methodology refers to the systematic approach or set of methods and procedures used in a 

particular field of study or research to gather data, analyze information, and reach conclusions. It 

outlines the framework and techniques employed to answer research questions, solve problems, or 

achieve specific objectives. The research design for plant species classification using a CNN 

approach generally involves obtaining a diverse dataset of labeled plant images, preprocessing the 

data through resizing and normalization, designing a suitable CNN architecture such as 

EfficientNetB3, training the model using backpropagation and gradient descent optimization, 

evaluating its performance on validation and testing sets, analyzing the results using metrics like 

accuracy and precision, and discussing the implications and potential improvements for future 

research[19]. Data preparation for plant species classification involves sourcing the dataset from
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the Ethiopian Institute of Agricultural Research and the National Agricultural Biotechnology 

Research, specifically the Holata Agricultural Research Center. The dataset comprises 10 distinct 

plant species, each class containing a substantial collection of 1000 images [20]. Notably, a subset 

of these images is sourced from public datasets and the Holeta Agricultural and Research Institute, 

contributing real-world variations and characteristics to the dataset. 80% of the data is used for 

training, enriching the dataset's authenticity and relevance to plant classification tasks [21]. The 

substantial size of each class, combined with the inclusion of images from an agricultural context, 

provides a robust foundation for training and evaluating the plant classification model [22]. 

1.9. Implementation Tools 

The programming language Python, the Anaconda Jupiter Notebook used for the research. Since 

Python is currently suitable as an image processing tool and is a state-of-the-art programming 

language, this means that it is the latest development and technology tool. It is a powerful image 

preprocessing and analysis language. We need common libraries like Keras, TensorFlow, and 

OpenCV packages. To implement the CNN algorithm with the selected software with MSI Gaming 

laptop (Retina, 15-inch, Early 2019) 2.9 GHz Dual-Core Intel Core i7 processor, RAM 16 GB 

1867 MHz DDR3, Graphics Intel Iris Graphics 6100 1536 MB , 2 TB hard disk is used. 

● Python Programming Language: 

Python is chosen for its versatility, readability, and a vast ecosystem of libraries. It is widely 

used in scientific computing, machine learning, and image processing. The readability of 

Python code simplifies development and collaboration. 

● Anaconda Jupyter Notebook: 

Anaconda is a distribution of Python that includes pre-installed scientific computing 

libraries. Jupyter Notebooks provide an interactive and flexible environment for combining 

code, visualizations, and explanations in a single document. This makes it well-suited for 

research and data analysis workflows. 
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• Common Libraries (Keras, TensorFlow, OpenCV): 

1. Keras: A high-level neural networks API that simplifies the process of 

building and training deep learning models. 

2. TensorFlow: An open-source machine learning framework widely used for 

building and training machine learning models, including deep learning. 

3. OpenCV: A computer vision library providing tools and functions for image 

and video analysis. It is crucial for various image processing tasks in research. 
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CHAPTER TWO 
 
 

                                  LITERATURE REVIEW 

 

2.1. Plant species 

 

Plants are vital multicellular organisms that contribute significantly to the Earth's ecosystems. 

Characterized by cellulose cell walls and the ability to undergo photosynthesis, plants exhibit a 

hierarchical structure with roots for anchorage and nutrient absorption, stems for support and 

transportation, and leaves as the primary site for photosynthesis. They play a pivotal role in the 

environment by converting sunlight into energy and producing oxygen while absorbing carbon 

dioxide. Plants reproduce through both sexual and asexual means, with adaptations such as thorns, 

succulent leaves, and specialized root systems enhancing their survival in diverse environments. 

Engaging in symbiotic relationships, plants form connections like mycorrhizae for nutrient 

absorption and rely on pollination for reproduction. Beyond their ecological significance, plants 

are economically crucial, providing food, materials for shelter and clothing, and medicinal 

resources. Conservation efforts are essential to safeguard plant biodiversity and ensure the 

sustainability of ecosystems. Understanding and preserving the diverse array of plant species is 

integral to maintaining the delicate balance of life on Earth. 

 
It would be impractical to list all of them here, but I can provide some notable plant species across 

different categories. 

 
● Trees: Oak, maple, pine, spruce, fir, birch, willow, poplar, cedar, eucalyptus 

● Flowers: Rose, daisy, tulip, orchid, sunflower, lotus, lily, poppy, dandelion, hibiscus 

● Vegetables: Tomato, potato, onion, carrot, lettuce, cucumber, bell pepper, broccoli, 

spinach, peas 

● Fruits: Apple, banana, orange, grape, strawberry, watermelon, peach, pear, mango, 

pineapple



13  

● Grasses: Wheat, rice, corn, barley, oats, rye, sugarcane, bamboo, lawn grasses 

 

These are just a few of the many thousands of plant species that exist on Earth. Plants are essential 

for life on Earth, providing food, oxygen, and shelter for humans and other animals. They also 

play a vital role in the environment by regulating climate, preventing erosion, and filtering water 

[23]. 

 
2.2. Plant species classification 

 

Plant species classification is the process of identifying and classifying various plant species, 

utilizing diverse techniques and technologies to analyze features such as leaf shape, color, texture, 

and other visual attributes. Trained botanists or experts traditionally employ manual classification, 

visually examining plants and categorizing them based on their extensive botanical knowledge. 

However, this method is time-consuming [24]. Additionally, field guides, which provide detailed 

descriptions, illustrations, and keys, serve as valuable resources for identifying different plant 

species, often incorporating photographs or drawings to aid in the identification process. In the 

realm of technological advancements, image-based recognition has become popular for plant 

species detection due to progress in computer vision and machine learning. These methods involve 

training machine learning models on extensive datasets of plant images, enabling them to classify 

new images effectively [25]. 

● Deep Learning: Convolutional Neural Networks (CNNs) are commonly used deep learning 

models for plant species detection. These models learn to extract features from plant 

images and make predictions based on those features [26]. 

● Transfer Learning: Transfer learning involves leveraging pre-trained models, such as 

ImageNet, and fine-tuning them on plant-specific datasets. This approach can be effective, 

especially when the available plant dataset is limited [26]. 

Mobile applications equipped with image recognition techniques offer users a convenient way to 

identify plant species. Users can simply capture a photo of a plant, and the application employs 

image recognition to match it against a database of known species, providing accurate species 

identification [27].
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On the other hand, DNA barcoding is a distinct method for plant species identification, involving 

the analysis of specific regions within a plant's DNA. This approach relies on the unique DNA 

sequences inherent to different plant species, providing a molecular-level means of species 

identification. 

2.2.1 Why deep learning? 

Deep learning, specifically exemplified by Convolutional Neural Networks (CNNs), has emerged 

as a fundamental element in plant species classification studies due to its prowess in extracting 

intricate details from raw image data. One of its notable advantages lies in feature learning, 

wherein CNNs autonomously discern pertinent patterns without requiring explicit manual 

intervention. This attribute proves particularly beneficial in plant species classification, as the 

models can identify nuanced visual characteristics that might pose challenges for traditional 

methods [28]. 

The hierarchical architecture of CNNs plays a pivotal role in their effectiveness. Progressing 

through layers, the network learns both low-level features, such as edges and textures, and high- 

level features, including shapes and patterns. This hierarchical feature extraction aligns well with 

the intricate and multi-scale nature of plant images, enabling the model to comprehend the 

subtleties of plant structures and appearances [29]. 

Another crucial aspect is the scale invariance property of CNNs. In the context of plant species 

classification, where images may vary in size and orientation, CNNs can adeptly recognize patterns 

regardless of their spatial placement. This adaptability ensures that the models can generalize 

effectively to diverse datasets, accommodating the inherent variability in plant characteristics [30]. 

Transfer learning stands out as a significant advantage in deep learning applications for plant 

classification. Pre-trained CNNs, often on extensive datasets like ImageNet, serve as a 

foundational framework that researchers can fine-tune for their specific plant species classification 

tasks. This strategy addresses the challenge of limited labeled data for certain plant species and 

leverages the knowledge embedded in the pre-trained models [31]. 

The ongoing evolution of deep learning architectures, encompassing models such as AlexNet, 

VGG, ResNet, and Inception, provides researchers with a spectrum of choices. This diversity in 

architecture allows for experimentation, enabling researchers to select models that align with the 

intricacies of their plant species classification objectives [32].
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In summary, the success of deep learning in plant species classification is rooted in its intrinsic 

capabilities for feature learning, hierarchical feature extraction, scale invariance, transfer learning, 

and the availability of diverse architectures. Collectively, these aspects empower deep learning 

models to discern and identify intricate details in plant images, establishing them as potent tools 

for advancing the field of plant species detection and classification [33]. 

Characteristic CNN ANN RNN 

Architecture Specialized for images Feedforward 

(layered) 

Sequential 

processing 

Use Case Image classification, object 

detection 

General-purpose Sequential data 

(e.g., time series) 

Feature 

Learning 

Hierarchical feature learning 

through convolutional layers 

Sequential 

of features 

learning Sequential 

learning 

features 

 
of 

Data Type Grid-like data (e.g., images) Tabular, structured, 

and unstructured data 

Sequential data 

Parameter 

Sharing 

Exploits spatial hierarchy and 

shares parameters through 

convolutional layers 

No 

sharing 

neurons 

parameter 

between 

No explicit 

parameter 

sharing 

 
Table 2-1. The difference in deep learning approach 

 
2.2.2 The Evolution of CNN 

The evolution of Convolutional Neural Networks (CNNs) has been a dynamic journey marked by 

continuous innovation and improvement to tackle the challenges of image processing and 

computer vision tasks. The inception of CNNs can be traced back to LeNet-5 in 1998, introducing 

convolutional layers for recognizing handwritten digits. However, the groundbreaking moment 

occurred in 2012 with AlexNet, winning the ImageNet competition and ushering in a new era for 

deep learning. Following architectures like GoogLeNet, VGGNet, and ResNet further pushed the 

boundaries of network depth, introducing novel structures like inception modules and residual 

learning to enhance performance and ease training [34].
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EfficientNet, in 2019, emerged as a significant milestone, emphasizing scalability and efficiency 

through compound scaling, achieving state-of-the-art results with fewer parameters. The evolution 

also witnessed adaptations for mobile and edge devices with architectures like MobileNet, meeting 

the growing demand for computational efficiency in real-world applications [35]. 

Continuing the trajectory, transformers, initially successful in natural language processing, found 

application in computer vision tasks. Vision Transformers (ViTs) replaced traditional 

convolutional layers with self-attention mechanisms, showcasing the versatility of transformer 

architectures beyond language-related tasks [36]. 

The 2020s introduced a diversified landscape with ongoing research exploring novel architectures, 

attention mechanisms, and techniques for efficiency and interpretability. Specialized architectures 

like EfficientDet for object detection and CLIP for vision-language tasks exemplify the 

customization of models for specific challenges [37]. 

The evolution of CNNs signifies an ongoing pursuit of improved performance, efficiency, and 

adaptability. Researchers and practitioners are continuously exploring new frontiers to address the 

evolving demands of computer vision across various domains [38]. 

 
2.2.3. Convolutional Neural Network (CNN or ConvNet) 

 

Convolutional Neural Networks (CNNs) are composed of a sequence of layers, each designed for 

specific tasks. The initial layer, known as the convolutional layer, utilizes the convolution 

operation to extract features from the input image. Subsequently, the pooling layer follows, aiming 

to reduce the size of the output generated by the convolutional layer. The third layer, termed the 

fully connected layer, establishes connections between all the outputs from the pooling layer, 

leading to a single output neuron [39]. 

CNNs demonstrate remarkable effectiveness in image recognition tasks, achieving state-of-the-art 

results in various applications, including image classification, object detection, and image 

segmentation [40]. 

Being a robust tool for image recognition, CNNs have proven their effectiveness across a range of 

tasks and are expected to see even wider adoption in the future.
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In the context of this thesis, a CNN model is employed to detect and classify plant species images 

based on input images. The classification process utilizes CNN, comprising multiple sequential 

layers where each layer transforms one volume of activation to another through different functions 

[41]. 

Fig 2-1: CNN architecture [42] 
 

Fig2-2: CNN architecture and training process [42] 

Convolutional neural networks are one of the most popular ANN. It is widely used in the fields of 

image and video recognition. Convolution and a mathematical concept are almost like multi- layer 

perceptron except it contains series of convolution layer and pooling layer before the fully 

connected hidden neuron layer. 

CNN architecture with three main types of layers:
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1. The Convolutional Layer serves as the fundamental building block in a CNN, playing a 

pivotal role in feature extraction. This layer applies multiple filters, also known as kernels, 

to the input data, extracting diverse features. Each filter convolves with the input, 

generating a feature map that accentuates specific patterns. The dimensions and depth of 

these feature maps are determined by the size and number of filters employed. By stacking 

multiple convolutional layers, the network can learn increasingly intricate features. The 

primary goal of the convolutional layer is to extract valuable features from the input image, 

typically represented as a matrix of pixel values. In the case of images captured by standard 

digital cameras, which commonly have three channels (Red, Green, and Blue - RGB), each 

channel is represented as a 2D-matrix. These matrices are stacked to form a 3D structure, 

with each matrix containing pixel values in the range of 0 to 255. The convolutional layer 

is constructed using a combination of convolutional filters [43]. 

 

 

Fig2-3: CNN architecture Convolutional Layer [43] 

 
2. The Pooling Layer is positioned after the Convolutional Layer in a CNN and plays a crucial 

role in spatial dimension reduction while preserving essential information. This layer 

employs common pooling operations, such as max pooling and average pooling. Max 

pooling selects the maximum value within each pooling region, while average pooling 

computes the average value. The pooling process contributes to achieving translation 

invariance and alleviates computational complexity by downsampling the feature maps. 

This operation is applied across all depth slices of the image after the convolution 

operation, often utilizing an 8×8 filter with a stride of 2, although these parameters can be 

adjusted as needed [43].
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Fig2-4: CNN architecture Pooling Layer [43] 

 
3. After the application of several convolutional and pooling layers, the Fully Connected 

Layer is utilized for classification or regression purposes. This layer establishes 

connections between every neuron in the preceding layer and every neuron in the current 

layer, resembling the structure of traditional neural networks. The primary function of the 

fully connected layer is to map the learned features to the desired output classes or values. 

Typically, this layer concludes with an activation function, such as SoftMax for 

classification tasks or a linear activation for regression tasks. The fully connected layer 

essentially plays a critical role in synthesizing the extracted features for the final output of 

the CNN [43].



20  

 
 

Fig2-5: CNN architecture Fully Connected Layer [43] 

 
2.2.4. plant species classification in Ethiopia using in CNN approach 

 
Convolutional Neural Networks (CNNs) have demonstrated effectiveness in various image 

classification tasks, including the classification of plant species. CNNs excel at learning spatial 

features in images, a crucial aspect for distinguishing between different plant species [44]. 

In Ethiopia, several studies have leveraged CNNs for plant species classification with notable 

achievements. In a study by Desalegn Ashebir and Getahun Tadesse, AlexNet, VGG19, and 

GoogleNet were employed to detect 1600 plant species, resulting in a commendable accuracy of 

90.53%. 

Similarly, another study by Tsega Asresa, Getahun Tigistu, and Melaku Bayih utilized VGG16, 

ResNet50, MobileNet, and Inception V3 deep learning algorithms for plant species classification, 

achieving an accuracy of 80.08% with a batch size of 64. 

Mengisti Berihu employed GoogleNet and AlexNet models to classify medicinal plant species in 

Ethiopia, achieving an impressive accuracy of 96.7%. These studies collectively highlight the 

efficacy of CNNs in plant species classification tasks, showcasing their potential for accurate and 

robust identification of diverse plant species in Ethiopia.
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Fig 2-6: Plant species coverage in Ethiopia [40] 
 

 

Study Authors CNN Models Used Plant Species Accuracy 

1 Desalegn Ashebir, 

Getahun Tadesse 

AlexNet, VGG19, 

GoogleNet 

1600 (Ethiopia) 90.53% 

2 Tsega Asresa, 

Getahun Tigistu, 

Melaku Bayih 

VGG16, ResNet50, 

MobileNet, 

InceptionV3 

Not specified 80.08% 

(Batch 

Size: 64) 

3 Mengisti Berihu GoogleNet, AlexNet Medicinal 

plants 

(Ethiopia) 

96.7% 

 

Table 2-2. Summary of related works in Ethiopia 

 

The studies highlighted above consistently demonstrate the effectiveness of Convolutional 

Neural Networks (CNNs) in classifying plant species in Ethiopia. Although various CNN models 

were
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employed, they all achieved notably high accuracy rates. The study conducted by Abebe 

Mekonnen, utilizing the ResNet-50 model, attained the highest accuracy rate among them [45] 

[46] [47]. 

A noteworthy observation is that all the mentioned studies utilized relatively small datasets of plant 

images, indicating that CNNs can achieve impressive accuracy even with limited data. This is 

particularly advantageous for researchers in Ethiopia who may encounter challenges accessing 

extensive datasets of plant images. The collective findings underscore the potential of CNNs for 

plant species classification in Ethiopia, offering promising outcomes even with constrained data 

availability [47]. 

Beyond the mentioned studies, there are additional investigations employing CNNs for plant 

species classification in Ethiopia. These studies leverage various CNN models and datasets, 

resulting in a range of accuracy rates. However, the consistent theme across all these studies is the 

promising role of CNNs in plant species classification within the Ethiopian context. 

Despite current challenges, CNNs remain a promising tool for plant species classification in 

Ethiopia. As the availability of labeled plant image data in Ethiopia increases and as CNN models 

evolve to handle variations in image quality and environmental factors, it is likely that the accuracy 

of CNN-based plant species classification systems will continue to improve. This ongoing progress 

highlights the potential for CNNs to contribute significantly to the development of robust plant 

identification systems in Ethiopia. 

 
2.3. Related Work 

 
There are two general classes of plant species classification innovations. Nor Othman conducted 

a study titled "Plant Leaf Classification Using Convolutional Neural Network," utilizing the D- 

Leaf Dataset. The CNN architecture employed was VGGNet, achieving an accuracy of 92%. The 

key findings highlighted the successful classification of a diverse range of plant species with high 

accuracy. However, the research gap identified was the limited exploration of the impact of 

different CNN architectures on plant species classification, indicating a need for comparative 

studies in this regard.
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Johnson and Lee's research, titled "Improved Plant Species Identification using Convolutional 

Neural Networks," utilized the FLAVIA dataset with ResNet-50 as the CNN architecture. While 

achieving an accuracy of 87%, the study excelled in classifying common plant species but faced 

challenges with rare species. The research gap identified was the lack of focus on addressing the 

difficulty in classifying rare plant species, suggesting a need for techniques to enhance accuracy 

for less common species[48]. 

Ananda Smith's study, "Enhancing Plant Species Classification with Deep Convolutional Neural 

Networks," focused on the Swedish leaf dataset and employed Inception Net as the CNN 

architecture, achieving an accuracy of 80%. The key findings emphasized performance 

improvement through the incorporation of transfer learning and data augmentation techniques. The 

research gap identified was the need for more in-depth analysis and experimentation with various 

transfer learning and augmentation techniques to enhance performance further[49]. 

Corney. Danis conducted a study on "Plant species identification using digital morphometrics," 

utilizing the ImageCLEF2013 Plant Identification dataset and MobileNet as the CNN architecture, 

achieving an accuracy of 88%. The study evaluated different CNN architectures, highlighting 

MobileNet as the most effective. However, the research gap identified was the lack of exploration 

into the impact of varying dataset sizes on different CNN architectures, suggesting a need for 

further investigation in this relationship[50]. 

Stive Roos explored "Efficient Plant Species Classification using CNNs with Attention 

Mechanism" with the UCI-Machine Learning Repository dataset and EfficientNet as the CNN 

architecture, achieving an accuracy of 91%. The study utilized an attention mechanism to improve 

accuracy and identify key features for plant species classification. The research gap identified was 

the lack of investigation into the interpretability of the attention mechanism in identifying key 

botanical features, indicating a need for further research in this area. 

The motivation behind this research is to utilize the capacity of deep learning algorithms that can 

proficiently deal with these unique, however firmly related goals [51]. 

 

 

 

 
Author 

 
Title 

CNN 

Architecture 

Accuracy 

(%) 

 
Key Findings 

 
Research Gap 
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Nor 

Othman 

"Plant Leaf 

Classification 

Using 

Convolutional 

Neural 

Network." 

VGGNet 92% Successfully 

classified  a 

diverse range 

of plant 

species with 

high accuracy. 

Limited 

exploration  of 

the impact of 

different  CNN 

architectures on 

plant  species 

classification. 

Comparative 

studies needed. 

Johnson 

and Lee 

"Improved 

Plant Species 

Identification 

using 

Convolutional 

Neural 

Networks" 

ResNet-50 87% Achieved high 

accuracy for 

common plant 

species but 

struggled with 

rare species. 

Lack of focus on 

addressing  the 

challenge   of 

classifying rare 

plant species. 

Techniques   to 

improve 

accuracy for less 

common species 

needed. 

Ananda 

Smith 

"Enhancing 

Plant Species 

Classification 

with  Deep 

Convolutional 

Neural 

Networks" 

Inception Net 80% Performance 

improved  by 

incorporating 

transfer 

learning and 

data 

augmentation 

techniques. 

Need for more 

in-depth analysis 

and 

experimentation 

with various 

transfer learning 

and 

augmentation 

techniques for 

performance 

improvement. 
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Corney. 

Danis 

"Plant species 

identification 

using  digital 

morphometrics 

" 

MobileNet 88% Evaluated 

different CNN 

architectures 

and identified 

MobileNet as 

the most 

effective for 

plant species 

classification. 

Study doesn't 

delve into the 

impact of 

varying dataset 

sizes on different 

CNN 

architectures. 

Exploration of 

this relationship 

is needed. 

Stive 

Roos 

"Efficient Plant 

Species 

Classification 

using CNNs 

with Attention 

Mechanism" 

EfficientNet 91% Utilized 

attention 

mechanism to 

improve 

accuracy and 

identify key 

features for 

plant species 

classification. 

Lack of 

investigation 

into the 

interpretability 

of the attention 

mechanism  in 

identifying key 

botanical 

features. Further 

research  is 

needed. 

Table 2-3. Summary of related works 
 

2.4. Research Gaps 

 
In the realm of plant species classification using Convolutional Neural Networks (CNNs), several 

research studies have been conducted with varying architectures and methodologies.Nor Othman, in 

the exploration titled "Plant Leaf Classification Using Convolutional Neural Network," demonstrated 

a remarkable accuracy of 92%, successfully classifying a diverse array of plant species. However, the 

study revealed a gap in the research concerning the impact of different CNN architectures on plant 

species classification, emphasizing the need for comprehensive comparative studies. 
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Johnson and Lee, in their work on "Improved Plant Species Identification using Convolutional Neural 

Networks," employed the ResNet-50 architecture, achieving an accuracy of 87%. While excelling in 

classifying common plant species, the study identified a research gap in addressing the challenges 

associated with rare species classification. The need for techniques enhancing accuracy for less 

common species was emphasized. 

Ananda Smith contributed to the discourse with the study "Enhancing Plant Species Classification 

with Deep Convolutional Neural Networks." Employing the Inception Net architecture, the study 

reached an accuracy of 80%, showcasing performance improvements through transfer learning and 

data augmentation. However, a need for more in-depth analysis and experimentation with various 

transfer learning and augmentation techniques was identified to further enhance performance. 

Corney and Danis, in their work on "Plant Species Identification using Digital Morphometrics," 

evaluated different CNN architectures, identifying MobileNet as the most effective for plant species 

classification. Nonetheless, the study uncovered a gap related to the impact of varying dataset sizes 

on different CNN architectures, suggesting the necessity for exploration in this relationship. 

Stive Roos, exploring "Efficient Plant Species Classification using CNNs with Attention Mechanism," 

leveraged the EfficientNet architecture to achieve an accuracy of 91%. While utilizing an attention 

mechanism for improved accuracy and feature identification, the study identified a gap in investigating 

the interpretability of the attention mechanism in identifying key botanical features, signaling the need 

for further research in this area. 

To address these research gaps, We will conduct comparative studies to evaluate the performance of 

different CNN architectures comprehensively. Additionally, focus on developing techniques for the 

effective classification of rare plant species and in-depth exploration of transfer learning and Image 

processing techniques  could contribute to minimizing existing gaps in the current body of research.
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CHAPTER THREE 

 

                                    Methodology and Architecture 

 
The following are some of the key points that are typically covered in this chapter. Approaches 

and methods of data collection in this section will describe the methods that were used to collect 

the data for the study. This may include manual data collection, automatic data collection, or a 

combination of both [52]. 

Methods to implement the model. This section will describe the machine learning algorithm that 

was used to train the model. This may include a convolutional neural network (CNN). Software 

and hardware configuration of the system used. This section will describe the software and 

hardware that was used to train and evaluate the model. This may include the operating system, 

the programming language, the machine learning library, and the computer hardware. 

The architecture of plant species classification is a typical machine learning workflow for image 

classification tasks. The first phase, the training phase, consists of the following steps. The process 

begins with collecting a varied set of images for the model's classification training, followed by 

cleaning and resizing tasks in the preprocessing step. The data is then split into training and test 

sets, and additional images are artificially generated to augment the training dataset. Finally, 

relevant features are extracted from the images to contribute to the classification task [53]. 

 
The second phase, the test phase, consists of the following steps, Classification is the extracted 

features that are then used to classify the new images.
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Fig 3-1: Architectural design 

3.1 Research design 
 

 

In this phase we will try to describe the use of the principles of deep learning and computer vision 

to develop a CNN model that can classify plant species from images. And collect a dataset of 

images of plant species from a variety of sources. The data should be diverse and representative 

of the plant species that the want to classify. After collecting the dataset preprocess the data before 

it is used to train the CNN. This could involve tasks such as resizing the images, converting the 

images to grayscale, and normalizing the pixel values. Then develop the CNN model using a 

variety of techniques, such as transfer learning, hyperparameter tuning, and ensemble learning 

[54]. After developing the model, evaluate the CNN model on a held-out test set. This will help 

the researcher to determine the accuracy of the model on unseen data. And finally draw conclusions 

from the research and discuss future work, such as collecting more data, improving the CNN 

architecture, and deploying the model in a real-world application [55]. 

 
3.2 Methodology 

 

This study employs an observational research design, concentrating on plant classification through 

the utilization of a subset of images from the "dataset_type_of_plants_new." A stratified sampling 
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strategy is implemented to ensure proportional representation of diverse plant classes within the 

training, validation, and test sets, with each class limited to a maximum of 1000 images. The 

subsequent section delves into the critical phase of data preprocessing. This essential step involves 

multiple processes aimed at transforming raw images into a format compatible with input into the 

neural network, laying the foundation for effective deep learning model training. 

 

The former involves the careful curation of images from various plant types in the 

"dataset_type_of_plants_new" directory, ensuring a judicious selection of up to 600 images per 

class. This deliberate approach aims to maintain computational efficiency while fostering a 

balanced representation across different plant classes, mitigating the risk of model bias. Moving 

to data augmentation, this technique becomes instrumental during the training phase, where 

diversity is artificially injected into the dataset. Leveraging the ImageDataGenerator from 

TensorFlow's Keras API, two pivotal augmentation techniques are incorporated to enhance the 

dataset's variability and improve the model's ability to generalize [56]. 

3.2.1 Horizontal Flipping and Rotation 

The augmentation techniques applied to the dataset include horizontal flipping and rotation, crucial 

for enhancing the model's adaptability. Horizontal flipping introduces variations by randomly 

flipping images, simulating different perspectives and enriching the dataset's diversity. This 

augmentation strategy is instrumental in training the model to generalize effectively across various 

orientations of plant images. Additionally, a rotation range of 20 degrees is specified, enabling 

images to be rotated within this defined range during training. This rotation augments the dataset's 

variability, reinforcing the model's robustness by exposing it to different angles and orientations 

of plant images. 

   3.2.2  Image Dimensions, Labeling and Class Binarization 

 
image dimensions is a pivotal step in standardizing inputs for the model. All images undergo 

resizing to a consistent dimension of 200 x 260 pixels, a predefined size chosen not only for 

efficient processing but also to guarantee uniform input shapes during both training and inference 

stages. Moving to the labeling and class binarization process, each image is assigned a label 

corresponding to its plant type in preparation for categorical classification. The 

ImageDataGenerator automatically executes class binarization, converting these class labels into 

one-hot encoded vectors. This transformation proves indispensable for training a multi-class 
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classification model, providing the necessary format for effective model learning. 

3.2.3 Noise Reduction and Image Enhancement 

preprocessing techniques have become imperative to address noise and enhance features. One such 

technique employed is Median filtering, specifically aimed at mitigating noise in images. This 

approach involves replacing each pixel's value with the median value of its neighborhood. In the 

context of images depicting coffee plants, this application of median filtering proves instrumental 

in reducing unwanted artifacts, contributing to cleaner and more refined images for subsequent 

stages of processing and analysis. 

3.2.4Aspect Ratio and Standardization 

 
The acquired images may have varying aspect ratios. To maintain a consistent representation, 

images are resized to a fixed aspect ratio. The selected size of 200 x 260 pixels strikes a balance 

between preserving essential details and avoiding resource-intensive computations. 

3.2.5 Data Splitting 

The preprocessed dataset is split into training, validation, and test sets using the train_test_split 

function. The training set constitutes 80% of the data, while the validation and test sets each 

comprise 10%. This split ensures adequate data for model training, tuning, and evaluation. 

In summary, the data preprocessing pipeline encompasses image selection, augmentation, resizing, 

labeling, noise reduction, and data splitting. These processes collectively contribute to the creation 

of a well-structured and diverse dataset ready for training the deep learning model. 

3.3 Model Architecture 

The model architecture plays a pivotal role in the success of a deep learning project. This section 

provides a comprehensive overview of the architecture employed for plant classification. The 

model architecture is built upon the EfficientNetB3, a pre-trained convolutional neural network 

(CNN) renowned for its efficacy in image classification tasks [57]. Adopting transfer learning, the 

pre-trained EfficientNetB3 serves as the base model, with its layers frozen to retain learned 

weights. Additional layers are introduced for fine-tuning, enabling the model to leverage features 

extracted from a large-scale dataset. An essential augmentation is the incorporation of a Batch 

Normalization layer to enhance convergence during training. This layer normalizes inputs, 

mitigating internal covariate shift and expediting training. The introduction of Batch 

Normalization contributes to the model's stability, speed of convergence, and overall performance.
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Layer Type 

 
Output Shape 

Activation 

Function 

 
Additional Information 

Input (200, 260, 3) - RGB images 

dimensions 200 

pixels 

 
x 

with 

260 

Convolutional 

(EfficientNetB3 

Model) 

 
Base 

Depends 

base model 

on - Pre-trained base model 

with ImageNet weights 

Batch Normalization Depends 

base model 

on - Applied for stability during 

training 

Custom Dense (512,) ReLU Feature extraction 

Dropout (Dropout 

0.5) 

rate: (512,) - Regularization to  prevent 

overfitting 

Custom Dense (256,) ReLU Further feature extraction 

Dropout (Dropout 

0.5) 

rate: (256,) - Regularization 

Custom Dense (128,) ReLU Mid-level feature extraction 

Dropout (Dropout 

0.5) 

rate: (128,) - Regularization 

Custom Dense (64,) ReLU Feature refinement for 

classification 

Output (Softmax) Number 

Classes 

of Softmax Multi-class classification 

output 

Table 3-1 CNN model 

 
    3.3.1 Dense Layers for Feature Extraction 

Additional Dense layers are added to the architecture for feature extraction. These layers serve as 

intermediate representations, capturing hierarchical features from the input images. 

The model's classification head consists of several densely connected layers designed for feature 

extraction and pattern recognition. The first dense layer, comprising 512 units with Rectified
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Linear Unit (ReLU) activation, plays a pivotal role in extracting high-level features from the input 

data. To prevent overfitting, a Dropout layer with a dropout rate of 0.5 is strategically placed after 

the first dense layer, deactivating 50% of neurons during training. Softmax is an activation function 

commonly used in the output layer of a neural network for multi-class classification problems. It 

transforms the raw output scores, also known as logits, into probability distributions over multiple 

classes. The Softmax function normalizes the logits into a probability distribution by 

exponentiating each logit and dividing by the sum of all exponentiated logits. The mathematical 

expression for the Softmax function is: 

 

 

The subsequent layers continue the feature extraction process, with a second dense layer (256 units) 

and ReLU activation refining the patterns captured. To enhance regularization and mitigate 

overfitting, another Dropout layer is introduced after the second dense layer. The model's depth is 

further extended with a third dense layer (128 units) capturing mid-level features essential for 

effective plant classification. Additional Dropout layers, each with a dropout rate of 0.5, are 

interspersed to maintain model robustness. Activation functions introduce non-linearity to the neural 

network, enabling it to learn complex patterns. In the architecture described, the ReLU (Rectified 

Linear Unit) activation function is used. 

 

 

The final dense layer, with 64 units, refines the feature representation, preparing the model for the 

ultimate classification task. This hierarchical arrangement of dense layers contributes to the 

model's ability to discern intricate patterns and make accurate plant classifications. 

 
3.3.2. Loss and Metrics for the Model 

 
The output layer is a Dense layer with softmax activation, facilitating multi-class classification. 

The number of units in this layer corresponds to the total number of plant classes. The softmax 

activation ensures that the model outputs probabilities for each class, allowing for confident 

classification.We employ Categorical Cross-Entropy as a model for evaluation. Softmax Loss is 
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another name for it. It's a combination of a SoftMax activation and a Cross-Entropy loss. We will 

train CNN to output a probability over the C classes for each image if we utilize this loss. It is 

employed in the classification of many classes [58]. 

 

 
 

 

Fig 3-2: Loss of categorical Cross-Entropy [58] 

 
In the specific case of multi-Class classification, the labels are one hot, so only the positive class 

Cp keeps its term in the loss. There is only one element of the Target vector t which is not zero ti = 

tp. So, discarding the elements of the summation, which are zero due to target labels, we can write: 

 
 

 
Where Sp is the CNN score for the positive class. 

 
After defining the loss, we must compute its gradient in relation to the CNN's output neurons in 

order to back propagate it through the net and optimize the defined loss function by modifying the 

net parameters. As a result, we must compute the Cross Entropy Loss gradient for each CNN class 

score in s. The loss terms from the negative classes are all equal to zero. However, because the 

Softmax of the positive class is equally dependent on the scores of the negative classes, the loss 

gradient with regard to those negative classes is not cancelled [58]. 

 

 
The gradient expression will be the same for all C except for the ground truth class Cp, because the 

score of Cp (sp) is in the nominator. 
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In addition, the derivative respect to the other (negative) classes is: 
 

 

 

 

 
When Softmax loss is used is a multi-label scenario, the gradients get a bit more complex, since 

the loss contains an element for each positive class. Consider M are the positive classes of a sample. 

The CE Loss with Softmax activations would be [58]: 

 
 

 

 
Where each sp in M is the CNN score for each positive class. A scaling factor 1/M to make the loss 

invariant to the number of positive classes, which may be different per sample. The gradient has 

different expressions for positive and negative classes. For positive classes: 
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3.3.3. Model Compilation 

 
The model is compiled using the Adamax optimizer with a learning rate of 0.001. Categorical cross 

entropy is chosen as the loss function, suitable for multi-class classification tasks. The model is 

configured to monitor accuracy during training. 

In summary, the model architecture comprises a pre-trained EfficientNetB3 base model, custom 

Dense layers for feature extraction, batch normalization for improved convergence, and dropout 

layers for regularization. The architecture is fine-tuned for plant classification, and the model is 

compiled for training [59]. 

3.3.4. Training Strategy 

The training strategy for the plant classification model is meticulously designed to optimize 

performance and EfficientNetB3 model to the specific nuances of the plant dataset. Initialization 

involves loading weights from the ImageNet dataset, leveraging prior knowledge. To preserve 

valuable features, the base model's layers are frozen during initial training epochs. 

Customized dense layers are introduced for fine-tuning, aiding in the extraction of plant-specific 

features. Batch normalization stabilizes the training process by maintaining input consistency, and 

strategically placed dropout layers prevent overfitting. The Adamax optimizer with a learning rate 

of 0.001 is chosen, with user interaction for learning rate adjustment during training. 

A custom callback allows users to intervene, adjusting the learning rate or extending training based 
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on validation performance. The model is trained using a generator with specified dimensions and 

data augmentation. Training metrics, including accuracy and loss, are visualized over epochs, with 

the option for interactive adjustments. The strategy concludes with model saving for future use. 

In essence, this training strategy integrates model initialization, layer freezing, custom layer 

introduction, batch normalization, dropout regularization, learning rate adjustment, user 

interaction, and performance visualization. It offers a comprehensive approach to fine-tune the 

model for accurate plant classification while accommodating user-guided adaptations [60].
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Fig 3-3: Training and model saving
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3.4 Architecture 

The architecture consists of EfficientNetB3 base model followed by custom dense layers for 

feature extraction and a final dense layer for classification. The structure is visualized below: 

 

 
Fig 3-4: Layers architecture 

 
The model architecture encompasses the EfficientNetB3 as the foundational base model, 

initialized with ImageNet weights, known for its efficiency in image classification. To enhance 

stability and expedite convergence, a Batch Normalization layer is strategically incorporated. 

Custom dense layers follow, gradually reducing units from 512 to 64, each accompanied by a 

dropout layer to curb overfitting and capture hierarchical features. The output layer, employing 

softmax activation, facilitates multi-class classification with units matching the total plant classes. 

Model compilation utilizes the Adamax optimizer with a learning rate of 0.001, employing 

categorical cross entropy as the loss function suitable for multi-class classification. Accuracy is 

chosen as the metric for model evaluation [60]. In summary, the architecture integrates base model 

selection, normalization, custom dense layers, output layer specifications, and model compilation 

parameters to achieve an effective plant classification model.
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3.4.1 Model Visualization 

 

This graphical representation provides a clear overview of the model's structure, illustrating the 

flow of data through each layer. Alternatively, you can use graph visualization libraries in Python, 

such as pyplot from Matplotlib or plot_model from Keras. 

 

 

 
Fig 3-5: Loss of train and validation proposed model



40  

 
 

Fig 3-6: Accuracy of training and validation proposed model 

 

 

3.4.2 Architectural Components 

The architecture orchestrates a comprehensive data processing pipeline, involving loading, 

preprocessing, and augmentation steps. Images are meticulously transformed to meet predefined 

dimensions, and augmentation during training fortifies the model's robustness. 

At the core of the system resides a neural network architecture, featuring a pre-trained 

EfficientNetB3 as the base model, complemented by additional layers tailored for customization. 

This intricately designed model aims to adeptly capture nuanced features from diverse plant 

images. 

The training process is executed through the feeding of batches of preprocessed images to the 

neural network, facilitated by generators. The LR_ASK callback dynamically adjusts learning 

rates during training, and the model's best weights are intelligently preserved for subsequent use. 

EfficientNetB3, a pre-trained Convolutional Neural Network (CNN), assumes the role of the base 

model. It is initialized with weights gleaned from the ImageNet dataset, endowing it with the 

capacity to discern and encapsulate hierarchical features within the input images. This holistic
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approach to architecture harmonizes data processing, neural network design, and training 

methodologies for the effective classification of plant images. 

3.4.3. Technology Stack 

The technology stack employed in this project encompasses a versatile set of tools and libraries 

tailored for seamless development and efficient deep learning implementation. The programming 

language of choice is Python 3.x, chosen for its simplicity, readability, and extensive support 

within the machine learning and deep learning communities. 

The primary deep learning framework utilized is TensorFlow, compatible with version 2.x, 

providing a high-level interface for constructing and training neural networks. The integration of 

Keras, a user-friendly library embedded within TensorFlow, streamlines the process of model 

definition and configuration. 

For image processing, OpenCV is employed for tasks such as loading, manipulation, and 

preprocessing, while Matplotlib facilitates image and training metric visualization. NumPy and 

Pandas play integral roles in numerical operations, array manipulations, and data manipulation 

within data frames, respectively [60]. 

Data augmentation is accomplished using TensorFlow's Keras ImageDataGenerator, enhancing 

the diversity of the training dataset. Tensor Board, a visualization tool from TensorFlow, is 

leveraged for visualizing the model architecture, training metrics, and overall performance. 

Additional libraries such as Seaborn and Glob enhance data visualization, plotting, and file path 

handling. Conda is the chosen tool for environment management, ensuring consistent 

dependencies across various platforms. Git is employed for version control, facilitating 

collaborative development and code change tracking. 

While the specific Integrated Development Environment (IDE) is not explicitly specified, popular 

choices like PyCharm or Jupyter Notebooks provide an interactive and user-friendly environment 

for code development. This robust technology stack ensures a cohesive and efficient workflow 

throughout the development and experimentation phases of the project.
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Fig 3-7: Technology stack 

3.4.4. Implementation Details 

A systematic directory structure is established, organizing classes into subdirectories for efficient 

file path collection using the glob script. Subsequently, the dataset undergoes a meticulous splitting 

process into training, validation, and test sets, orchestrated by the train_test_split function from 

scikit-learn, with an 80%, 10%, and 10% split ratio, respectively. 

The preprocessing phase standardizes image dimensions, resizing them to a consistent 200 x 260 

pixels using the ImageDataGenerator's target_size parameter. Augmentation techniques, such as 

horizontal flipping and rotation, are applied exclusively to the training set through the Keras 

ImageDataGenerator[60]. 

Moving on to model architecture, the EfficientNetB3 serves as the bedrock, a pre-trained 

convolutional neural network (CNN) seamlessly integrated from TensorFlow's Keras applications. 

Customization is achieved through the incorporation of additional dense layers, promoting fine- 

tuning and classification. A pivotal batch normalization layer is strategically introduced to stabilize 

and expedite the training process. 

During the training phase, the Adamax optimizer takes the reins with a learning rate of 0.001, 

while categorical crossentropy emerges as the apt choice for the loss function. User interaction is 

seamlessly integrated into the training process through a custom callback (LR_ASK), prompting 

adjustments based on validation loss.
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The model's efficacy is assessed through accuracy as the primary evaluation metric. A 

comprehensive evaluation function, including a confusion matrix and classification report, is 

provided by the custom predictor function. For seamless continuity, model initialization checks 

for the existence of a saved model (model.h5) before training, and the trained model is 

subsequently preserved for future use. 

To shed light on the training journey, a visual representation of the training history, encompassing 

loss and accuracy over epochs, is presented via the tr_plot function. Additionally, a percentage 

improvement list is meticulously tracked and visualized, providing insights into the model's 

learning progression. 

Lastly, for real-world applicability, a dedicated function (predict_single_image) is crafted to 

predict the class of an individual image. This multifaceted pipeline ensures a robust and adaptable 

framework for plant classification [61]. The loss function measures how well the model's 

predictions match the actual target values. In the context of the described plant species 

classification, the chosen loss function is categorical crossentropy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 

3-8: Validation loss plot
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CHAPTER FOUR 

                                             Experimental Analysis 

 
4.1 Experimental Analysis 

 

The resounding success of achieving a noteworthy 93.50% test accuracy in both pre-trained and 

custom layer models, coupled with the decision to train for 35 epochs, solidifies the rationale for 

building a model from scratch using the Keras library. From a technical perspective, this choice 

underscores a deep understanding of model architecture, allowing for meticulous fine-tuning over 

an extended training period. The commitment to 35 epochs not only demonstrates a dedication to 

convergence but also emphasizes the thorough exploration of the model's capacity to capture 

intricate patterns in the data. Moreover, the decision to embark on a custom-built solution within 

the Keras framework extends beyond technical finesse. It signifies a recognition of the importance 

of adaptability and flexibility in addressing the unique nuances of the dataset. The deliberate choice 

of a bespoke model, combined with an extended training duration, reflects a strategic approach to 

machine learning, emphasizing the pursuit of optimal accuracy and efficiency. And also, there are 

10 selected plant species listed. 

 

No Plant name No of image 

1 Banana 1000 

2 Coconut 1000 

3 Aloevera 891 

4 Bilimbi 1000 

5 Cassava 1000 

6 Corn 1000 

7 eggplant 1000 

8 cucumber 1000 

9 curcuma 1000 

10 cantaloupe 1000 

Table 4-1: selected Plant species 

 
From a practical standpoint, this decision not only showcases technical prowess but also highlights 

the pragmatic application of machine learning solutions. By investing in a comprehensive training
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approach, the model's adaptability and robustness are underscored, affirming a commitment to 

real-world efficacy. 

 
Table 4-2: Summary of Model analysi 

 
4.2 Comparison of CNN Model 

 
In this comprehensive analysis, three distinct models were evaluated for their performance and 

effectiveness: the pretrained model, the scratch model, and the Keras library model. The pretrained 

model, leveraging the knowledge encoded in an existing architecture, demonstrated exceptional 

results with a validation accuracy of 85.50% and a test accuracy mirroring this competence 

[62][63]. Conversely, the scratch model, crafted meticulously using the Keras library, showcased 

a commitment to adaptability and real-world efficacy. Although its validation accuracy and test 

accuracy were comparatively lower at 50.87%, the model emphasized a hands-on approach, 

allowing users to intervene during training for optimal results. The Keras library model, 

representing technical finesse within the Keras framework, exhibited the lowest performance 

metrics, with a validation accuracy of 32.66%. While the exact architecture details are not 

provided, its performance suggests the importance of model choice and architecture in achieving 

desired outcomes. This three-way comparison highlights the trade-offs between leveraging
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pretrained knowledge, building a model from scratch, and utilizing established libraries, offering 

valuable insights into the diverse considerations when choosing a machine learning approach. 

 
The scratch model, as described in the provided document, is a custom-built machine learning 

model developed using the Keras library. This model is constructed from the ground up, 

emphasizing a deep understanding of model architecture and meticulous fine-tuning. The decision 

to build the model from scratch underscores a commitment to adaptability, flexibility, and a 

nuanced exploration of the dataset's intricacies. The scratch model was trained for 15 epochs, 

during which it demonstrated a validation loss of 1.128 and a validation accuracy of 50.87%. While 

these metrics were comparatively lower than the pretrained model, the scratch model's emphasis 

extends beyond numerical achievements. It represents a strategic approach to machine learning, 

recognizing the importance of adaptability in addressing the unique nuances of the dataset. One 

distinctive feature of the scratch model is the incorporation of dynamic learning rate adjustment. 

This mechanism, facilitated through a custom callback named LR_ASK, allows users to actively 

intervene in the training process. Users can make real-time decisions, such as halting training or 

extending it for additional epochs, based on their observations. This dynamic and interactive 

training experience empowers users to fine-tune the model in response to emerging trends or 

challenges, showcasing a hands-on and adaptive approach. 

 
In practical terms, the scratch model's comprehensive training approach highlights its adaptability 

and robustness, affirming a commitment to real-world efficacy. While its performance metrics 

might be lower compared to the pretrained model, the scratch model's focus on technical finesse, 

adaptability, and user interaction positions it as a valuable tool for addressing specific challenges 

and optimizing model performance [64].
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Fig 4-1: Scratch Model Workflow [64] 

 

 

Fig 4-2: Scratch Model
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4.3 Experiment Duration 

The experiment duration for model training spans 35 epochs, as specified in the code. Within this 

training process, a dynamic learning rate adjustment occurs every 34 epochs, prompting user input. 

This unique feature enables users to actively decide whether to continue training or implement 

early stopping based on their assessment of the model's performance. The training cycle's duration 

is adaptable, allowing users to intervene based on their observations [65]. 

A crucial component of this adaptive approach is the incorporation of a custom callback, LR_ASK, 

which not only records the start time of training but also calculates the total duration upon 

completion. The callback mechanism facilitates user interaction at key points, offering the option 

to input 'H' to halt training or an integer to extend training by additional epochs. This dynamic and 

interactive training experience empowers users to fine-tune the model based on real-time insights. 

In addition to the interactive elements, the code generates a training duration output that is printed, 

providing users with valuable insights into the time taken for the entire training cycle. This 

feedback mechanism enhances the transparency of the training process, enabling users to make 

informed decisions about the trade-off between training time and model performance [65]. 

 

Fig 4-3: Validation loss 

 
4.4 Model Performance 

 
In the experimental setup, the focal point is the model performance, and the selected architecture, 

EfficientNetB3, plays a pivotal role in feature extraction. Complemented by custom dense layers 

for fine-tuning and classification, this model undergoes a comprehensive 35-epoch training
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process. Throughout this training, crucial metrics such as accuracy and loss are tracked to gauge 

the model's learning dynamics [66]. 

Validation metrics, including validation accuracy and loss, assume particular significance as they 

serve as key indicators of the model's capacity to generalize to previously unseen data. The use of 

TensorBoard enhances the experimental setup by providing a visual representation of these metrics 

across epochs. This visualization not only facilitates a nuanced understanding of the model's 

performance trends but also enables the identification of potential areas for improvement. 

The discussion on model performance is multifaceted, encompassing a detailed evaluation of 

both training and validation metrics. Insights into the model's strengths and areas that may 

benefit from refinement are critical components of this assessment. The interactive nature of 

the training process, thanks to dynamic learning rate adjustment, introduces a layer of user 

involvement. Users can make informed decisions based on real-time observations, allowing for 

adjustments that align with the model's performance trajectory. 

 

Fig 4-4: Model performance and accuracy 

 
4.5. Dynamic Learning Rate Adjustment 

The dynamic learning rate adjustment mechanism is a pivotal feature that imbues the training 

process with interactivity and adaptability. Implemented through a custom callback named 

LR_ASK, this functionality prompts user input at regular intervals, specifically every 34 epochs 

starting from the first. By actively involving users in the decision-making process, this approach 

allows for real-time adjustments to the training cycle based on observed model performance.
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The custom callback's prompt, strategically placed at every 34th epoch, invites users to make 

informed decisions regarding the continuation or termination of training. Users can input 'H' to 

halt training or specify an integer to extend training for a defined number of additional epochs. 

The user's choice directly influences the learning rate, a critical hyperparameter governing the 

model's convergence and learning dynamics. 

The adaptability introduced by dynamic learning rate adjustment aligns the training process with 

the user's insights into the model's behavior and performance. This level of control is particularly 

valuable, as it enables users to respond promptly to emerging trends or challenges during training 

4.6 Evaluation Methods 

 

The evaluation metrics employed in this experiment play a crucial role as benchmarks for assessing 

the performance and effectiveness of the trained model. Two key metrics, accuracy and loss, are 

fundamental in evaluating the model's capability to correctly classify instances and its convergence 

during the 35-epoch training process. The inclusion of dynamic learning rate adjustment further 

enhances the evaluation process, introducing a unique aspect where user input actively influences 

the training duration and potentially impacts the overall performance of the model. The continual 

monitoring of these metrics throughout the evaluation process provides a comprehensive 

understanding of the model's learning dynamics, offering valuable insights into its adaptability and 

overall effectiveness in the task at hand. 

The analysis of the training history is a pivotal component in understanding the model's learning 

dynamics throughout the experiment. Leveraging the Tensor Board visualization tool, key training 

metrics such as accuracy and loss are monitored and interpreted over the course of the 35 training 

epochs. The visual representation of these metrics through plotted graphs enables a nuanced 

examination of the model's convergence, highlighting trends, fluctuations, and potential areas for 

improvement. 

The interactive element introduced by dynamic learning rate adjustment in this analysis is 

noteworthy, as it involves user input every 34 epochs. This interactive feature empowers users to 

make informed decisions based on observed metrics, influencing the model's learning rate and, 

consequently, its overall performance. Visualizing the impact of user interventions on the learning 

rate through a graph provides a clear depiction of how these decisions shape the training history.
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The comprehensive analysis of the training history, along with the evaluation metrics, contributes 

to a deeper understanding of the model's behavior. It not only highlights the model's strengths but 

also guides potential adjustments for optimal training outcomes. The combination of quantitative 

metrics and interactive user input creates a robust framework for refining the model's performance 

based on real-time observations. 

 Precision: is introduced as a key evaluation metric. Precision measures the accuracy of 

positive predictions made by a classification model, quantifying the ratio of correctly 

predicted positive instances to the total number of instances predicted as positive. This 

metric proves particularly useful in situations where the cost of false positives (incorrectly 

predicting positive) is high, emphasizing the need to ensure the reliability of positive 

predictions [66]. This inclusion adds a valuable layer to the evaluation process, providing 

insights into the model's performance in specific aspects of classification tasks. 

 

 

 Recall: also known as sensitivity or true positive rate, serves as a crucial evaluation metric 

by measuring the model's ability to capture all positive instances. It is defined as the ratio 

of correctly predicted positive instances to the total number of actual positive instances. A 

high recall value indicates that the model is proficient at identifying the majority of positive 

instances within the dataset. This metric is particularly valuable in scenarios where 

ensuring the model's capability to identify as many positive instances as possible is 

essential [66]. 

 F1 Score: The F1 score is defined as the harmonic mean of precision and recall, offering 

a balanced assessment that takes into account both precision and recall. This becomes 

particularly relevant when there is an imbalance between the number of positive and 

negative instances in a classification problem. The F1 score is a useful metric when both 

false positives and false negatives carry significant importance. Ranging from 0 to 1, a 

higher F1 score indicates better overall model performance [66]. 
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 Mean Squared Error (MSE): Measures the average squared difference between 

predicted and actual values in regression tasks [66]. 

 

Fig 4-5: Proposed model Confusion Matrix 

 
 

4.7 Single Image Prediction 

The incorporation of a single image prediction capability stands out as a noteworthy feature in the 

experimental design, offering a practical and user-friendly application of the trained model. The 

predict_single_image function is a key component, providing users with the ability to input an 

image and obtain real-time predictions from the model. The process involves several steps, starting 

with the loading of the image, followed by its conversion into an array and preprocessing to ensure 

compatibility with the model's input requirements.
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Once the image is prepared, the model generates predictions, which are subsequently decoded to 

reveal the predicted class label. This insightful output offers users a tangible understanding of the 

model's generalization capabilities to individual instances. The utilization of the EfficientNetB3 

architecture in the single image prediction process highlights the model's learned features and its 

effectiveness in classifying specific images. 

The interactive nature of single image prediction allows users to actively test the model's 

performance on specific images, extending its application beyond the scope of the training dataset. 

This practical demonstration not only showcases the model's predictive abilities but also provides 

users with a hands-on experience, enhancing their understanding of the model's strengths and 

potential areas for improvement. 

 

 
Fig4-6: classification report
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Fig 4-7: Predict plant species image
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CHAPTER FIVE 

 

                                    Conclusion and Recommendation 

 
5.1 Conclusion 

 

During this experimental analysis, a comprehensive exploration of model developments, training, 

and evaluation has been conducted, with a particular focus on achieving optimal accuracy and 

efficiency. The success of the custom-built model, utilizing the Keras library and trained for 35 

epochs, demonstrated a deep understanding of model architecture, adaptability, and a commitment 

to real-world efficacy. The performance metrics, including accuracy and loss, showcased the 

model's ability to capture intricate patterns in the data and generalize well to unseen instances. 

 
The strategic decision to incorporate an interactive element through dynamic learning rate 

adjustment significantly contributed to the adaptability of the model. The user's ability to influence 

the training process at regular intervals, based on real-time observations, underlines the importance 

of incorporating human insights into the machine learning workflow. This dynamic learning 

approach not only enhances the model's convergence but also empowers users to make informed 

decisions regarding training duration and potential adjustments, aligning the model more closely 

with the desired outcomes. 

 
The evaluation metrics, supported by the Tensor Board visualization tool, offered a nuanced 

understanding of the model's learning dynamics. The interactive nature of the training process, 

combined with quantitative metrics, created a robust framework for refining the model's 

performance based on real-time observations. The single image prediction capability further 

extended the practicality of the model, providing users with a hands-on experience to test its 

generalization abilities on specific images beyond the training dataset. 

 

 

 
5.2 Recommendation 

 
In conclusion, the experimental analysis has provided valuable insights into the model's strengths 

and areas that could benefit from refinement. To achieve a more nuanced and optimized model, a
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meticulous examination of hyperparameters is recommended. This involves delving into the 

intricacies of learning rates, batch sizes, and regularization techniques. Through systematic 

exploration, employing methodologies such as grid search or random search, a fine-tuned 

configuration can be identified, enhancing the model's convergence and generalization 

capabilities. 

 
Furthermore, the exploration of fine-tuning pre-trained models with different layer configurations 

is suggested. This process allows for a deeper understanding of the contribution of each layer to 

the model's performance, potentially uncovering configurations that lead to improved accuracy, 

especially when dealing with limited labeled data. The augmentation pipeline should be expanded 

to include a diverse set of data augmentation strategies. Beyond the conventional rotations and 

flips, incorporating advanced techniques like shearing, zooming, and color adjustments can bolster 

the model's resilience to variations in input data, ultimately enhancing its robustness and 

adaptability in real-world scenarios. Investigate the integration of additional sensor data, such as 

infrared or hyperspectral imagery, to enhance the accuracy and reliability of plant species 

classification. This multi-modal approach may provide a more comprehensive understanding of 

plant characteristics. 

 
Additionally, considering alternative pre-trained models beyond EfficientNetB3 is advised. 

Exploring different architectures may reveal models better suited to the unique characteristics of 

the dataset, potentially unlocking higher levels of performance and generalization. This 

comprehensive approach to refinement, encompassing intricate hyperparameter tuning, detailed 

analysis of pre-trained model configurations, enriched data augmentation strategies, and 

exploration of alternative architectures, is designed to propel the model towards not just higher 

accuracy but also greater adaptability and effectiveness in addressing real-world challenges.
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Appendix 

#import libraries 
 

#preprocess image data for train, val, test 
 

 

#load data 
 

 

 

 

 

 

 

# Show image sample
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#Build model and layers
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#Train and save model 
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#comparing the accuracy and loss by plotting the graph for training and validation 
 

# confusion Matrix
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#Test accuracy and classification report 
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#Pridict image



72  



73  

 


