

Tigrigna-English Bidirectional Machine Translation using

Deep Learning

A Thesis Presented

by

Fitiwi Hailu

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Computer Science

January, 2024

i

Declaration

I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials used

for the thesis work have been duly acknowledged.

Fitiwi Hailu

Full Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Alemebante Mulu Kumlign (PhD)

Full Name of Advisor

Signature

Addis Ababa

Ethiopia

January 2024

ii

Acknowledgment

First and foremost, I would like to thank my God and Ever-Virgin, St. Marry, Mother of our Lord,

for your blessing and giving me the courage and wisdom to accomplish this thesis.

Next, I would like to thank Dr. Alemebante Mulu, my advisor, for his support from the very

beginning of proposal writing to this end. He has been actively interested in my work and he has

always been available when I need him. I am very grateful for his patience, motivation, and

immense knowledge. It could not be easier to finish this thesis work without his valuable comments

and corrections.

Next I would like to thank my parents, whose love and guidance are with me in whatever I

pursue. They are the ultimate role models. Most importantly, I wish to thank my loving and

supportive wife, Eleni Tsegay, and my three wonderful children, Naome, Herani and Neamen,

who provide unending inspiration.

Finally I would like to thank Journalist Biniyam Tadesse and, teacher Gebru W/Michel, for their

support during data translation. I would like to say “Thank you all” for your support in my work.

iii

Table of Contents

Declaration ... i

Acknowledgment ... ii

Table of Acronyms...vi

List of Figures .. vii

List of Table...ix

Abstract .. x

CHAPTER ONE ... 1

1 INTRODUCTION .. 1

1.1. Background... 1

1.2. Problem statement ... 4

1.3. Motivation .. 5

1.4. Research questions .. 6

1.5. The objective of the study ... 6

1.5.1. General objective ... 6

1.5.2. Specific objectives ... 6

1.6. Scope and limitation of the study .. 7

1.7. Significance .. 7

1.8. Thesis organization ... 7

CHAPTER TWO .. 8

2 Literature Review .. 8

2.1. Introduction to Natural language ... 8

2.2. Natural language processing.. 9

2.3. Background of Tigrigna language ... 11

2.4. Background of English language ... 15

iv

2.5. Machine translation ... 15

2.6. Approaches of machine translation .. 18

2.6.1. Rule-based machine translation (RBMT) ... 19

2.6.2. Dataset-based Machine Translation Approach .. 21

2.6.3. Machine translation using Neural Network ... 25

2.7. Related work ... 36

CHAPTER THREE ... 39

3 RESEARCH METHODOLOGY ... 39

3.1. Introduction .. 39

3.2. Research design .. 39

3.3. System design and architecture ... 39

3.3.1. Dataset collection ... 40

3.3.2. Dataset preprocessing .. 41

3.3.3. Model training ... 43

3.3.4. Model evaluation ... 47

3.3.5. Development tools ... 47

CHAPTER FOUR ... 49

4. EXPERIMENTATION AND RESULTS ... 49

4.1. Introduction .. 49

4.2. Dataset Collection and Preparation .. 49

4.3. Experimental setups .. 49

4.4. Parameter Selection .. 50

4.5. Performance evaluation ... 51

4.5.1. Training and validation accuracy of English to Tigrigna translation model 51

4.5.2. Training and validation accuracy of Tigrigna to English translation model 53

v

4.5.3. Training and validation loss of English to Tigrigna translation model................... 57

4.5.4. Training and validation loss of Tigrigna to English translation model................... 60

4.1. Experimental results and discussion .. 64

4.3. Prediction.. 67

CHAPTER FIVE .. 71

5. CONCLUSION AND RECOMMENDATION .. 71

5.1. Introduction .. 71

5.2. Conclusion .. 71

5.3. Contribution .. 72

5.4. Recommendation .. 72

References .. 73

Appendix A. Tigrigna language orthographic Table .. 80

Appendix B: Algorithms ... 83

Appendix C: Training History ... 84

Appendix D: Sample Tigrigna stop words ... 98

vi

Table of Acronyms

AI—Artificial Intelligence

ANN— Artificial Neural Network

DL—Deep Learning

CNN—Convolutional Neural Network

HCI—Human-Computer Interaction

LSTM—Long Short Term Memory

MT—Machine Translation NLP—

Natural language processing NMT—

Neural Machine Translation RMT—

Rule Based Machine Translation

SMT—Statistical Based Machine Translation

vii

List of Figures

Figure 1 The architecture of the first known deep network which was trained by Alexey

Grigorevich Ivakhnenko in 1965 ... 4

Figure 2 categories of machine translation ... 19

Figure 3 Steps of direct machine translation approaches .. 20

Figure 4 Transfer-based Approach of MT.. 21

Figure 5 Example based MT architecture .. 23

Figure 6 the general architecture of Statistical machine translation .. 25

Figure 7 RNN architecture .. 28

Figure 8 LSTM architecture .. 29

Figure 9 Gated recurrent neural network (GRU) .. 30

Figure 10 Structure of the Bi-LSTM network .. 31

Figure 11 CNN architecture with two channels.. 32

Figure 12 The encoder–decoder architecture .. 33

Figure 13 Vanilla attention mechanism ... 34

Figure 14 Transformer architecture ... 35

Figure 15 proposed model architecture .. 40

Figure 16 Tokenization and integer representation of Tigrigna sentence 42

Figure 17 Tokenization and integer representation of English sentences 43

Figure 18 the encoder architecture ... 44

Figure 19 the decoder architecture ... 46

Figure 20 attention mechanism .. 47

Figure 21 sample of the dataset ... 49

Figure 22 training Vs validation accuracy of the encoder decoder model using the LSTM 51

Figure 23 training Vs validation accuracy of the encoder decoder model using the GRU 52

Figure 24 Training Vs validation accuracy of attention using Bi-LSTM 53

Figure 25 Training and validation accuracy of encoder decoder model with LSTM algorithm ... 54

Figure 26 Training and validation accuracy of encoder decoder model with GRU algorithm 55

Figure 27 Training and validation accuracy of encoder decoder model with Bi-LSTM algorithm

... 56

viii

Figure 28 training and validation accuracy of attention based model using the Bi-LSTM algorithm

... 57

Figure 29 training and validation accuracy of attention based model using the STM algorithm. 58

Figure 30 Training and validation loss of encoder decoder model with GRU algorithm 59

Figure 31 Training and validation loss of encoder decoder model with Bi-LSTM algorithm 60

Figure 32 Training and validation loss of encoder decoder model with LSTM algorithm 61

Figure 33 Training and validation loss of encoder decoder model with GRU algorithm 62

Figure 34 Training and validation loss of encoder decoder model with Bi-LSTM algorithm 63

Figure 35 training and validation loss of attention based model using the Bi-LSTM algorithm . 64

Figure 36 performance of different models for English-Tigrigna MT ... 66

Figure 37 performance of different models for Tigrigna-English MT... 66

Figure 38 prediction output of Bi-LSTM based encoder decoder model for English-Tigrigna

translation ... 68

Figure 39 prediction output of Bi-LSTM based encoder decoder model for Tigrigna-English

translation ... 69

Figure 40 prediction of Bi-LSTM based attention model ... 70

Figure 41 Algorithm to remove special characters ... 83

Figure 42 Algorithm to normalize the dataset .. 84

Figure 43 Algorithm used to tokenize the dataset... 84

ix

List of Table

Table 1 Word Class Category in Tigrigna Language .. 14

Table 2 Parameters .. 50

Table 3 Performance of encoder decoder model for English-Tigrigna translation 65

Table 4 performance of attention based model ... 65

Table 5 comparison of proposed model with previous works ... 67

x

Abstract

A language can be described by its rules or its symbols. Making computers understand sentences

or words written in human languages is the goal of natural language processing (NLP). Machine

translation (MT) is area of NLP where computers are used to translate one natural language into

another. One of the languages that needs such translation systems is Tigrigna. Tigrinya is a Semitic

language spoken in northern Ethiopia in the Tigray Region as well as in Eritrea. Previously some

studies were conducted on machine translation of Tigrigna and English languages. However most

of the studies were only one directional which is English to Tigrigna languages. Some studies that

proposed bidirectional Tigrigna-English machine translation are also domain specific. In this

study, the researcher developed bidirectional Tigrigna-English machine translation model using

different machine translation approaches. In the study we collected 31000 Tigrigna-English

parallel corpus from different sources and by translating English text to Tigrigna. We then

preprocessed the dataset through cleaning, normalizing and tokenization stages. Using our dataset

we have experimented different machine translation approaches. We have experimented

approaches of encoder decoder model and attention based models using LSTM, Bi-LSTM and

GRU deep learning algorithms. Based on the result of our experiments, our encoder decoder model

using the Bi-LSTM algorithm has a better BLEU score. The encoder decoder model using the Bi-

LSTM algorithm scored 24.8 for English-Tigrigna translation and 24.4 for Tigrigna-English

translation. The model achieves a BLEU score of +0.8 from a baseline translation model on the

area.

Keywords: deep learning, NLP, BLEU

1

1.1. Background

CHAPTER ONE

1 INTRODUCTION

A language can be described by its rules or its symbols. Information is transmitted or broadcast

using a combination of symbols. Making computers understand sentences or words written in

human languages is the goal of the field of artificial intelligence (AI) and linguistics known as

natural language processing (NLP). Natural Language Understanding and Natural Language

Generation, which advance the task of understanding and producing text, are the two components

of natural language processing. In order to simplify users' life and satisfy their desire to

communicate with computers in natural language, natural language processing was developed. As

not all users are fluent in machine specific language, NLP caters to those users who do not have

the time to learn new languages or perfect them [1]. The study of how people and computers

communicate with one another using natural language is known as natural language processing

(NLP). In this area, computational linguistics, artificial intelligence, and computer science all

interact. NLP is a text analysis method that enables computers to comprehend spoken language.

Numerous NLP tools enable tasks like automatic text summarization, sentiment analysis, topic

extraction, named entity recognition, parts-of-speech tagging, connection extraction, stemming,

and other useful tasks that support human-computer interaction. Examples of these tools include

text mining, machine translation, and automated question answering [2].

One of natural language processing's earliest and most intriguing subfields is machine translation.

The main goal is to break down language barriers by creating a machine translation system that

can translate between different human languages. In the area of artificial intelligence known as

machine translation, computers are used to translate one natural language into another. It is an

interdisciplinary area of study that draws concepts from other disciplines, including languages,

artificial intelligence, statistics, and mathematics. Communities from all around the world are

connected in this digital age and share a wealth of resources. In this kind of digital world, language

barriers make communication difficult. To get around this problem, researchers from several

nations and significant corporations are developing machine translation systems. Before the 20th

century, performing the necessary translation was a pipe dream [3].

2

The concepts and expressions of the human mind are represented by a language, which is a means

of communication. As a result, the translation approach was used to transmit communications from

one language to another. The field of machine translation has undergone revolutionary change

thanks to advancements in information, communication, and technology (ICT). It is necessary to

translate literary works from any foreign language into native languages, more precisely using a

machine translation system. Typically, the machine translation system is given the text in the

foreign language, and then the translation is completed. By enabling global access to diverse

literary sources, such systems can overcome linguistic barriers [4]. Computational linguistics

studies the use of software to translate text or speech from one language to another. One subfield

of Computational linguistics is machine translation (MT). Machine translation only replaces words

from one language with words from another, but this does not guarantee accurate translation. Using

statistical and neural techniques is a more advanced approach that is also a growing topic to handle

the problem of multiple phrase recognition [5].

Tigrinya is a Semitic language spoken in northern Ethiopia in the Tigray Region as well as in

Eritrea. It is one of Eritrea's nine official languages. A 13th-century document of regional

customary regulations is the earliest known written work in Tigrinya. It was discovered in Eritrea's

Logo Sarda neighborhood in Akele Guzai [6]. Around 10 million people in Eritrea and Ethiopia

speak the low-resource Semitic language of Tigrinya. Its intricate root and template morphology

produces a wide range of word inflections through the use of prefix, infix, and suffix affixation. It

is challenging to create a dense corpus that includes the majority of Tigrinya words due to the

numerous inflections used in the language [7].

The majority of the languages spoken in Europe and western Asia, from Iceland to India, are linked

to English because it is a member of the Indo-European language family. The ancestral language,

known as Proto-Indo-European, was reportedly spoken by nomads who wandered the southeast

European plains some 5,000 years ago. Since the beginning of time, English has absorbed terms

from several languages. The phonology and morphology of the languages spoken around the world

have been used to create the English that we have today. English comes third with 369.7 million

native speakers, although it ranks first with 898.4 million second language speakers, according to

the 2019 edition of Ethnologue published by SIL International. English has spread around the

3

world, either voluntarily or involuntarily. If we go through history's records, we see that colonists

initially imposed this universal language [8].

The research on deep learning and artificial neural networks is a result of our desire to create a

computer system that can mimic the functioning of the human brain. Understanding the operation

of our cognitive system is necessary for the development of such a system. Ivakhnenko and Lapa

employed thin but deep models with polynomial activation functions in 1965 to develop the first

deep-learning-like algorithms. They then applied statistical techniques to examine their results.

They used statistical techniques to pick the top features in each layer and passed them on to the

subsequent layer. They used layer-by-layer least squares fitting instead of backpropagation to train

their network end-to-end, where earlier layers were independently fitted from later levels [9].

In recent years, deep learning has changed a number of industries, from computer vision to game

artificial intelligence (AI). Due to these advancements, the field of machine translation has shifted

to the use of deep-learning neural-based techniques, which have essentially replaced earlier

methods like rule-based systems or statistical phrase-based techniques. Now that deep learning

approaches are available, such as neural machine translation (NMT) models, it is possible to access

all of the information included in the source phrase and automatically determine which information

is pertinent at each stage of the output text's synthesis. The elimination of earlier independence

assumptions is the main cause of the enormous improvement in translation quality [10]. A radical

improvement over earlier machine translation techniques is neural machine translation. In contrast

to SMT, which uses discrete symbolic representations, NMT uses continuous representations. On

the other hand, NMT eliminates the need for excessive feature engineering by modeling the entire

translation process with a single, sizable neural network. As opposed to SMT's separately tuned

components, NMT's training is end-to-end. In addition to being straightforward, NMT has attained

cutting-edge performance across multiple languages. In actuality, NMT also ends up serving as

the primary technology for many commercial MT systems [11]. Artificial neural networks are

used in deep learning, a type of machine learning, to mimic the workings of the human brain. It

has the capacity to process massive amounts of data and find crucial patterns that can support

important decision-making. In many NLP tasks, including text categorization and language

translation, it offers cutting-edge accuracy. When it comes to natural language processing tasks

like speech recognition, audio recognition, bioinformatics, and machine translation, deep learning

4

architectures like deep belief networks, deep neural networks, and convolutional neural networks

often outperform human experts [12].

Figure 1 The architecture of the first known deep network which was trained by Alexey Grigorevich

Ivakhnenko in 1965 [13].

1.2. Problem statement

Tigrinya is an Afro-Asiatic Semitic language that is spoken in the East African nations of Eritrea

and Ethiopia. It is descended from the ancient Geez language. The Tigrigna script, in contrast to

the Latin language, has more than 32 base letters with seven vowels each. A start letter has six

different suffixes [14]. Previously some studies were conducted on machine translation of Tigrigna

5

and English languages. The study [4] proposed a statistical machine translator for English to

Tigrigna translation. However the study were only one directional which is English to Tigrigna

languages only. The study proposed [7] English to Tigrigna translation using neural machine

translation. Again the study were only one directional which is English to Tigrigna languages only.

In the study by [15] Tigrigna neural machine translation were proposed. The study focused on

Tigrigna to English machine translation not the reverse using transfer learning. The study were

conducted for domain specific case of humanitarian response. This makes the model developed in

the study limited to humanitarian response domain only. In the study [16] a bidirectional English-

Tigrigna machine translation were proposed. The study used a hybrid approach of statistical

approach and post-processing technique. Even though the study reported good performance of

their approach, the model is limited to four domains only. In the study [17] a bidirectional Tigrigna

– English machine translation using statistical machine translation approach were conducted.

However SMT technique may disregard the extended dependency that exists beyond the length of

phrases resulting an errors in translation outcomes such as gender agreements that are wrong.

Separate components, such as word aligners, translation rule extractors, and other feature

extractors, are also affected [18]. In the study [19] English -Tigrigna factored statistical machine

translation were conducted. The study used statistical machine translation and it was English to

Tigrigna translation and not the reverse.

Tigrigna –English Machine Translation is required since a lot of documents are written in both

languages. Due to the information communication between many regions employing different

regional languages, translation systems are becoming more and more in demand today. As far as

our knowledge is concerned there is no research done that fills the above limitations of previous

studies. The goal of this research is to develop bidirectional Tigrigna-English machine translation

model using Deep learning techniques.

1.3. Motivation

Machine translation systems remove language barriers by translating one human language to other

languages. It is essential for improving communication between individuals who live in different

places and for enabling people to use data and documents created in languages with abundant

resources. The requirement for information sharing between languages with abundant and limited

6

resources creates a high demand for translation. The languages that have been translated the least

are Ethiopian languages, like Tigrigna, which is thought to have fewer resources even though it is

a language that is widely spoken in the country's north part and Eritrea. English, being the language

that is used everywhere on the Internet, is the language that is translated the most, making it

difficult for non-native speakers of the language to communicate and obtain resources. The

community, private sector, and public sector in the Tigray region and Eritrea will all benefit greatly

from improved machine translation of Tigrigna-English languages. Since Tigrigna is the official

working language of the Tigray region and Eritrea, applying machine translation on the translation

of various educational books or other materials can contribute to different government institutions

like elementary education. Bidirectional English-Tigrigna Machine Translation can solve the

aforementioned problems, which has motivated us to work on bidirectional English-Tigrigna

Machine Translation.

1.4. Research questions

The following are research questions answered at the end of this study.

A. To what extent the proposed model is effective as compared to previous baseline models?

B. How to develop and evaluate a model that can translate sentences from Tigrigna-English

and vice versa?

C. To what extent does the proposed bidirectional Tigrigna-English translation work?

1.5. The objective of the study

1.5.1. General objective

The general objective of the study is to develop bidirectional Tigrigna-English machine translation

model using deep learning techniques.

1.5.2. Specific objectives

To realize the general objective of our study, we carried out the following specific objectives:

✔ To review literatures and related works done on local and foreign languages

✔ To collect parallel corpus for Tigrigna-English translation model

✔ To study the linguistic behaviors of both Tigrigna and English languages

✔ To design Tigrigna-English machine translation model

✔ To evaluate performance of different deep learning algorithms for Tigrigna-

English machine translation model.

7

1.6. Scope and limitation of the study

The scope of the study is designing Tigrigna-English bi-directional machine translation to translate

sentences written in Tigrigna text into English text and vice versa using deep learning. In this study

tasks such as speech translation, morphological analysis and word sense disambiguation is not

covered.

1.7. Significance

The researchers, translators, and society all gain from this research. It introduces researchers new

insights and datasets for more research. Additionally, it is important for advancing local language

NLP research and inspiring academics to carry out MT between local languages. The ability to

translate Tigrigna written papers, religious texts, educational texts, Tigrigna documents, and many

literal news stories into English and vice versa is useful for translators. It is utilized to reduce the

time and expense involved with manual translation. In order to strengthen our local languages, it

encourages the community to exchange knowledge and learn the language.

1.8. Thesis organization

This study is organized as follows. The second chapter presents a literature review of natural

language processing, Tigrigna language, English language, machine translation and techniques of

machine translation. Previous studies on Tigrigna-English machine translation and performance

evaluation metrics is explored in chapter two. The third chapter discusses the methodology, which

include the dataset preparation and the proposed model architecture. The fourth chapter discuss

about the result, discussion and findings of the study. The last chapter discusses the conclusion of

the study and recommendations based on the study's results and findings.

8

CHAPTER TWO

2 Literature Review

2.1. Introduction to Natural language

Language is more than just a collection of sounds or a vocabulary of meaningful words. People

communicate primarily through language, and this language-based communication usually occurs

in a social setting. Language is used by people to convey their friendliness, love, anger, and pain

as well as to interact socially and emotionally. Ideas can be shared and tasks can be completed

with the use of language (tell a narrative, provide information, complain, or seek for help). It takes

more than just knowing the vocabulary of the language being used to communicate effectively.

Understanding how people using the language utilize its words is necessary for effective

communication. Children acquire spoken language naturally through social interactions. Oral

9

language development in children starts in the years before school, usually without explicit

instruction. Childhood is a continuous period of this growth. Children require direct education,

including instruction on language structure, in order to learn to read and write [25]. Language is

more than just words; it's also the arrangement of those words, or grammar. Humans are unique in

having the capacity to speak in intricate, nuanced ways; while bees, parrots, and chimps may

imitate it, they are not able to do so with the same intricacy or spontaneity. It is uncertain whether

Neanderthals could communicate in the same way as modern humans, despite well-known

conjectures, and hypotheses suggesting that language originated from a single gene mutation some

30,000 years ago are also becoming more and more contentious [26]. Language, which can also

refer to the structure, syntax, or arrangement of each of its components, is a means of

communicating thoughts or feelings that are understood and utilized by a community. Written

symbols, gestures, and vocalizations are all part of human language; nonetheless, it is difficult to

say with certainty that language does not exist in other creatures. Animals are excellent

communicators and information carriers. Gorillas primarily use twenty-five different vocalizations

for group communication. The band uses sounds, such as grunts and barking, to identify each

member's location when traveling. The main uses of distance calls by common chimpanzees are

to attract attention, sound an alarm, and point out food sources or other members of the society.

Similar to humans, bonobos mostly use vocalizations for communication. Although animal

communication is not as sophisticated as human speech, animal communication is nonetheless

effective enough to show the evolutionary benefit of group information exchange. Thus, the

question of how animal communication evolved into human language has been debated for

decades [27].

2.2. Natural language processing

The ability of a computer software to comprehend spoken and written human language is known

as natural language processing, or NLP. It's a part of AI, or artificial intelligence. With its origins

in the study of languages, NLP has been around for more than 50 years. It has numerous practical

uses in a range of industries, such as business intelligence, search engines, and medical research

[28]. In order to achieve human-like language processing for a variety of activities or applications,

a theoretically motivated spectrum of computing techniques known as "natural language

processing" is used to analyze and represent naturally occurring texts at one or more levels of

linguistic analysis. Natural language processing (NLP) is regarded as a branch of artificial

10

intelligence (AI), as demonstrated by its human-like qualities. Furthermore, since NLP aims to

perform as well as humans do, it is reasonable to classify it as an AI discipline, even though its

entire genealogy depends on a number of other disciplines. Natural language processing has been

the subject of research for many years, beginning in the late 1940s. The first computer-based

application pertaining to natural language was machine translation (MT) [29].

Natural language processing is the use of computing techniques to the study of linguistic data,

usually in the form of textual data like articles or papers. Using linguistic insights, natural language

processing aims to create a representation of the text that gives the otherwise unstructured natural

language some structure. This structure can be more semantic, capturing the text's content, or

syntactic, capturing the grammatical relationships between the text's parts. Systems biologists

utilize natural language processing to create applications that combine data from the literature with

information from other biological data sources. A pipeline of components makes up the standard

natural language processing system, which manipulates an input text in ever more complex ways.

Each component's general goal is to provide the text structure so that it may be processed more

easily later on. Early in the pipeline components deal with jobs that are similar to the text's surface

strings, whereas later components seek to evaluate concepts and their relationships. Component

tasks can be completed using a variety of techniques, from statistical and machine learning models

to rule-based approaches like regular expressions and finite state automata [30].

The field of natural language processing (NLP) originated in the 1950s as a combination of

linguistics and artificial intelligence. First, text information retrieval (IR) was distinguished from

natural language processing (NLP) by employing highly scalable statistics-based techniques to

rapidly index and search large amounts of text. But over time, there has been some convergence

between NLP and IR. Since NLP now draws from many other fields, researchers and innovators

in the field must significantly broaden their conceptual knowledge base [31]. In computational

linguistics, grammar refers to the study of certain structures and rules found in language, such as

determining the principles of sentence order and classifying words. Language Model and Part-of-

Speech Tagging are two ways for expressing linear laws in these languages. Syntactic Structure or

Dependency Relationship between words in the sentence can be used to represent nonlinear

information in the sentence. Although the analysis and expression of sentence structure may not

be the final goal of natural language processing problems, it is frequently a key step in solving the

problem [32].

11

Natural language processing is an interdisciplinary field that aims to get computers to perform

useful natural language tasks like enabling human-machine communication, improving human-

human communication, or simply performing useful text and speech processing. It is also known

as Human Language Technology, Language Technology, or Speech and Language Processing.

The coding, recognition, interpretation, translation, and production of human language are among

the research and development activities in this sector. The final products of these efforts include

speech and language technologies including text classification, machine translation, speech

recognition and synthesis, and text mining [33].

Natural language, as opposed to computer languages, is human language. The distinction between

them is that uncertainty is present. There is no ambiguity in any well-designed computer language.

All known natural languages, on the other hand, have the trait of ambiguity. Ambiguity happens

when an input can be interpreted in multiple ways. Ambiguity exists at every level of human

communication. The study of computer programs that take natural, or human, language as input is

known as natural language processing. Natural language processing software can tackle a variety

of tasks, from low-level tasks like attributing components of speech to words to high-level ones

like answering questions. Natural language processing (NLP) is required to convert meaningful

information contained in text into structured data that may be utilized by computer operations [34].

2.3. Background of Tigrigna language

Tigrinya is a Semitic language spoken in northern Ethiopia in the Tigray Region as well as in

Eritrea. It is one of Eritrea's nine official languages. A 13th-century document of regional

customary regulations is the earliest known written work in Tigrinya. It was discovered in Eritrea's

Logo Sarda neighborhood in Akele Guzai [6].

One of the languages of the subfamily of South Semitic languages known as Ethio-Eritrean

Semitics is Tigrinya. There are two subgroups of the Ethio-Eritrean Semitic languages: North

Ethiopian and Eritrean Semitic languages, and South Ethiopian Semitic languages. Ge'ez, Tigré,

and Tigrinya make up the former. While Tigré is exclusively spoken in Eritrea, Ge'ez and Tigrinya

are shared by Ethiopia and Eritrea. South Ethiopian Semitics includes Amharic and more than 20

languages [35]. Tigrigna is a member of the Ethio-Semitic language family, which is part of the

Afro-Asiatic super family, and is the third most spoken language in Ethiopia. Although immigrants

speak Tigrigna throughout the world, it is mainly spoken in the Tigray area of Ethiopia and Eritrea.

The Ge'ez script, commonly known as the Ethiopic script these days, is used by Tigrigna [36].

12

The Tigrigna language is syllabic; each combination of a vowel and a consonant is represented by

a single symbol, the alphabet. Tigrigna displays the root and stem pattern morphological

phenomenon as a result of its rich morphology. It is vital to comprehend the behavior of Tigrigna

language stems and roots since the morphological diversity is the outcome of appending affixes to

the root verbs or nouns to indicate number, gender, tense, possession, etc. While a stem is a verb

whose final letter is "sads" (6th order) or a noun that indicates a single number, a root is a verb

that indicates a third person singular masculine, such as በልዐ ፣ ሰተየ ፣ ሰርሐ, etc. and a noun that

expresses a singular noun. Thus, depending on whether the word is a verb, a stem may or may not

have meaning. In Tigrigna inflectional or derivational morphology of words is created by adding

an affix at the beginning or middle (inside) or end of the root. After adding the affix the new words

may be new in meaning and structure from their respective roots. The affixes can also be

concatenated with each other. The affixes in Tigrigna can be classified in to four categories. The

first is prefixes that come at the beginning of the root. Example prefixes such as ን፣ ዝ፣ እንተ፣ ም፣

ብም፣...፣. The second affix is suffixes that come at the end of the root. Example suffixes such as

ና፣ ታት፣ ት፣ ነት፣ ን፣ ... ፣. The third is infixes that come inside the root. Example infixes such as ባ

in ሰባበረ፣ላ in በላልዐ፣ ታ in ሰታተየ. The fourth is circumfixes that are attached before and after the

base form at the same time [36].

Based on the work of [37] a finite verb and a subject are the two minimum components of Tigrigna

sentences. Tigrigna words are divided into eight main categories according to the parts of speech.

These are Nouns/ “ሹም”, Verbs/”ግሳት”, Adjectives/”ቅፅላት”, Adverbs/”ተውሳኸ-ግሳት,

Pronoun/ተውላጠ-ሹም/ክንዲ-ሹም, Preposition/መስተዋድድ, Conjunction/መስተፃምር and

Interjection/ቃል አጋኖ”. The syntactic structure is created by sequentially joining several words.

Subject ("በዓል-ቤት) (beOel-Biet)" object ("ተስሓቢ) (tesHebi)" verb ("ግሲ) (gsi)" word order

(SOV) is the structure of a Tigrigna sentence.

Nouns (“ሹም”)

In Tigrigna, nouns are names for people, places, animals, emotions, attributes, actions, and

concepts. There are further subcategories of nouns, including countable, abstract, concrete, proper,

and common. The majority of nouns in the language terminate with "Sadese Fidel," which is the

13

sixth letter. However, this does not imply that other letters or Fidel never end. Tigrigna nouns can

mean several different things in their plural forms [37].

There is no standard method for changing a singular form into its plural equivalents. There are two

methods for creating a noun's plural forms, despite the fact that there is no standard method for

doing so. The first is adding an ending (internal plurals), and the second is replacing patterns

(broken plurals). Plural nouns created by substituting patterns are sometimes referred to as "broken

plurals" or "internal plurals," while plural nouns created by appending suffixes are known as

"external plurals." External plurals can be formed with the two ends -ãn (አነ) and -"ãt /አት". -"ãn"

is primarily limited to nouns that refer to male humans [37]. Example of forming plural forms of

a nouns is stated in below.

 Using pattern replacement (broken plurals): “መንበር mɐnbɐr” ……. “መናብር

mɐnabɨr”

 Using addition of an ending (internal plurals): “ዓመት” ------------ “ዓመታት”.

Adjectives (”ቅፅላት”)

Tigrigna adjectives are based on property, size, shape, color and most adjectives in Tigrigna were

found in front of a noun. Adjectives are one of the four major word classes, and their main function

is to give clear explanation for a noun (i.e., talk about things behavior or characteristics, like shape,

size, color, type, property) [38].

Example: “ዝተልአኩ አወዳት መልእኽቲ ይዛረቡ፡፡”

Verbs (”ግሳት”)

A verb is a term that describes an event, condition, or action. It usually serves as the primary

component of the predicate in a phrase. In Tigrigna, verbs are typically used at the end of sentences.

Verbs in Tigrigna can terminate in two different ways: one for the subject and one for the object.

As a result, the verb's affix may agree with the subject and the object at the same time.

Adverbs (”ተውሳኸ-ግሳት”)

In Tigrigna, a word that describes a verb's attribute is an adverb.

Pronoun (“ተውላጠ ስም/ክንዲ-ሹም”)

14

Pronoun is utilized to replace a noun and the noun place in sentences. Pronoun has the same usage

like that of noun. The personal, reflexive, relative, reciprocal, demonstrative, interrogative,

indefinite, and possessive pronoun are different types of pronouns.

Conjunction (“መስተፃምር”)

Words that are used to connect clauses or sentences or o coordinate words in the same clause are

conjunctions. In Tigrigna words that act as a conjunction are ን ፣ ወይ ፣ and ነገር ግን.

The following Table 1 shows all Tigrigna word classes and their examples.

Table 1 Word Class Category in Tigrigna Language [38]

Word Class Example

Verb(ግስ) Drive (ዘወረ), grow(ዓበየ), sing(ደረፈ)

Noun(ስም) Sister (ሐፍተይ)፡Bus (ኣውቶቡስ)፣ house (ገዛ),

Adjective(ቅፅል) Big (ዓቢ)፤ happy(ሕጉሰ) cleaver(ጎበዝ)

Adverb(ተውሳከግስ) Happily (ተሐጊሰ), recently (ቀረባ), soon

Preposition(መሰተዋድድ) of, over (ልዕሊ), with (ምስ), in (ትሕቲ)

Pronoun(ክንድ ስም) He (ንሱ), she(ንሳ)

Conjunction (“መስተፃምር”) And (ከምኡ ውን), or (ወይ ድማ)

Interjection (ቃል አጋኖ) Wow (ዋው), gosh (ጎሽ)

15

2.4. Background of English language

Based on the study by [39] the English language's history is divided into three distinct periods. It

was decided that "old English covers from the first Anglo-Saxon settlements in England, from

about 450 to about 1100, Middle English from about 1100 to about 1500, and Modern English

from 1500 to the present day," despite the fact that there are no clear boundaries between these

periods. It was observed that English achieved success and a notable position during the early

modern age. Nonetheless, there were still numerous unresolved issues with the language. For

instance, the grammar had choice-based forms, the spelling was not established, and pronunciation

variances existed. These were the causes of the late modern era's necessity to correct and

harmonize the language.

In English, there are eight recognized parts of speech. Still, this is mostly based on ancient Latin

grammars. Despite their many similarities, pronouns and nouns are traditionally categorized as

distinct components of speech. Conversely, there is less similarity between different kinds of

adverbs and pronouns [40]. Based on [41] the main word classes—nouns, verbs, adjectives, and

adverbs—can be divided into groups according to the morphological (or "word-building")

characteristics of each group. Generally, words in the same class accept the same set of suffixes

(endings). Additionally, several word classes have specific suffixes that are typically employed to

make their terms.

2.5. Machine translation

Automated translation, often known as machine translation (MT) or sometimes just "MT," is

distinct from computer-aided translation (CAT), machine-aided human translation (MAHT), or

interactive translation. It is the process of translating a text from one natural language—like

English—to another—like Ibo—using computer software. After the United States established the

Association for Machine Translation and Computational Linguistics in 1962 and the National

Academy of Sciences established the Automatic Language Processing Advisory Committee

(ALPAC) in 1964 to investigate machine translation, researchers kept entering the subject.

However, actual development was significantly slower, and funding was drastically cut following

the ALPAC report (1966), which concluded that the ten-year research project had fallen short of

expectations. A. D. Booth and possibly others first floated the idea in 1946 of translating natural

languages using digital computers [42].

16

The origins of machine translation (MT) can be found in the conversations and correspondence

between British crystallographer Andrew D. Booth and Warren Weaver of the Rockefeller

Foundation in 1947. Specifically, Weaver's 1949 memorandum to the Rockefeller Foundation,

which contained two sentences, is where the actual development of MT can be found. The

comparison between translation and decoding may seem oversimplified to an experienced reader

(despite the complexity of coding, it is essentially a one-to-one replacement process with a single

correct answer; translation is a far more subtle and complex process). However, Weaver later in

the memorandum offered some additional, more advanced perspectives, and these helped to

transform an apparently challenging task into one that could be tackled with the help of emerging

computer technology (computers had been successfully used for cryptography during World War

II) [43].

Because language is such an efficient means of communication in the modern world, there is a

growing demand for language translations. Because more information is being exchanged between

different regions using distinct regional languages, there has been a rise in demand for translation

services in recent years. Information professionals have expressed worry about, for example, web

documents' accessibility in different languages. Translating documents from one natural (human)

language to another using computers is known as machine translation (MT), a branch of artificial

intelligence. A variety of methods have been employed recently to create an MT system [42].

One of information science's most difficult "dreams" to come true, so far, is machine translation

(MT). Researchers and funding agencies that were extremely disappointed with the performance

of their MT systems after spending significant sums of money for five or even ten years have

frequently declared that MT is "difficult" or "impossible." They have acknowledged the challenges

of both translation and machine translation. In addition to linguistic expertise, translation demands

the highest level of "general" human intellect. Even for human professional translators who are

proficient in multiple languages but lack sufficient subject-matter expertise, translation remains a

challenging task [44].

Multilingual translation has gained prominence as a result of the globalization trend and the

increase in knowledge that has occurred in the second millennium. In order to acquire knowledge

in academic domains, Machine Translation (MT) warrants attention from both an academic and

practical standpoint. Since MT is a useful strategy used by qualified translators in a variety of

professional fields, translating students should be aware of it. Machine translation is an ideal

17

method that translation trainers, translation learners, and professional translators should be familiar

with for developing translating skills and finding a means to learn and teach through bi-

lingual/multilingual translating functions in software. Indeed, many academics had placed a great

weight on theories pertaining to computer help and machine translation [45].

Machine translation is one of the oldest and most exciting subfields in natural language processing.

The main objective is to develop a machine translation system that can translate between human

languages in order to overcome language barriers. A machine translation is an interdisciplinary

area of research that combines ideas from several academic fields, including mathematics, artificial

intelligence, languages, and statistics [3].

Approaches to MT can be divided into two categories based on methodology: rule-based methods

and dataset-based methods. Rule-based methods dominated from the time the concept of MT was

first proposed until the 1990s. Rule-based machine translation (RBMT) methods translate source

language texts into target language texts using bilingual dictionaries and manually written rules.

However, manually writing rules is time consuming. Furthermore, rules are difficult to keep and

transfer from one domain to another, as well as from one language to another. As a result, rule-

based systems are difficult to scale for open-domain translation and multilingual translation. MT

systems were initially designed primarily for military applications. Georgetown University, in

collaboration with the now-famous computer manufacturer International Business Machines

Corporation (IBM), completed the first Russian-English MT experiment using the IBM-701

computer in 1954, demonstrating that the dream of MT had come true. Following the 1954

presentation, MT gained significant traction for over ten years. However, the boom came to an

abrupt halt in 1966 with the release of the Automatic Language Processing Advisory Committee

(ALPAC) report. It became extremely difficult to work on MT after the report, which was

extremely skeptical of MT and resulted in a drastic cut in funding for MT research. The

Association for Computational Linguistics (ACL), the dominant scientific society today, was

originally named the Association for Machine Translation and Computational Linguistics in 1962,

during the boom; however, it dropped the "MT" from its name in 1968, during the bust, following

the ALPAC report. Meanwhile, MT researchers kept trying to improve translation quality. The

first International Conference on Computational Linguistics, which focused on rule-based parsing

and translation, was held in 1965 by NLP researchers. Beginning in the 1970s, RBMT methods

became more refined. One of the first MT companies, SYSTRAN, launched a commercial

18

translation system in 1978, which was one of the most well-known examples of a commercially

successful rule-based system at the time. SYSTRAN's services were used by Google until 2007

[46].

Machine translators can be purchased as commercial computer solutions (for example, SYSTRAN

Enterprise Server and IBM WebSphere) or as free Web-based applications (eg, Google Translate

and Microsoft Bing Translator). Most machine translators are text-based and provide instant

translations between various languages; however, audio output is sometimes available. A variety

of language keyboards are occasionally available. Google Translate, for example, has a keyboard

icon that allows users to switch between different language scripts by toggling an on-screen

keyboard. To use the virtual keyboard, select the language from which you want to translate (i.e.,

uncheck "Detect language" and select a language other than English). The virtual keyboard icon

will appear in the text box's lower left-hand corner. Smartphone apps that connect to online

machine translation programs are also on the rise [47].

2.6. Approaches of machine translation

Approaches of machine translation can be categorized using the fundamental techniques of MT

systems. This classification is based on two primary paradigms: the dataset-based approach and

the rule-based method. The rule-based approach requires a large amount of human expert input as

human experts define a set of rules to characterize the translation process. In contrast, the dataset-

based technique uses an analysis of translation instances from a parallel dataset created by human

experts to automatically extract information. After merging the best features from the two main

categories of machine translation systems, the Hybrid Machine Translation Approach was formed

[42]. Figure shows different techniques of machine translation.

19

Figure 2 categories of machine translation

2.6.1. Rule-based machine translation (RBMT)

The rule-based machine translation (RBMT) approache is knowledge-based machine translation,

which requires a lot of human efforts on the preparation of linguistic rule and resources of both

source and target languages. The RBMT system translates a given input sentences to output

sentences based on morphological, syntactic, and semantic analysis of both source and target

languages. Rule-Based Machine Translation (RBMT) are the Classical Approach to MT, which is

a general term for machine translation systems that are based on linguistic information about the

source and target languages that is retrieved from (bilingual) dictionaries and grammars that cover

the main semantic, morphological, and syntactic regularities of each language. Based on

morphological, syntactic, and semantic analysis of the source and target languages involved in a

given translation task, a RBMT system generates output sentences (in some target language) from

input sentences (in some source language) [42]. There are three different methods in the rule-based

machine translation technique. They are the Interlingua, Transfer, and Direct machine translation

approaches. Despite being members of the RBMT, their approaches to achieving a representation

of meaning or intent that is independent of language between the source and target languages varies

[42].

20

2.6.1.1. Direct Machine Translation (DMT) Approach

At the base of the pyramid, the Direct Machine Translation Approach is the lowest level. The

oldest and least used method is DMT. Direct translation is done at the word level. With this

method, machine translation systems can translate between two languages: the target language

(TL) and the source language (SL). The SL words are translated without the use of an

additional/intermediary representation. The analysis of SL texts is limited to a single TL. Direct

translation systems are primarily bilingual and unidirectional in nature. A minimal amount of

syntactic and semantic analysis is required for the direct translation approach. SL analysis is

focused on producing representations that are appropriate for a single TL. DMT is a word-for-

word translation method with some minor grammatical changes [42]. Figure 1 shows the steps in

direct machine translation approach.

Figure 3 Steps of direct machine translation approaches

2.6.1.2. Transfer-based Machine Translation Approach

The transfer based machine translation generates generates a translation that mimics the original

sentence's meaning from an intermediate representation. It is somewhat dependent on the language

pair being translated, in contrast to interlingual machine translation. The Transfer-based Approach

is a better rule-based translation method that was found as a result of the shortcomings of the

Interlingua approach. Similar to interlingual machine translation, transfer-based machine

translation creates a translation from an intermediate representation by simulating the meaning of

the source sentence. Unlike interlingual MT, it depends to some extent on the language pair

involved in the translation. Based on the structural distinctions between the source and destination

21

languages, a transfer system can be broken down into three stages: I analysis, ii) transfer, and iii)

generation. The syntactic representation of an SL sentence is created in the first stage using the SL

parser. In the next step, the output of the first stage is transformed into corresponding TL-oriented

representations. The last stage of this translation methodology is to produce the final TL texts using

a TL morphological analyzer. Translations using this technique can be of a respectably good

caliber [42].

Figure 2 shows steps in Transfer-based approach of machine translation.

Figure 4 Transfer-based Approach of MT [48]

2.6.2. Dataset-based Machine Translation Approach

An alternate method of machine translation that tackles the rule-based machine translation issue

of knowledge acquisition is dataset-based machine translation, commonly referred to as data-

driven machine translation. As its name suggests, dataset-based machine translation (DBMT)

leverages a multilingual parallel dataset to gather information for newly incoming translations.

This approach uses parallel corpora, which are large-scale collections of raw data. This raw data

includes text and translations. Translator training is based on these corpora. The dataset-based

approach is further classified into two approaches. The statistical machine translation and

example-based machine translation [42].

22

2.6.2.1. Example-based Machine Translation Approach

Translation by analogy is the core notion behind example-based machine translation (EBMT),

which stands out for using a bilingual dataset with parallel texts as its primary knowledge. An

EBMT system receives a series of sentences in the target language that correspond to each

sentence's point-to-point translation in the source language. Sentences from the source language

to the target language are translated using these examples. The four tasks that make up EBMT are

example synthesis, example application, example base and administration, and example

acquisition. The foundation of example-based machine translation is the idea of translation by

analogy. The idea of translation by analogy is conveyed to example-based machine translation

through the example translations used to train such a system [42].

Most example-based machine translation (MT) systems translate by using phrases or sentences as

the example unit, which enables them to take case relations or idiomatic expressions into account.

Example-based machine translation (MT) obtains instances that are similar to an input sentence

by treating a bilingual dataset as a database. When certain examples conflict during retrieval,

example-based MT selects the best example based on how similar the example's input and source

components are. This implies that the accuracy of the translation of the given input sentence is not

verified by example-based machine translation [49]. Compared to hard rule-based approaches, the

example-based approach offers more flexible transfer, simple translation knowledge acquisition,

and natural translations. The application of o1' linguistic rules, however, has several significant

advantages. An example-based machine translation system can handle a wide range of input by

using detailed linguistic analysis, since rules can be used to factor out all linguistic variations that

do not affect the tile exampled) used transfer. Higher grammatical output quality can be achieved

through rule-based language generation derived from detailed linguistic representations.

Ultimately, the system can be expanded to much larger domains thanks to a modular system

architecture that makes use of domain-independent linguistic regularities in distinct linguistic

modules [50]. Figure 5 shows the architecture of example based machine translation.

23

Figure 5 Example based MT architecture [51]

2.6.2.2. Statistical machine Translation

In 1949, Warren Weaver suggested applying statistical and cryptanalytic methods that were being

developed from the then-emerging discipline of communication theory to translate text from one

natural language to another. Though attempts in this way were soon abandoned for a number of

theoretical and philosophical reasons, any such strategy was certain to fail at a time when the most

sophisticated computers were comparable to modern digital watches. These days, anyone with a

24

decent workstation can study machine translation using statistical approaches and benefit from the

research they do. A string of English words, e, can be translated into a string of French words in a

variety of ways. The field of permissible French translations can be reduced by being aware of the

larger context in which the word appears, but there will still be a wide range of acceptable

translations; ultimately, preference will determine which one is preferred. We think that every

French string, f, can be rendered as e via statistical translation. For every pair of strings (e,f), we

assign a number Pr (f|e), which we understand as the probability that a translator given e will

translate to f [52].

A Source Language Model and a Translation Model (S,T) produce a probability distribution over

source-target sentence pairs. The sum of the conditional probability Pr (T|S) in the translation

model and the probability Pr (S) in the language model yields the joint probability Pt (S, T) of the

pair (S, T). These models' parameters are automatically estimated by means of a statistical

technique that maximizes the fit between the models and the data, utilizing a vast database of

source-target sentence pairings [53]. Figure 6 shows general architecture of Statistical machine

translation.

25

Figure 6 the general architecture of Statistical machine translation [54]

2.6.3. Machine translation using Neural Network

In order to facilitate the computation of the statistical probability assigned to each word in a

sequence, neural networks were introduced as an advancement tool for SMT. The concept of

simultaneously training and translating data from one natural language to another was modeled for

pure neural network machine translation after further research by multiple researchers. Neural

networks haven't attempted machine translation tasks in a very long time. But the performance

was appalling in the early stages of the attempt. Neural network-based machine translation

research has been neglected for a long time [55].

Deep neural networks were introduced for improved performance of existing machine translation

systems in a number of ways, particularly in terms of translation quality. One of the main causes

of this increase is deep neural networks' capacity to learn a logical representation of words. Deep

26

neural architecture-based machine translation is producing cutting-edge outcomes when

translating European languages [56].

2.6.3.1. Neural Machine Translation (NMT)

With most language pairs, neural machine translation (NMT) is a well-researched method that

produces the best results. The sequence-to-sequence model with attention, which uses single-layer

recurrent neural networks in both the encoder and the decoder, is the foundation for the majority

of systems. Recurrent neural network architectures with multiple layers allow different

connections that result in different, orthogonal definitions of depth, which can affect the model

performance depending on a given task. This is in contrast to feed-forward networks, where depth

is simply defined as the number of non-input layers. The complexity of sequence-to-sequence

models increases due to their multiple feed-forward or recurrent sub-networks, which can all be

deep in different ways and result in a vast array of possible configurations [57]. NMT is made up

of two neural networks: one encoder and one decoder.) The encoder converts the original sentence

into a context vector c, which the decoder decodes to generate the target sentence. When the length

of a sentence increases, encoding it into a fixed-length content vector v causes a problem.

Incorporating the attention layer with the design can help to solve this problem and provide good

performance. It is equal to finding a target sentence that optimizes the conditional probability, that

is, arg max P(t|s), according to the probabilistic method. The encoder considers the source sentence

S to be a series of vectors S = (x1, x2, x3,...) in vector v, also known as thought [3]. An end-to-

end learning mode is used in neural machine translation, an automated translation technique. A

neural network of machines is used to both encode and decode the source text. It's more like

adhering to a set of rules that have been established. The quality of the translation has significantly

increased thanks to neural machine translation (NMT), which can also handle conventional idioms

and phrase-based content. An amazing tool that significantly affects translation precision and

accuracy is the neural machine, a novel invention [58].

2.6.3.2. Different Neural Machine Translation Models

A relatively new approach to machine translation is called deep learning. Neural machine

translation is a better option for more accurate translation and performance than traditional

machine translation. Deep learning can be used to enhance and increase the efficiency of current

systems. Various deep learning methods and libraries are needed to create a better machine

translation system. For training purposes, the system that will translate the sentence from source

27

language to target language uses RNNs, LSTMs, and other neural networks. It is a wise decision

to adjust suitable networks and deep learning techniques as this optimizes the system to maximize

the translation system's accuracy relative to other systems [23]. The following are deep learning

algorithms used in machine learning applications.

Recurrent neural network (RNN)

A specialized neural network with a feedback connection, the recurrent neural network (RNN)

processes sequential or time series data by feeding back the output along with new input at each

time step. The neural network can remember the previous data when processing the next output

thanks to the feedback connection. Because this type of processing is characterized as recurring,

the architecture is also referred to as a recurring neural network [59]. A simple neural network

with a feedback connection is part of the simple RNN architecture, sometimes referred to as Simple

RNN. Because of parameter sharing, which broadens the model's applicability to handle variable-

length sequences, it can handle sequential data of variable length. RNNs share the same weights

over a number of time steps, in contrast to feed forward neural networks, which have different

weights for every input feature. The output of a current time step in an RNN is determined by the

preceding time steps and is produced using the same update rule that produced the preceding

outputs. The RNN unfolds into a deep computational graph where time steps are shared by the

weights [59]. Recurrent Neural Networks (RNN) eliminate the need to specify the context's size

N and can represent more diverse patterns. RNNs have input, hidden, and output layers, but they

also have a recurrent matrix that connects the hidden layer to itself to enable time-delayed effects,

or short-term memory. Recurrent Neural Networks have recently gained popularity in language

modeling tasks, particularly neural machine translation (NMT). Recent NMT models are based on

Encoder-Decoder, in which a deep LSTM-based encoder projects the source sentence to a fixed

dimensional vector, and then another deep LSTM decodes the vector [60]. Figure 7 shows

architecture of RNN.

28

Figure 7 RNN architecture [61]

Long short-term memory (LSTM)

A particular type of recurrent neural network (RNN) architecture called Long Short-Term Memory

(LSTM) was created to more accurately model temporal sequences and their long-term

dependencies than standard RNNs [62]. Text is viewed as a sequence of words in RNN-based

models, which are designed to capture word relationships and text structures. However, traditional

RNN models are ineffective and frequently outperform feed-forward neural networks. The most

prevalent RNN architecture is the Long Short-Term Memory (LSTM), which is designed to better

capture long-term dependencies. By introducing a memory cell to remember values across

arbitrary time periods and three gates (input gate, output gate, forget gate) to manage the flow of

information into and out of the cell, LSTM addresses the gradient vanishing or exploding

difficulties that vanilla RNNs suffer from. RNNs and LSTM models for TC have been improved

by capturing additional information, such as natural language tree structures, long-span word

relations in text, document subjects, and so on [63]. The external input gate, forget gate, and output

gate are the three gates that make up an LSTM. The information that should be deleted from the

29

cell state is determined by the forget gate at time t and state si (fi
(t)). Through the use of a sigmoid

function σ, the gate sets the weight between 0 and 1, controlling the self-loop. Previous information

is kept when the value is close to 1, and it is discarded when the value is close to 0. Following the

forget gate, an update is made to the internal state fi
(t). With its own set of parameters, the

calculation for an external input gate (gi
t) is comparable to that of a forget gate using a sigmoid

function to produce a value between 0 and 1. A sigmoid unit integrated into the LSTM output gate

decides whether to output the value or to turn off the value bi
t through the output gate qi

t [59]. The

structure of LSTM is shown in Figure 8.

Figure 8 LSTM architecture [59]

Gated Recurrent Neural Network

Because back-propagation in LSTM involves a large number of parameters, computation times are

lengthy. The gated recurrent unit (GRU), which shortens computation times, was suggested.

Although the architecture of the GRU has been altered, its functionality is comparable to that of

the LSTM. Similar to LSTM, GRU uses gating units to capture long-term dependencies in order

to solve the vanishing and exploding gradient problem. The reset gate and the update gate are the

30

two gates that make up GRU. The amount of past data that must be forgotten is determined by the

reset gate, and the amount that must be carried forward is determined by the update gate [59]. The

structure of GRU is shown in Figure 9.

Figure 9 Gated recurrent neural network (GRU) [59]

Bidirectional long short-term memory (Bi-LSTM)

Two parallel LSTMs, one on the input sequence and the other on the output sequence, come

together to form a bidirectional LSTM, whose hidden state records both past and future data. The

bidirectional LSTM's hidden state is the concatenation of the forward and backward hidden states

at each time step [64]. The Bi-LSTM neural network is made up of LSTM units that work in both

directions to take into account past and future context. Long-term dependencies can be learned

using Bi-LSTM without keeping redundant context information. As a result, it has shown to be

quite good at solving sequential modeling problems and is commonly used for text categorization.

The Bi-LSTM network includes two parallel layers that propagate in two directions using forward

and reverse passes to capture interdependence in two contexts, unlike the LSTM network [65].

The structure of Bi-LSTM is shown in Figure 10.

31

Figure 10 Structure of the Bi-LSTM network [66]

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a popular deep learning method for handling

challenging issues. It gets around the drawbacks of conventional machine learning techniques. The

CNN model has received interest due to its performance on different NLP and image processing

tasks. Layers with convolving filters are applied to local features in convolutional neural networks

(CNN). CNN models, which were first developed for computer vision, have now been proven to

be useful for NLP, with outstanding results in semantic parsing, search query retrieval, sentence

modeling, and other standard NLP tasks [67]. Convolutional Neural Networks (CNNs) are

convolution-based networks that use pooling strategies to get their results. The advantages of CNN

over others include parameter sharing, sparse interactions, and similar representations. For using

the bi-dimensional structure of input data, local connections and shared weights in the network are

used instead of completely connected networks. The CNN is the most well-known and widely used

algorithm in the field of deep learning. The fundamental advantage of CNN over its predecessors

is that it automatically detects significant features without the need for human intervention [68].

Figure 11 shows architecture of a CNN algorithm.

32

Figure 11 CNN architecture with two channels [69]

Encoder-Decoder Models

When it comes to sequence-to-sequence tasks like machine translation, current machine learning

encoder-decoder architectures can achieve impressive performance. Text is converted to a numeric

representation using a text encoder. Decoders, as opposed to encoders, unfold a vector that

represents the state of the sequence and provide us with meaningful information, such as text, tags,

or labels. A sequence of contextualized representations, h1
n, is produced by an encoder given an

input sequence, x1
n. The context vector, c, functions as a function of h1

n and provides the decoder

with the essential information from the input. Additionally, there is a decoder that takes an input

of c and produces an arbitrary length sequence of hidden states h1
m from which an equivalent

sequence of output states y1
m can be calculated [70]. The architecture of encoder-decoder is

commonly used in sequence-to-sequence modeling applications. Encoder-decoder neural

networks remain the de facto neural network design for state-of-the-art models in machine

translation, despite the transition from long short-term memory networks to Transformer networks

as well as the introduction and development of attention mechanisms. Encoder-decoder is still the

de facto neural network architecture for state of-the-art models. Sequence-to-sequence modeling

is often approached with Neural Networks (NNs), prominently encoder-decoder NNs, nowadays.

For the task of Machine Translation (MT), which is by definition also a sequence-to-sequence task,

the default choice of NN topology is also an encoder decoder architecture [71]. From a variable-

33

length input sentence, the encoder extracts a fixed-length vector representation, from which the

decoder produces an accurate, variable-length target translation. The task of translation can be

understood from the perspective of machine learning as learning the conditional distribution p (f |

e) of a source sentence e given a target sentence (translation) f. After a model has learned the

conditional distribution, it can be used to sample a target sentence directly given a source sentence,

either by actual sampling or by using a (approximate) search algorithm to find the maximum of

the distribution [72].

Figure 12 The encoder–decoder architecture [70]

Attention Mechanism

In order to enhance NMT performance, attention techniques were first developed to teach the

alignment between source and target tokens. The classic word alignment in SMT, which learns the

hard alignment between source and destination tokens, is different from the attention techniques.

When creating a target token, attention mechanisms learn to take features from every source token.

All of the concealed states of the source tokens are given weights. Larger weights are given to the

concealed states that are more connected. Following that, attention mechanisms provide the

decoder a context vector ct that was retrieved from the encoder for target-side predictions [73].

34

The hidden state is represented with h and set is {h1, h2, · · · , hn} in the encoder, where n is the

number of source-side tokens. The context vector ct is computed using

ct = αth

where αt is the attention vector at time step t. αt is a normalized distribution of a score computed

by the hidden state set h and the decoder state st−1, as described by Equation 2:

αt = softmax (score(st−1, h))

The fact that early NMT models frequently provided inadequate translations for lengthy sentences

is one issue that has yet to be fully resolved. The fixed-length source sentence encoding is the

cause of this flaw. Sentences of various lengths transmit information in different ways. A fixed-

length vector cannot therefore adequately capture a long sentence with a complex structure and

meaning, even though it is fine for small sentences [74].

Figure 13 Vanilla attention mechanism [73]

Fully attention-based NMT has recently demonstrated promising performance. In particular, the

attention mechanism has operated as a driving force rather than an assistant in text feature

extraction. Transformer, which is a completely attention-based paradigm, is one of them.

Transformer is a fully attention based NMT model, in contrast to earlier RNN- or CNN-based

models. It can be a feature extractor that allows the complete sentence to be "read" and modelled

once, meaning it is of self-attention with a feed-forward link. Multiple layers are frequently

stacked, which improves the quality of the translation [18]. Figure 11 shows the architecture of the

transformer.

35

Figure 14 Transformer architecture [75]

36

2.7. Related work

Machine translation has been studied for many foreign languages and some Ethiopian languages.

Some of the Ethiopian languages that have resources on the web such as Amharic, Oromo and

Tigrigna has been explored for machine translation tasks. Previous researchers has employed

different approaches of machine translation such as rule based and statistical based machine

translation techniques for translation of Semitic languages.

Previously there are some studies conducted on machine translation of Tigrigna and English

languages. The study [4] proposed a statistical machine translator for English to Tigrigna

translation. However the study were only one directional which is English to Tigrigna languages

only. On the other hand the study [7] proposed English to Tigrigna translation using neural

machine translation. Again the study were only one directional which is English to Tigrigna

languages only. In the study by [15] Tigrigna neural machine translation were proposed. The study

focused on Tigrigna to English machine translation not the reverse using transfer learning. The

study were conducted for domain specific case of humanitarian response. This makes the model

developed in the study limited to humanitarian response domain only.

In the study [16] a bidirectional English-Tigrigna machine translation were proposed. The study

used a hybrid approach of statistical approach and post-processing technique. Even though the

study reported good performance of their approach, the model is limited to four domains only.

Based on the literature review the author collected a total of 32,000 bilingual dictionaries and

roughly 12,000 parallel sentences from four domains for the experiment, and two language

models—one for Tigrigna and the other for English—were created. 1,200 sentences were selected

at random for testing and 10,800 sentences for the training set from the parallelly collected corpus.

The experiment used the Moses open source statistical machine translation system for training,

tuning, and decoding. The Giza++ toolkit was utilized to align the parallel corpus, and SRILM was

employed to construct the language model.

In the study [17] a bidirectional Tigrigna – English machine translation using statistical machine

translation approach were conducted. However SMT technique may disregard the extended

dependency that exists beyond the length of phrases resulting an errors in translation outcomes

such as gender agreements that are wrong. Separate components, such as word aligners, translation

rule extractors, and other feature extractors, are also affected [18]. In the study [19] English -

37

Tigrigna factored statistical machine translation were conducted. The study used statistical

machine translation and it was English to Tigrigna translation and not the reverse.

The work of [76] proposed parallel corpora for bi-directional statistical machine translation for

seven Ethiopian language pairs including Tigrigna. The study employed statistical based machine

translation (SMT). However SMT has a limitation of handling long term sentences dependencies.

The authors reported that their system performs less for Ethio-Semitic language family. The

authors recommended ANN modelling as an attractive solution to the problems of machine

translation that is the trend of the time.

The study by [77] proposed an Amharic-Tigrigna machine translation using the SMT approach.

The author prepared the text corpus for Amharic-Tigrigna machine translation system from

religious domain specifically from bible. The author recommended to enhance the performance of

translator using other techniques. The author [77] proposed morpheme based bi-directional

machine translation for Ge’ez to Tigrigna languages. The author experimented their model using

a dataset collected ten bible books. The author used GIZA++ which is a statistical machine

translation toolkit. The author reported as their experiment achieved a BLUE score of 9.23 % from

Tigrigna to Ge’ez and 8.67% Ge‟ez to Tigrigna BLEU score respectively and recommend

increasing the size and domain of the data set used for training the system for better results.

The study [78] proposed Ge'ez Amharic machine translation using deep learning. The dataset for

the study were collected from Bible and religious documents. The study reported that the

performance of their system is much lower. This is because the study employed LSTM algorithm

which has a drawback of handling long term dependencies that exist in a text. The dataset also

makes the model limited to the domain where the dataset is collected. The study [79] proposed a

morpheme based Ge'ez Amharic machine translation. The study used SMT which is based on

morpheme and word level translation as a technique. However SMT approach may disregard the

extended dependency that exists beyond the length of phrases and new words.

Studies also show that Neural Machine Translation (NMT) are better as compared to SMT systems.

NMT is an end-to-end learning strategy for automated translation that has the potential to solve

many of the flaws of traditional phrase-based translation systems. Unfortunately, both in training

and translation inference, NMT systems are known to be computationally expensive – often

excessively so in the case of very big data sets and complex models. NMT systems have also been

38

accused of being unreliable, particularly when input sentences contain unusual terms. NMT's

application in actual deployments and services, where both accuracy and speed are critical, has

been hampered by these limitations [80].

In the study [81] English Amharic machine translation using SMT were proposed. From the study

it is shown that the task of developing MT for Amharic using a rule-based approach, which is

considered one of the NLP scarce resource languages, is enormous. The same may not be true for

languages with well-developed NLP resources. The rule-based MT strongly leverages integrated

linguistic knowledge, rules, and resources of both the source and target languages, which makes it

difficult for under-resourced languages. The source and target languages' linguistic knowledge

includes tagging, parsing, morphological, syntactic, semantic, and lexical information. The

linguistic rules include rules for analyzing, transferring (including syntactic, semantic, and lexical)

the source and/or target languages, as well as rules for generating them.

An Amharic English machine translation were proposed in the work of [76]. From the work, we

observed that for SMT the linguistic characteristics of the target languages have a significant

impact on translation. The difficulties include everything from the writing system to word ordering

and morphological sophistication. Different characters are employed in words that express the

same meaning in the Ge'ez writing system, which is used by Amharic, Tigrigna, and Ge'ez

languages. Peace, for example, can be written as: ሰላም or ሠላም. Such character differences have

an impact on probability values, which have a direct impact on SMT performance.

39

CHAPTER THREE

3 RESEARCH METHODOLOGY

3.1. Introduction

In this chapter the methodology, detailed architectural design and implementation of the

bidirectional Tigrigna-English machine translation model is described. We collected the Tigrigna-

English parallel dataset from freely available online sources.

3.2. Research design

We used an experimental research design technique to analyze the result of our experiments. We

used our collected data to undertake various experiments. With a scientific methodology,

experimental research is carried out with dependent and independent variables. We chose an

experimental research approach so that we could easily observe the impact of some variables on

other variables and investigate potential causes and effects. In our case various model parameters

are the variable we employed.

3.3. System design and architecture

In this study we used the encoder decoder and attention based machine translation approaches. In

Figure 15 the proposed model architecture is shown and each step in the architecture is described

in the following sections.

40

3.3.1. Dataset collection

Figure 15 proposed model architecture

We collected the Tigrigna English dataset from different sources like online repositories. Some of

our dataset sources are Github, and the Translators without borders. The dataset contains two files

one for Tigrigna and the other English text. In addition to the existed dataset, we have translated

freely available English text corpus to Tigrigna.

https://github.com/travisfoundation/Tigrinya-Parallel-Corpus
https://gamayun.translatorswb.org/download/gamayun-mini-kit-5k-tigrinya-english/

41

3.3.2. Dataset preprocessing

In the preprocessing phase we make our dataset ready for our model's later processing tasks.

During the text preprocessing stage of natural language processing, a text is transformed into a

machine-readable format to facilitate the operation of learning algorithms. In our study we did

preprocessing stages that includes cleaning text, normalization, and tokenization.

Dataset cleaning

Text cleaning involves removing unnecessary spaces, stop words, punctuation, special characters

and numbers. Punctuation is not included in the corpus and is not particularly relevant to

translation. In this stage, we removed these unnecessary spaces, punctuation and special

characters. The algorithm we used to remove these characters is shown below in Appendix B and

list of stop words in Appendix D.

Normalization

The process of mapping various word variants to a single string is known as normalization in NLP.

Normalization helps in dataset preparation by converting words into a common format. For

instance, in the Tigrigna language, all words "ሀ," "ሐ," and "ሠ" , "ሰ" can be represented as a single

entity, allowing text representation techniques to provide comparable representations for words

that are similar. The algorithm used to normalize the dataset in our study is shown in Appendix B.

Tokenization

The process of breaking down a given text into individual words, sentences, and subwords is

known as tokenization. It is lexical analysis method used to separate sentences into their

constituent tokens. When we performed tokenization, we found the vocabulary size, the maximum

length of sequences, and the representation of words with unique numbers. In order to assign a

distinct number to each word, we read the entire parallel dataset and a unique number is given to

each word. With tokenization process the whole dataset is translated to integer form. The following

Tigrigna English sentences shows how tokenization is done in our study. “ንሳ ተምሃሪ እዩ” tokenized

as ‘ንሳ’, ‘ተምሃሪ’, ‘እዩ’. The Figure 18 below shows sample of the tokenization stage of dataset

preprocessing for Tigrigna sentences.

42

Figure 16 Tokenization of Tigrigna sentence

Similarly the corresponding English sentences is also tokenized the same way. “She is a student”

is tokenized as 'she ', 'is', 'student'. However, in order to know the boundary of end of the sentences

we used <sos> to indicate the beginning of a new sentence and <eos> to indicate the end of the

sentences like ‘<sos>’, 'she' ,'is' ,'student' <eos>’. The Figure 19 below shows sample of the

tokenization stage of dataset preprocessing for Amharic sentences.

43

Figure 17 Tokenization of English sentences

The algorithm we used to tokenize the dataset is shown below in Appendix B.

Vectorization

In the tokenization stage the dataset is changed in to integer representation. However the integer

representation cannot be directly input for the translation model. This is because the neural network

does not directly operate on the vocabulary represented with integer. In order to operate the

vocabulary by the neural network it should be changed in to vector representation, which is called

one hot vector representation. In this stage the integer represented data is changed in to two-

dimensional vector which is, one-hot vector representation. The one hot vector representation uses

unique vector representation for each word of the sentences.

3.3.3. Model training

3.3.3.1. Input embedding

Embedding is the process of creating an initial representation for every word in the input language

that corresponds to its corresponding numerical value for processing. The encoder layer's bottom

is where the embedding step takes place. Each word passes through both of the encoder's layers

44

after being embedded in the input sequence. Subsequently, the encoder creates the key, query, and

value vectors for every word in Transformers using the embedding. Next, a list of vectors based

on [82] is sent to the encoder with size the length of the longest sentence in the training dataset.

3.3.3.2. Encoder decoder model

Encoder

Encoding is the process of transforming a given data into the required format. The encoder creates

an internal representation called a context vector from the input, which the decoder utilizes to

generate the output sequence in a typical Seq2Seq encoder-decoder model. The lengths of the input

and output sequences can vary since there isn't a definite one-to-one correspondence between

them. Here, a stack of RNN, LSTM, or GRU units makes up the encoder and decoder. It operates

in two phases. First, the LSTM in the encoder processes the entire input sentence and encodes it

into a context vector. The context vector then becomes the final LSTM or RNN's hidden state. The

input sentence should be accurately summarized in this way. The final state is interpreted as the

decoder's initial hidden state, and all other encoder intermediate stages are ignored. The main

problem with this approach is an event: if the encoder generates an incorrect context vector, the

translation will be inaccurate. The encoder produces a poor summary when it attempts to

understand longer sentences. The RNN or LSTM long-range dependency. The encoder architecture

used in this case is shown in Figure 21.

Figure 18 the encoder architecture

45

Decoder

Like the encoder, LSTM (or occasionally GRU or Bi-LSTM) models make up the decoder of the

standard Seq2Seq architecture. Additionally, the final hidden states of the encoder are initialized

into this decoder's first state. The decoder begins creating the output sequence using these initial

states in such a way that the input it receives at each time step is the output from the time step

before. By doing this, the encoded meaning of the input sentence is transferred to the decoder and

converted into a sentence in the target language. The translated sentence produced by the Decoder,

in contrast to the Encoder, will have a variable length. As a result, until it produces a whole

sentence, the Decoder will output a prediction word at each time step. To begin, input a <sos> tag

as the input for the Decoder's first time step. The Decoder will update its hidden state using the

input at time-step t=1, just like the Encoder does. Nevertheless, the Decoder will employ an extra

weight matrix to generate a probability over each word in the output vocabulary rather than simply

moving on to the next time step. The output vocabulary word with the highest probability will be

the first word in the predicted output sentence, and this process will continue until the prediction

of the <eos>. Figure 22 below shows the decoder architecture described above.

46

Figure 19 the decoder architecture

3.3.3.3. Attention based model

In our research we implement the Bahdanau Attention [83] layer. The main distinction between

this method and the fundamental encoder-decoder is that it avoids attempting to compress the

entire input sentence into a single fixed-length vector. Instead, it encodes the input sentence into a

series of vectors, and then, while decoding the translation, it arbitrarily selects a subset of these

vectors. The attention layer helps the decoder to access the data that the encoder extracted. The

attention layer creates a vector out of the whole context sequence and adds it to the output of the

decoder. A single vector from the full sequence is calculated by taking the average over the

sequence. Similar to a context layer, an attention layer computes a weighted average over the

context sequence. Then the context and "query" vectors are used to generate the weights. Figure

26 shows encoder decoder with attention mechanism for this case.

47

Figure 20 attention mechanism

3.3.4. Model evaluation

In this study, we used the Bilingual Evaluation Understudy (BLEU) score to assess the

performance of the proposed model. BLEU score can automatically evaluate the machine

translation model. The text's quality is determined by comparing the results of machine translation

to those of human translation. If the machine translated text is closely related to the human

translated text, the result is then considered to be higher quality, and the model is effective.

3.3.5. Development

tools Python

Python is a high-level, interpreted, dynamically semantic programming language. Because of its

high-level built-in data structures, dynamic typing, and dynamic binding, it's perfect for scripting

or as a language to connect existing components while doing Rapid Application Development.

Python's short, simple-to-learn syntax encourages readability, which reduces the cost of software

maintenance. Python supports modules and packages, which makes code reuse and program

modularity easier. We wrote our software in the Python programming language.

Jupyter notebook

The Jupyter Notebook App is a web-based server-client application for editing and running

notebook documents. The Jupyter Notebook App can be run locally on a computer without internet

access (as explained in this paper) or remotely on a server and accessible via the internet. We used

jupyter notebook to write our python code.

48

Keras

Keras is a Python-based high-level neural network library that can be used with either TensorFlow

or Theano. It is critical to be able to move quickly from idea to result when conducting research.

We used Keras to train our deep learning model.

Anaconda

Aimed for streamlining package management and deployment in scientific computing (data

science, machine learning applications, large-scale data processing, predictive analytics, and so

on), Anaconda is a Python and R programming language distribution. The bundle includes data-

science packages for Windows, Linux, and macOS. This platform was utilized by the researcher

to create the suggested model.

Matplotlib

Matplotlib is a plotting library available as a component of NumPy, a big data numerical handling

resource, for the Python programming language. Matplotlib embeds plots in Python applications

using an object-oriented API. We used this library to visualize the performance of the model during

different experiments. We visualize the accuracy and loss of the model using different algorithms.

TensorFlow

TensorFlow is a complete open source machine learning platform. It has a comprehensive,

adaptable ecosystem of tools, libraries, and community resources that enable researchers to push

the boundaries of ML and developers to easily build and deploy ML-powered applications.

TensorFlow can train and run deep neural networks for handwritten digit classification, image

recognition, word embeddings, recurrent neural networks, sequence-to-sequence models for

machine translation, natural language processing, and PDE (partial differential equation)-based

simulations, competing with frameworks such as PyTorch and Apache MXNet. Best of all,

TensorFlow can predict production at scale using the same models that were used for training.

49

CHAPTER FOUR

4. EXPERIMENTATION AND RESULTS

4.1. Introduction

This chapter discusses the experimental results by showing experimental setups and performance

of testing results of the systems using BLEU score metrics. The dataset, experimental setup,

evaluation processes and results are described in detail.

4.2. Dataset Collection and Preparation

We collected the Tigrigna English dataset from different sources like Github, and the Translators

without borders. In addition to this we have translated freely available English text to Tigrigna.

The translator for our new dataset were English teachers whose mother tang is Tigrigna. We have

translated 2k English sentences to Tigrigna. We have generally collected and prepared 31k

English- Tigrigna parallel sentences.

Figure 25 shows the sample of prepared Tigrigna-English machine translation dataset.

4.3. Experimental setups

Figure 21 sample of the dataset

The experimentation for this research is done on windows operating system. The machine we used

has 8GB of RAM and a GPU NVIDIA GTX 770, which helps us to process experiments with a

https://github.com/travisfoundation/Tigrinya-Parallel-Corpus
https://gamayun.translatorswb.org/download/gamayun-mini-kit-5k-tigrinya-english/
https://gamayun.translatorswb.org/download/gamayun-mini-kit-5k-tigrinya-english/

50

short training time. To build our system, we used the Python programming language along with

the Keras, TensorFlow, NumPy, and libraries. The experiment is done using 31k Tigrigna-English

parallel sentences. During experimentation, the researcher used 80 to 20 percentages of dataset

proportion as a train test splitting ratio. The researcher used 15 percent of the training dataset as a

validation set. In addition to the train test split ratio, the researcher used different experiment setups

with respect to different dropout values, number of neurons in layers, batch sizes and number of

epochs.

4.4. Parameter Selection

To achieve the desired result, we conducted various experiments on various parameter

combinations using our training data. We started by selecting embedding dimension, which we

selected the embedding dimension 64, 128 and 256. In order to select the best parameters using

the training data, we have done the experiments using different combinations of embedding

dimension, optimizers, dropout rates and activation functions. Finally, we got the following

parameter combination with best results specified in the Table 1. These parameter combination

results almost the same performances, only slightly different.

Table 2 Parameters

Parameter Setup 1 Setup 2 Setup 3

Batch size 30 60 128

Number of Epoch 50 100 120

Dropout 0.2 0.2 0.5

Learning rate 0.002 0.002 0.005

Optimizer Adam Adam Adam

Embedding dimension 64 128 256

Number of neuron 64 64 64

Activation function Softmax Softmax Softmax

From the above experiments, the best result were scored with parameter combinations of 128

embedding dimension, 100 epochs, 60 a batch size and 0.002 learning rate. The time taken for the

experiment with this parameter combinations were around 4 hours.

51

4.5. Performance evaluation

4.5.1. Training and validation accuracy of English to Tigrigna translation model

In this section, the researcher discussed the performance of the proposed model using the training

and validation accuracy during the training phase. All the performance detail discussed in this

section is for English-Tigrigna translation.

In Figure 29, the training and validation accuracy of the encoder decoder model using the LSTM

algorithm is shown. As shown in the Figure 29, the model performs 64.21% and 63.1 % training

accuracy and validation accuracy respectively.

Figure 22 training Vs validation accuracy of the encoder decoder model using the LSTM

In Figure 29, the training and validation accuracy of the encoder decoder model using the GRU

algorithm is shown. As shown in the Figure 29, the model performs 64.5% and 64 % training

accuracy and validation accuracy respectively.

52

Figure 23 training Vs validation accuracy of the encoder decoder model using the GRU

In Figure 29, the training and validation accuracy of the Attention based LSTM model. As shown

in the Figure 29, the model performs 53.21% and 50.9 % training accuracy and validation accuracy

respectively.

53

Figure 24 Training Vs validation accuracy of attention using Bi-LSTM

4.5.2. Training and validation accuracy of Tigrigna to English translation model

In this section, the researcher described the training and validation accuracy history of the proposed

translation model for Tigrigna to English translation.

In Figure 25, the training and validation accuracy of the encoder decoder model using the LSTM

algorithm is shown. As shown in the Figure 25, the model performs 68.21% and 67.2 % training

accuracy and validation accuracy respectively.

54

Figure 25 Training and validation accuracy of encoder decoder model with LSTM algorithm

In Figure 26, the training and validation accuracy of the encoder decoder model using the GRU

algorithm is shown. As shown in the Figure 26, the model performs 82.28% and 81.9 % training

accuracy and validation accuracy respectively.

55

Figure 26 Training and validation accuracy of encoder decoder model with GRU algorithm

In Figure 27, the training and validation accuracy of the encoder decoder model using the Bi-

LSTM algorithm is shown. As shown in the Figure 27, the model performs 93.5% and 85.5 %

training accuracy and validation accuracy respectively.

56

Figure 27 Training and validation accuracy of encoder decoder model with Bi-LSTM algorithm

In Figure 28 the training and validation accuracy of attention based model using the Bi-LSTM

algorithm is shown. As shown in the Figure 28, the model performs 65.5% and 62.5 % training

accuracy and validation accuracy respectively.

57

Figure 28 training and validation accuracy of attention based model using the Bi-LSTM algorithm

4.5.3. Training and validation loss of English to Tigrigna translation model

In this section, the researcher described the training and validation loss of the proposed translation

model for English to Tigrigna text.

In figure 29, the training and validation loss of encoder decoder model using LSTM algorithm is

shown. From Figure 29, we observe that the model scores a training loss of 2.7 and a validation

loss of 2.8.

58

Figure 29 training and validation accuracy of attention based model using the STM algorithm

In figure 30, the training and validation loss of encoder decoder model using GRU algorithm is

shown. From Figure 30, we observe that the model scores a training loss of 2.2 and a validation

loss of 2.4.

59

Figure 30 Training and validation loss of encoder decoder model with GRU algorithm

In figure 31, the training and validation loss of encoder decoder model using Bi-LSTM algorithm

is shown. From Figure 31, we observe that the model scores a training loss of 0.34 and a validation

loss of 0.38.

60

Figure 31 Training and validation loss of encoder decoder model with Bi-LSTM algorithm

4.5.4. Training and validation loss of Tigrigna to English translation model

In Figure 32, the training and validation loss of the encoder decoder model using the LSTM

algorithm for Tigrigna-English translation is shown. As shown in the Figure 32, the model scored

2.25 and 3.1 training loss and validation loss respectively.

61

Figure 32 Training and validation loss of encoder decoder model with LSTM algorithm

In Figure 33, the training and validation loss of the encoder decoder model using the GRU

algorithm is shown. As shown in the Figure 33, the model scored 2.1 and 2.4 training loss and

validation loss respectively.

62

Figure 33 Training and validation loss of encoder decoder model with GRU algorithm

In Figure 34, the training and validation loss of the encoder decoder model using the Bi-LSTM

algorithm is shown. As shown in the Figure 34, the model scored 0.6 and 0.71 training loss and

validation loss respectively.

63

Figure 34 Training and validation loss of encoder decoder model with Bi-LSTM algorithm

In Figure 25, the training and validation loss of attention based model using the Bi-LSTM

algorithm is shown. As shown in the Figure 35, the model scored 1.8 and 3.0 training loss and

validation loss respectively.

64

Figure 35 training and validation loss of attention based model using the Bi-LSTM algorithm

4.1. Experimental results and discussion

In this study, we have followed experimental research methodology that enables to conduct many

investigations by taking different combination of model parameters and dataset distributions. After

conducting different experiments with different values of parameter combination, the researcher

selected parameter values with best performance discussed in section 4.4. Using the experiments

conducted above, the researcher developed bidirectional Tigrigna-English machine translation.

We have conducted different experiments using different machine translation techniques. To

evaluate our model we used the BLEU score. We used the encoder decoder model and the attention

based models in our experiment. We have experimented encoder decoder model using the LSTM,

GRU and Bi-LSTM algorithms. Based on our experiment we got best BLEU score result using Bi-

LSTM based encoder decoder model. Observing that the encoder decoder model using Bi-LSTM

performs better, we also experimented the attention based model using the Bi-LSTM algorithm.

65

According to the experiments done, encoder decoder using the Bi-LSTM algorithm performs better

than the encoder decoder model using the GRU and LSTM. This is because the model using the

Bi-LSTM method can learn long-term bidirectional text associations. Based on our experiments

our best scored model outperforms the BLEU score of the baseline model, obtained by previous

researcher [15] who investigated the Tigrigna to English translation for specific domain of

humanitarian response with BLEU scores of +0.8. Performance of different models using different

approaches is shown in Table 2 and Table 3.

Table 3 Performance of encoder decoder model for English-Tigrigna translation

Encoder decoder model

using

English to Tigrigna

translation

Tigrigna to English

translation

Bleu score Bleu score

LSTM Algorithm 18 19

Bi-LSTM Algorithm 24.8 24.4

GRU Algorithm 22 20

Table 4 performance of attention based model

Attention based models using English- Tigrigna

translation

Tigrigna- English

translation

Bleu score Bleu score

Bi-LSTM Algorithm 21 22

The bar graphs in Figure 36 and 37 shows the comparison of different mation transaltion

approaches in this study for English-Tigrigna and Vice versa transaltion.

66

Figure 36 performance of different models for English-Tigrigna MT

Figure 37 performance of different models for Tigrigna-English MT

67

4.2. Comparison of the model with previous works

In this stage we have compared the proposed model with previous studies. In table 5, the

performance of different models is presented. As sown in the table our model performs a BLUE

score of +0.8 from the baseline study by [15].

Table 5 comparison of proposed model with previous works

Model Data size Translation Approach BLUE score

Tigrigna to

English

English to

Tigrigna

Proposed model 31000 Encoder Decoder with

Bi-LSTM

24.4 24.8

Alp Oktem, Mirko

Plitt & Grace Tang

[15]

12000 Transfer Learning 23.6 ---

M. Azath, Tsegay

Kiros [4]

17,338 Statistical Machine

Translation

--- 23.27

Isayas Berhe

Adhanom [7]

Not

mentioned

Neural

machine translation

--- 21.4

4.3. Prediction

The trained translation model predicts the Tigrigna translation of English text and vice versa during

the prediction phase. The text needs to be preprocessed, then fed to the loaded. The Tigrigna

translation or English and vice versa of the text is displayed by the model. Samples of the model's

prediction results are shown in below snapshots. The Figures are samples snapshots of the

prediction phase of different translation approaches followed in our experiment. Figure 37 shows

the prediction output of Bi-LSTM based encoder decoder model for English-Tigrigna translation.

68

Figure 38 prediction output of Bi-LSTM based encoder decoder model for English-Tigrigna translation

Figure 39 shows the prediction output of Bi-LSTM based encoder decoder model Tigrigna-English

translation

69

Figure 39 prediction output of Bi-LSTM based encoder decoder model for Tigrigna-English translation

70

Figure 40 shows the prediction output of Bi-LSTM based attention model.

Figure 40 prediction of Bi-LSTM based attention model

71

CHAPTER FIVE

5. CONCLUSION AND RECOMMENDATION

5.1. Introduction

This chapter discusses the research findings and recommendations for future researchers interested

in working on Tigrigna-English machine translation. In this study the researcher has developed the

translation model using different deep learning algorithms. The model is able to predict the

Tigrigna translation of English text and vice versa. In this study encoder decoder and attention

based models are tested for their performance on Tigrigna-English machine translation.

5.2. Conclusion

Machine translation (MT) studies how to utilize computer software to translate text or speech from

one language to another without using humans. Because language is such an efficient means of

communication in the modern world, there is a growing demand for language translations. Because

more information is being exchanged between different regions using distinct regional languages,

there has been a rise in demand for translation services in recent years.

In this study, the researcher developed bidirectional Tigrigna-English machine translation model

using different machine translation approaches. In the study we have collected Tigrigna-English

parallel corpus from different sources and by translating English text to Tigrigna. Our model is

trained on 31000 Tigrigna-English parallel sentences. Using our dataset we have experimented

different translation approaches. We have experimented approaches of encoder decoder model

and attention based models using LSTM, Bi-LSTM and GRU deep learning algorithms.

Based on the result of our experiments, our encoder decoder model using the Bi-LSTM algorithm

has a better BLEU score. The encoder decoder model using the Bi-LSTM algorithm scored 24.8

for English-Tigrigna translation and 24.4 for Tigrigna- English translation. The encoder decoder

model using the LSTM algorithm scored 18 for English-Tigrigna translation and 19 for Tigrigna-

English translation. The encoder decoder model using the GRU algorithm scored 22 for English-

Tigrigna translation and 20 for Tigrigna- English translation. From the experiment the encoder

decoder model using the Bi-LSTM algorithm took long training time of 4 hours. The attention

based model is also experimented using our dataset. Attention based model is experimented using

the Bi-LSTM algorithms. The attention model using the Bi-LSTM algorithm scored a BLEU score

of 21 for English- Tigrigna and 22 for Tigrigna- English translation.

72

5.3. Contribution

After the end of this study, the researcher has contributed the following things for other researchers

and anyone who is interested on Tigrigna-English machine translation.

 We have prepared 2k parallel Tigrigna-English sentences

 The researcher has showed that encoder decoder model using Bi-LSTM algorithm

outperforms other approaches in our experiments.

 The researcher has developed best performed model as compared to baseline models.

 The researcher has built bidirectional Tigrigna-English translation model.

5.4. Recommendation

After all the researcher recommend the following issues to be addressed for future.

 This translation model is trained with limited dataset, extending the study with a large

dataset can be one task.

 Exploring word embedding techniques such as word2vec, fastText and BERT for text

representation can be one task.

 Morphological analysis of the languages might increase the performance of the

translation model and is recommended for future researchers

 Exploring other approaches to improve the performance of the model can be one task

 Since the goal of this study is to implement machine translation for text-to-text

translation, we recommend that future work to conduct speech-to-speech machine

translation between these language pairs.

73

References

[1] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the

art, current trends and challenges,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3713–3744,

2023, doi: 10.1007/s11042-022-13428-4.

[2] J. Allen, “Natural Language Understanding,” pp. 1–24, 1995.

[3] A. Wahid, “Machine Translation System Using Deep Learning for English to Urdu,” vol.

2022, 2022.

[4] M. Azath and T. Kiros, “Statistical machine translator for english to tigrigna translation,”

Int. J. Sci. Technol. Res., vol. 9, no. 1, pp. 2095–2099, 2020.

[5] M. V. S. Rishita, M. A. Raju, and T. A. Harris, “Machine translation using natural

language processing,” MATEC Web Conf., vol. 277, p. 02004, 2019, doi:

10.1051/matecconf/201927702004.

[6] Negash A., “The Origin and Development of Tigrinya Language Publications (1886 -

1991),” Univ. Libr. 131. http//scholarcommons.scu.edu/library/131, vol. 1, pp. 1–106,

2016.

[7] I. B. Adhanom, “A First Look into Neural Machine Translation for Tigrinya A First Look

into Neural Machine Translation for Tigrinya,” no. March, 2021, doi:

10.13140/RG.2.2.10698.90562.

[8] S. Dr. and D. V. Singh, “A Study on the History of English Language,” Iarjset, vol. 8, no.

6, pp. 207–211, 2020, doi: 10.17148/iarjset.2021.8636.

[9] H. Wang and B. Raj, “On the Origin of Deep Learning,” pp. 1–72, 2017, [Online].

Available: http://arxiv.org/abs/1702.07800

[10] M. Popel, M. Tomkova, Ł. Kaiser, and J. Uszkoreit, “Transforming machine translation: a

deep learning system reaches news translation quality comparable to human

professionals,” pp. 1–15, 2020, doi: 10.1038/s41467-020-18073-9.

[11] Z. Tan et al., “Neural machine translation: A review of methods, resources, and tools,” AI

Open, vol. 1, no. March, pp. 5–21, 2020, doi: 10.1016/j.aiopen.2020.11.001.

http://arxiv.org/abs/1702.07800

74

[12] D. Goularas and S. Kamis, “Evaluation of Deep Learning Techniques in Sentiment

Analysis from Twitter Data,” 2019 Int. Conf. Deep Learn. Mach. Learn. Emerg. Appl., pp.

12–17, 2019, doi: 10.1109/Deep-ML.2019.00011.

[13] T. Dettmers, “Deep Learning in a Nutshell: History and Training.” [Online]. Available:

https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/

[14] Y. Shi, Y. Tian, Y. Wang, W. Zeng, and T. Huang, “Learning long-term dependencies for

action recognition with a biologically-inspired deep network,” pp. 716–725.

[15] A. Oktem, “T IGRINYA N EURAL M ACHINE T RANSLATION WITH T RANSFER

L EARNING FOR H UMANITARIAN R E -,” pp. 2–5, 2020.

[16] Z. Berihu, G. Mesfin, and M. Atsibaha, “Enhancing Bi-directional English-Tigrigna

Machine Translation Using Hybrid Approach Overview of the Tigrinya language The

Tigrinya writing system Research methodology Architecture of the proposed system”.

[17] Mulubrhan Hailegebreal, “A Bidirectional Tigrigna – English Statistical Machine

Translation,” Masters Thesis summited to Addis Ababa Univ., no. October, 2017.

[18] L. Zhao, W. Gao, and J. Fang, “applied sciences High-Performance English – Chinese

Machine Translation Based on GPU-Enabled Deep Neural Networks with Domain

Corpus,” 2021.

[19] T. TSEGAYE, “English -Tigrigna Factored Statistical,” no. June, 2014.

[20] P. S. Foundation, “What is Python? Executive Summary”, [Online]. Available:

https://www.python.org/doc/essays/blurb/

[21] S. Yegulalp, “What is TensorFlow? The machine learning library explained.” [Online].

Available: https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-

learning-library-explained.html

[22] “About Keras.” [Online]. Available: https://keras.io/about/

[23] S. P. Singh et al., “Machine Translation using Deep Learning: An Overview,” pp. 162–

167, 2017.

[24] S. Behera and S. Behera, “Machine translation using deep learning: A survey,” Int. J.

http://www.python.org/doc/essays/blurb/
http://www.python.org/doc/essays/blurb/
http://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-
http://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-

75

Psychosoc. Rehabil., vol. 23, no. 5, pp. 545–550, 2019, doi:

10.37200/IJPR/V23I5/PR190653.

[25] F. Fabbro, “Introduction to language and cerebellum,” J. Neurolinguistics, vol. 13, no. 2–

3, pp. 83–94, 2000, doi: 10.1016/S0911-6044(00)00005-1.

[26] J. Mcwhorter, “The Story of Human Language”.

[27] W. Paper, K. Hyun, and K. Individual, “Origin of Human Language,” no. February, 2016.

[28] B. Lutkevich, “natural language processing (NLP).” [Online]. Available:

https://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-

NLP

[29] E. . Liddy, “Encyclopedia of Library and Information Science, 2 Ed. Marcel Decker,

Inc.,” Encycl. Libr. Inf. Sci. 2nd Ed., 2001, [Online]. Available:

http://surface.syr.edu/cgi/viewcontent.cgi?article=1043&context=istpub%5Cnhttp://surfac

e.syr.edu/istpub/63/

[30] K. M. Verspoor and K. B. Cohen, “Natural Language Processing,” Encycl. Syst. Biol., no.

January 2013, 2013, doi: 10.1007/978-1-4419-9863-7.

[31] P. M. Nadkarni, L. Ohno-machado, and W. W. Chapman, “Natural language processing :

an introduction,” 2011, doi: 10.1136/amiajnl-2011-000464.

[32] Y. Zhou, “Natural Language Processing with Improved Deep Learning,” vol. 2022, 2022.

[33] M. Y. Tachbelie, “No Title,” no. August, 2010.

[34] K. B. Cohen, Biomedical Natural Language Processing and Text Mining, Error. Elsevier

Inc., 2014. doi: 10.1016/B978-0-12-401678-1.00006-3.

[35] N. A. Kifle, “Tigrinya Applicatives in Lexical-Functional Grammar,” 2011.

[36] H. Beyene, “DESIGN AND DEVELOPMENT OF TIGRIGNA SEARCH Engine,” 2013.

[37] H. A. Nega, “Morpheme Based Bi-Directional Machine Translation,” 2023.

[38] M. A. SIUM, “AUTOMATIC PART-OF-SPEECH TAGGER FOR TIGRIGNA

LAN_GUAGE USING HYBRID APPROACH,” Corresp. Análisis, no. 15018, pp. 1–23,

http://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-
http://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-
http://surfac/

76

2016.

[39] B. M. H. Strang, G. Bourcier, and J. Lyons, “An Introduction to the History of the English

Language,” Mod. Lang. Rev., vol. 79, no. 2, p. 410, 1984, doi: 10.2307/3730036.

[40] “Morphology , morphemes , allomorphs , word classes”.

[41] “The morphology of the major word classes.” [Online]. Available:

https://www.awelu.lu.se/language/selective-mini-grammar/the-morphology-of-the-major-

word-classes/

[42] M. D. Okpor, “Machine Translation Approaches,” vol. 11, no. 5, pp. 159–165, 2014.

[43] D. Arnold and L. Sadler, “Machine Translation: an Introductory Guide,” no. November,

2017.

[44] J. Tsujii, “Machine Translation and Machine-Aided Translation: What’s Going On’,”

Transl. Comput., vol. 12, no. November 1990, pp. 3–24, 1991.

[45] P. S. C. Chien and G. Hui-chin Lin, “Machine Translation for Academic Purposes,” Proc.

Int. Conf. TESOL Transl., no. December, pp. 133–148, 2009.

[46] H. Wang, H. Wu, Z. He, L. Huang, and K. Ward, “Progress in Machine Translation,”

Engineering, 2021, doi: 10.1016/j.eng.2021.03.023.

[47] G. Randhawa, M. Ferreyra, R. Ahmed, O. Ezzat, and K. Pottie, “Using machine

translation in clinical practice.,” Can. Fam. Physician, vol. 59, no. 4, pp. 382–383, Apr.

2013.

[48] T. Khanna et al., “Recent advances in Apertium, a free/open-source rule-based machine

translation platform for low-resource languages,” Mach. Transl., vol. 35, pp. 1–28, 2021,

doi: 10.1007/s10590-021-09260-6.

[49] K. Imamura, H. Okuma, T. Watanabe, and E. Sumita, “Example-based machine

translation based on syntactic transfer with statistical models,” COLING 2004 - Proc. 20th

Int. Conf. Comput. Linguist., no. Figure 2, 2004, doi: 10.3115/1220355.1220370.

[50] A. Franz, K. Horiguchi, L. Duan, D. Ecker, E. Koontz, and K. Uchida, “An integrated

architecture for example-based machine translation,” p. 1031, 2000, doi:

http://www.awelu.lu.se/language/selective-mini-grammar/the-morphology-of-the-major-
http://www.awelu.lu.se/language/selective-mini-grammar/the-morphology-of-the-major-

77

10.3115/992730.992799.

[51] N. Semmar, O. Zennaki, and M. Laib, “Improving the performance of an example-based

machine translation system using a domain-specific bilingual lexicon,” 29th Pacific Asia

Conf. Lang. Inf. Comput. PACLIC 2015, no. September, pp. 106–115, 2015.

[52] P. E. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer, “The Mathematics of

Statistical Machine Translation : Parameter Estimation,” vol. 10598, 1993.

[53] P. F. Brown et al., “Statistical approach to machine translation,” vol. 16, no. 2, pp. 79–85,

1990.

[54] R. Sankaravelayuthan and G. Vasuki, “English To Tamil Machine Translation System

Using Parallel Corpus,” India’s High. Educ. Auth. UGC Approv. List Journals Ser.

Number, vol. 19, no. 5, 2019, [Online]. Available: www.languageinindia.com

[55] Z. Yang, Y. Gao, W. Wang, and H. Ney, “Predicting and Using Target Length in Neural

Machine Translation,” Proc. 1st Conf. Asia-Pacific Chapter Assoc. Comput. Linguist. 10th

Int. Jt. Conf. Nat. Lang. Process., pp. 389–395, 2020, [Online]. Available:

https://www.aclweb.org/anthology/2020.aacl-main.41

[56] B. Premjith, M. A. Kumar, and K. P. Soman, “Neural machine translation system for

English to Indian language translation using MTIL parallel corpus,” J. Intell. Syst., vol.

28, no. 3, pp. 387–398, 2019, doi: 10.1515/jisys-2019-2510.

[57] A. V. M. Barone, J. Helcl, R. Sennrich, B. Haddow, and A. Birch, “Deep architectures for

neural machine translation,” WMT 2017 - 2nd Conf. Mach. Transl. Proc., no. January, pp.

99–107, 2017, doi: 10.18653/v1/w17-4710.

[58] J. Yang, S. Ma, D. Zhang, Z. Li, and M. Zhou, “Improving neural machine translation

with soft template prediction,” Proc. Annu. Meet. Assoc. Comput. Linguist., pp. 5979–

5989, 2020, doi: 10.18653/v1/2020.acl-main.531.

[59] S. Editor Wolfgang Walz, Machine Learning for Brain Disorders, vol. 197. 2023.

[Online]. Available: https://link.springer.com/10.1007/978-1-0716-3195-9

[60] M. Parmar and V. S. Devi, “Neural Machine Translation with Recurrent Highway

http://www.languageinindia.com/
http://www.aclweb.org/anthology/2020.aacl-main.41
http://www.aclweb.org/anthology/2020.aacl-main.41

78

Networks,” pp. 1–10.

[61] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen, An overview

and comparative analysis of Recurrent Neural Networks for Short Term Load

Forecasting, no. November. 2017. doi: 10.1007/978-3-319-70338-1.

[62] D. Lee et al., “Long short-term memory recurrent neural network-based acoustic model

using connectionist temporal classification on a large-scale training corpus,” China

Commun., vol. 14, no. 9, pp. 23–31, 2017, doi: 10.1109/CC.2017.8068761.

[63] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep

Learning Based Text Classification: A Comprehensive Review,” arXiv, vol. 1, no. 1, pp.

1–43, 2020.

[64] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from tree-

structured long short-Term memory networks,” ACL-IJCNLP 2015 - 53rd Annu. Meet.

Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang. Process. Asian Fed. Nat. Lang.

Process. Proc. Conf., vol. 1, pp. 1556–1566, 2015, doi: 10.3115/v1/p15-1150.

[65] B. Jang, M. Kim, G. Harerimana, S. Kang, and J. W. Kim, “applied sciences Bi-LSTM

Model to Increase Accuracy in Text Classification : Combining Word2vec CNN and

Attention Mechanism,” 2020.

[66] J. Xie, B. Chen, X. Gu, F. Liang, and X. Xu, “Self-Attention-Based BiLSTM Model for

Short Text Fine-Grained Sentiment Classification,” IEEE Access, vol. 7, pp. 180558–

180570, 2019, doi: 10.1109/ACCESS.2019.2957510.

[67] M. Z. Amin and N. Nadeem, “Convolutional Neural Network : Text Classification Model

for Open Domain Question Answering System”.

[68] L. Alzubaidi et al., Review of deep learning : concepts , CNN architectures , challenges ,

applications , future directions. Springer International Publishing, 2021. doi:

10.1186/s40537-021-00444-8.

[69] T. Binhuraib, “NLP with CNNs.” [Online]. Available:

https://towardsdatascience.com/nlp-with-cnns-a6aa743bdc1e

79

[70] D. Jurafsky and J. Martin, “Encoder-Decoder Models, Attention, and Contextual

Embeddings,” Speech Lang. Process., p. Chapter 10, 2020.

[71] Y. Gao, C. Herold, and Z. Yang, “Is Encoder-Decoder Redundant for Neural Machine

Translation?,” 2019.

[72] B. Van Merri, “On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches,” 2014.

[73] G. Tang, “An Analysis of Attention Mechanisms : The Case of Word Sense

Disambiguation in Neural Machine Translation,” vol. 1, pp. 26–35, 2018.

[74] F. Stahlberg, “Neural machine translation: A review,” J. Artif. Intell. Res., vol. 69, pp.

343–418, 2020, doi: 10.1613/JAIR.1.12007.

[75] Z. Tan, S. Wang, Z. Yang, G. Chen, and X. Huang, “Neural machine translation : A

review of methods , resources , and tools,” AI Open, vol. 1, no. November 2020, pp. 5–21,

2021, doi: 10.1016/j.aiopen.2020.11.001.

[76] S. T. Abate and S. Atinafu, “Parallel Corpora for bi-Directional Statistical Machine

Translation for Seven Ethiopian Language Pairs,” pp. 83–90, 2018.

[77] M. M. Woldeyohannis and M. Meshesha, “Experimenting statistical machine translation

for ethiopic semitic languages: The case of Amharic-Tigrigna,” Springer International

Publishing, 2018. doi: 10.1007/978-3-319-95153-9_13.

[78] G. W. GEBEYEHU, “GE EZ-AMHARIC MACHINE TRANSLATION USING DEEP

LEARNING,” 2021.

[79] T. Kassa, “Morpheme-Based Bi-directional Ge’ez -Amharic Machine Translation,” 2018.

[80] Y. Wu et al., “Google ’ s Neural Machine Translation System : Bridging the Gap between

Human and Machine Translation,” pp. 1–23.

[81] M. G. Teshome, L. Besacier, G. Taye, and D. Teferi, “Phoneme-based English-Amharic

Statistical Machine Translation,” in AFRICON 2015, 2015, pp. 1–5. doi:

10.1109/AFRCON.2015.7331921.

[82] A. Vaswani, “Attention Is All You Need,” Conf. Neural Inf. Process. Syst. (NIPS 2017),

80

Long Beach, CA, USA, no. Nips, 2017.

[83] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.,

pp. 1–15, 2015.

Appendix A. Tigrigna language orthographic Table

ä

u

i

a

e

(ə)

o

wä

wi

wa

we

wə

h ሀ ሁ ሂ ሃ ሄ ህ ሆ

l ለ ሉ ሊ ላ ሌ ል ሎ

ḥ ሐ fh ሒ ሓ ሔ ሕ ሖ

81

m መ ሙ ሚ ማ ሜ ም ሞ

r ረ ሩ ሪ ራ ሬ ር ሮ

s ሰ ሱ ሲ ሳ ሴ ስ ሶ

š ሸ ሹ ሺ ሻ ሼ ሽ ሾ

q ቀ ቁ ቂ ቃ ቄ ቅ ቆ ቈ ቊ ቋ ቌ ቍ

q̱ ቐ ቑ ቒ ቓ ቔ ቕ ቖ ቘ ቚ ቛ ቜ ቝ

b በ ቡ ቢ ባ ቤ ብ ቦ

v ቨ ቩ ቪ ቫ ቬ ቭ ቮ

t ተ ቱ ቲ ታ ቴ ት ቶ

č ቸ ቹ ቺ ቻ ቼ ች ቾ

n ነ ኑ ኒ ና ኔ ን ኖ

ñ ኘ ኙ ኚ ኛ ኜ ኝ ኞ

ʼ አ ኡ ኢ ኣ ኤ እ ኦ

82

k ከ ኩ ኪ ካ ኬ ክ ኮ ኰ ኲ ኳ ኴ ኵ

ḵ ኸ ኹ ኺ ኻ ኼ ኽ ኾ ዀ Th ዃ ዄ ዅ

w ወ ዉ ዊ ዋ ዌ ው ዎ

ʽ ዐ ዑ ዒ ዓ ዔ ዕ ዖ

z ዘ ዙ ዚ ዛ ዜ ዝ ዞ

ž ዠ ዡ ዢ ዣ ዤ ዥ ዦ

y የ ዩ ዪ ያ ዬ ይ ዮ

d ደ ዱ ዲ ዳ ዴ ድ ዶ

ǧ ጀ ጁ ጂ ጃ ጄ ጅ ጆ

g ገ ጉ ጊ ጋ ጌ ግ ጎ ጐ ጒ ጓ ጔ ጕ

ṭ ጠ ጡ ጢ ጣ ጤ ጥ ጦ

č ̣ ጨ ጩ ጪ ጫ ጬ ጭ ጮ

p ̣ ጰ ጱ ጲ ጳ ጴ ጵ ጶ

83

ṣ ጸ ጹ ጺ ጻ ጼ ጽ ጾ

ṣ ፀ ፁ ፂ ፃ ፄ ፅ ፆ

f ፈ ፉ ፊ ፋ ፌ ፍ ፎ

p ፐ ፑ ፒ ፓ ፔ ፕ ፖ

ä

u

i

a

e

(ə)

o

wä

wi

wa

we

wə

Appendix B: Algorithms

Figure 41 Algorithm to remove special characters

84

Figure 42 Algorithm to normalize the dataset

Figure 43 Algorithm used to tokenize the dataset

Appendix C: Training History

Training History of the model using Encoder Decoder with Bi-LSTM

Epoch 1/100

120/120 [==============================] - 43s 126ms/step - loss: 3.3074 -

accuracy: 0.6311 - val_loss: 2.9162 - val_accuracy: 0.6407

Epoch 2/100

120/120 [==============================] - 13s 111ms/step - loss: 2.8554 -

accuracy: 0.6396 - val_loss: 2.8156 - val_accuracy: 0.6412

Epoch 3/100

85

120/120 [==============================] - 13s 107ms/step - loss: 2.7345 -

accuracy: 0.6403 - val_loss: 2.6832 - val_accuracy: 0.6398

Epoch 4/100

120/120 [==============================] - 13s 108ms/step - loss: 2.6067 -

accuracy: 0.6412 - val_loss: 2.5747 - val_accuracy: 0.6390

Epoch 5/100

120/120 [==============================] - 12s 102ms/step - loss: 2.4762 -

accuracy: 0.6417 - val_loss: 2.4294 - val_accuracy: 0.6408

Epoch 6/100

120/120 [==============================] - 13s 107ms/step - loss: 2.3485 -

accuracy: 0.6421 - val_loss: 2.2976 - val_accuracy: 0.6428

Epoch 7/100

120/120 [==============================] - 13s 108ms/step - loss: 2.2382 -

accuracy: 0.6431 - val_loss: 2.2201 - val_accuracy: 0.6432

Epoch 8/100

120/120 [==============================] - 13s 109ms/step - loss: 2.1189 -

accuracy: 0.6450 - val_loss: 2.0608 - val_accuracy: 0.6447

Epoch 9/100

120/120 [==============================] - 14s 115ms/step - loss: 2.0020 -

accuracy: 0.6462 - val_loss: 1.9622 - val_accuracy: 0.6463

Epoch 10/100

120/120 [==============================] - 13s 112ms/step - loss: 1.9190 -

accuracy: 0.6489 - val_loss: 1.8858 - val_accuracy: 0.6500

Epoch 11/100

120/120 [==============================] - 13s 109ms/step - loss: 1.8298 -

accuracy: 0.6520 - val_loss: 1.7740 - val_accuracy: 0.6557

Epoch 12/100

120/120 [==============================] - 14s 117ms/step - loss: 1.7576 -

accuracy: 0.6559 - val_loss: 1.7282 - val_accuracy: 0.6568

Epoch 13/100

120/120 [==============================] - 16s 136ms/step - loss: 1.6877 -

accuracy: 0.6596 - val_loss: 1.6458 - val_accuracy: 0.6648

Epoch 14/100

120/120 [==============================] - 13s 110ms/step - loss: 1.6053 -

accuracy: 0.6656 - val_loss: 1.5778 - val_accuracy: 0.6698

Epoch 15/100

120/120 [==============================] - 13s 108ms/step - loss: 1.5327 -

accuracy: 0.6740 - val_loss: 1.5488 - val_accuracy: 0.6695

Epoch 16/100

120/120 [==============================] - 14s 116ms/step - loss: 1.4528 -

accuracy: 0.6816 - val_loss: 1.4148 - val_accuracy: 0.6862

Epoch 17/100

120/120 [==============================] - 14s 114ms/step - loss: 1.3956 -

accuracy: 0.6892 - val_loss: 1.3672 - val_accuracy: 0.6938

Epoch 18/100

120/120 [==============================] - 15s 121ms/step - loss: 1.3244 -

accuracy: 0.6996 - val_loss: 1.2962 - val_accuracy: 0.7072

Epoch 19/100

120/120 [==============================] - 13s 109ms/step - loss: 1.2751 -

accuracy: 0.7061 - val_loss: 1.2301 - val_accuracy: 0.7182

Epoch 20/100

120/120 [==============================] - 13s 109ms/step - loss: 1.2209 -

accuracy: 0.7146 - val_loss: 1.2008 - val_accuracy: 0.7250

Epoch 21/100

86

120/120 [==============================] - 15s 121ms/step - loss: 1.2004 -

accuracy: 0.7176 - val_loss: 1.1861 - val_accuracy: 0.7253

Epoch 22/100

120/120 [==============================] - 14s 119ms/step - loss: 1.1593 -

accuracy: 0.7256 - val_loss: 1.1228 - val_accuracy: 0.7362

Epoch 23/100

120/120 [==============================] - 13s 110ms/step - loss: 1.0757 -

accuracy: 0.7408 - val_loss: 1.0533 - val_accuracy: 0.7580

Epoch 24/100

120/120 [==============================] - 13s 107ms/step - loss: 1.0284 -

accuracy: 0.7487 - val_loss: 1.0198 - val_accuracy: 0.7570

Epoch 25/100

120/120 [==============================] - 13s 108ms/step - loss: 0.9957 -

accuracy: 0.7559 - val_loss: 0.9638 - val_accuracy: 0.7733

Epoch 26/100

120/120 [==============================] - 13s 106ms/step - loss: 0.9668 -

accuracy: 0.7627 - val_loss: 0.9549 - val_accuracy: 0.7677

Epoch 27/100

120/120 [==============================] - 12s 102ms/step - loss: 0.9388 -

accuracy: 0.7683 - val_loss: 0.9325 - val_accuracy: 0.7710

Epoch 28/100

120/120 [==============================] - 12s 101ms/step - loss: 0.9191 -

accuracy: 0.7722 - val_loss: 0.8541 - val_accuracy: 0.7920

Epoch 29/100

120/120 [==============================] - 13s 106ms/step - loss: 0.8776 -

accuracy: 0.7794 - val_loss: 0.8421 - val_accuracy: 0.7895

Epoch 30/100

120/120 [==============================] - 13s 106ms/step - loss: 0.8599 -

accuracy: 0.7837 - val_loss: 0.8436 - val_accuracy: 0.7920

Epoch 31/100

120/120 [==============================] - 13s 108ms/step - loss: 0.8504 -

accuracy: 0.7864 - val_loss: 0.7967 - val_accuracy: 0.8005

Epoch 32/100

120/120 [==============================] - 13s 110ms/step - loss: 0.8151 -

accuracy: 0.7918 - val_loss: 0.7892 - val_accuracy: 0.7998

Epoch 33/100

120/120 [==============================] - 13s 106ms/step - loss: 0.8000 -

accuracy: 0.7957 - val_loss: 0.7567 - val_accuracy: 0.8107

Epoch 34/100

120/120 [==============================] - 13s 109ms/step - loss: 0.7694 -

accuracy: 0.8019 - val_loss: 0.7085 - val_accuracy: 0.8198

Epoch 35/100

120/120 [==============================] - 14s 120ms/step - loss: 0.7424 -

accuracy: 0.8088 - val_loss: 0.7529 - val_accuracy: 0.8125

Epoch 36/100

120/120 [==============================] - 14s 114ms/step - loss: 0.7401 -

accuracy: 0.8089 - val_loss: 0.7071 - val_accuracy: 0.8232

Epoch 37/100

120/120 [==============================] - 14s 114ms/step - loss: 0.7288 -

accuracy: 0.8098 - val_loss: 0.7044 - val_accuracy: 0.8170

Epoch 38/100

120/120 [==============================] - 13s 110ms/step - loss: 0.6930 -

accuracy: 0.8200 - val_loss: 0.6702 - val_accuracy: 0.8280

Epoch 39/100

87

120/120 [==============================] - 14s 114ms/step - loss: 0.6614 -

accuracy: 0.8263 - val_loss: 0.6574 - val_accuracy: 0.8323

Epoch 40/100

120/120 [==============================] - 14s 120ms/step - loss: 0.6507 -

accuracy: 0.8303 - val_loss: 0.6462 - val_accuracy: 0.8305

Epoch 41/100

120/120 [==============================] - 12s 103ms/step - loss: 0.6457 -

accuracy: 0.8287 - val_loss: 0.5707 - val_accuracy: 0.8497

Epoch 42/100

120/120 [==============================] - 13s 110ms/step - loss: 0.6607 -

accuracy: 0.8246 - val_loss: 0.5696 - val_accuracy: 0.8520

Epoch 43/100

120/120 [==============================] - 15s 126ms/step - loss: 0.6147 -

accuracy: 0.8362 - val_loss: 0.5674 - val_accuracy: 0.8530

Epoch 44/100

120/120 [==============================] - 12s 101ms/step - loss: 0.6303 -

accuracy: 0.8322 - val_loss: 0.5956 - val_accuracy: 0.8455

Epoch 45/100

120/120 [==============================] - 12s 101ms/step - loss: 0.5977 -

accuracy: 0.8426 - val_loss: 0.5303 - val_accuracy: 0.8597

Epoch 46/100

120/120 [==============================] - 14s 120ms/step - loss: 0.5707 -

accuracy: 0.8472 - val_loss: 0.5296 - val_accuracy: 0.8633

Epoch 47/100

120/120 [==============================] - 13s 109ms/step - loss: 0.5675 -

accuracy: 0.8471 - val_loss: 0.5557 - val_accuracy: 0.8532

Epoch 48/100

120/120 [==============================] - 13s 111ms/step - loss: 0.6239 -

accuracy: 0.8336 - val_loss: 0.6955 - val_accuracy: 0.8197

Epoch 49/100

120/120 [==============================] - 13s 107ms/step - loss: 0.6841 -

accuracy: 0.8181 - val_loss: 0.6063 - val_accuracy: 0.8392

Epoch 50/100

120/120 [==============================] - 13s 110ms/step - loss: 0.6423 -

accuracy: 0.8292 - val_loss: 0.7147 - val_accuracy: 0.8185

Epoch 51/100

120/120 [==============================] - 13s 110ms/step - loss: 0.6767 -

accuracy: 0.8210 - val_loss: 0.6880 - val_accuracy: 0.8252

Training history of the model using Encoder Decoder with LSTM

Epoch 1/100

75/75 [==============================] - 17s 94ms/step - loss: 2.8734 - accur

acy: 0.6574 - val_loss: 2.2046 - val_accuracy: 0.6755

Epoch 2/100

75/75 [==============================] - 6s 82ms/step - loss: 2.1581 - accura

cy: 0.6765 - val_loss: 2.1248 - val_accuracy: 0.6756

Epoch 3/100

75/75 [==============================] - 8s 109ms/step - loss: 2.1318 - accur

acy: 0.6770 - val_loss: 2.1108 - val_accuracy: 0.6756

Epoch 4/100

88

75/75 [==============================] - 7s 100ms/step - loss: 2.0994 - accur

acy: 0.6769 - val_loss: 2.1108 - val_accuracy: 0.6764

Epoch 5/100

75/75 [==============================] - 4s 52ms/step

cy: 0.6771 - val_loss: 2.0681 - val_accuracy: 0.6771

Epoch 6/100

- loss: 2.0796 - accura

75/75 [==============================] - 4s 52ms/step

cy: 0.6780 - val_loss: 2.0690 - val_accuracy: 0.6756

Epoch 7/100

75/75 [==============================] - 4s 51ms/step

- loss:

- loss:

2.0558

2.0367

- accura

- accura

cy: 0.6795 - val_loss: 2.0411 - val_accuracy: 0.6771

Epoch 8/100

75/75 [==============================] - 4s 52ms/step

cy: 0.6795 - val_loss: 2.0193 - val_accuracy: 0.6796

- loss: 2.0293 - accura

Epoch 9/100

75/75 [==============================] - 4s 57ms/step

- loss:

2.0126

- accura

cy: 0.6808 - val_loss: 2.0157 - val_accuracy: 0.6809

Epoch 10/100

75/75 [==============================] - 4s 55ms/step

cy: 0.6806 - val_loss: 2.0013 - val_accuracy: 0.6809

Epoch 11/100

75/75 [==============================] - 4s 51ms/step

- loss:

- loss:

2.0055

1.9936

- accura

- accura

cy: 0.6812 - val_loss: 1.9959 - val_accuracy: 0.6804

Epoch 12/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.9868

- accura

cy: 0.6806 - val_loss: 1.9866 - val_accuracy: 0.6820

Epoch 13/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.9766

- accura

cy: 0.6811 - val_loss: 1.9744 - val_accuracy: 0.6807

Epoch 14/100

75/75 [==============================] - 4s 56ms/step

cy: 0.6811 - val_loss: 1.9711 - val_accuracy: 0.6818

Epoch 15/100

75/75 [==============================] - 4s 55ms/step

- loss:

- loss:

1.9675

1.9612

- accura

- accura

cy: 0.6808 - val_loss: 1.9621 - val_accuracy: 0.6818

Epoch 16/100

75/75 [==============================] - 4s 54ms/step

- loss:

1.9344

- accura

cy: 0.6817 - val_loss: 1.9086 - val_accuracy: 0.6831

Epoch 17/100

75/75 [==============================] - 4s 56ms/step

- loss:

1.8920

- accura

cy: 0.6826 - val_loss: 1.8650 - val_accuracy: 0.6831

Epoch 18/100

75/75 [==============================] - 4s 54ms/step

cy: 0.6838 - val_loss: 1.8120 - val_accuracy: 0.6842

- loss: 1.8448 - accura

89

Epoch 19/100

75/75 [==============================] - 4s 56ms/step

- loss:

1.8080

- accura

cy: 0.6853 - val_loss: 1.7911 - val_accuracy: 0.6873

Epoch 20/100

75/75 [==============================] - 4s 56ms/step

- loss:

1.7682

- accura

cy: 0.6874 - val_loss: 1.7515 - val_accuracy: 0.6876

Epoch 21/100

75/75 [==============================] - 4s 54ms/step

- loss:

1.7408

- accura

cy: 0.6894 - val_loss: 1.7332 - val_accuracy: 0.6896

Epoch 22/100

75/75 [==============================] - 4s 57ms/step

cy: 0.6899 - val_loss: 1.7035 - val_accuracy: 0.6893

- loss: 1.7232 - accura

Epoch 23/100

75/75 [==============================] - 5s 60ms/step

- loss:

1.6994

- accura

cy: 0.6900 - val_loss: 1.6810 - val_accuracy: 0.6904

Epoch 24/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.6836

- accura

cy: 0.6904 - val_loss: 1.6743 - val_accuracy: 0.6898

Epoch 25/100

75/75 [==============================] - 4s 60ms/step

- loss:

1.6636

- accura

cy: 0.6917 - val_loss: 1.6544 - val_accuracy: 0.6915

Epoch 26/100

75/75 [==============================] - 4s 57ms/step - loss: 1.6422 - accura

cy: 0.6915 - val_loss: 1.6260 - val_accuracy: 0.6920

Epoch 27/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.6196

- accura

cy: 0.6924 - val_loss: 1.6084 - val_accuracy: 0.6944

Epoch 28/100

75/75 [==============================] - 4s 51ms/step

- loss:

1.6100

- accura

cy: 0.6921 - val_loss: 1.5992 - val_accuracy: 0.6918

Epoch 29/100

75/75 [==============================] - 4s 57ms/step

- loss:

1.5981

- accura

cy: 0.6921 - val_loss: 1.5661 - val_accuracy: 0.6929

Epoch 30/100

75/75 [==============================] - 4s 56ms/step - loss: 1.5654 - accura

cy: 0.6932 - val_loss: 1.5569 - val_accuracy: 0.6935

Epoch 31/100

75/75 [==============================] - 5s 61ms/step

- loss:

1.5508

- accura

cy: 0.6936 - val_loss: 1.5526 - val_accuracy: 0.6925

Epoch 32/100

75/75 [==============================] - 5s 65ms/step

- loss:

1.5411

- accura

cy: 0.6936 - val_loss: 1.5314 - val_accuracy: 0.6938

Epoch 33/100

90

75/75 [==============================] - 6s 78ms/step

cy: 0.6936 - val_loss: 1.5205 - val_accuracy: 0.6947

- loss: 1.5327 - accura

Epoch 34/100

75/75 [==============================] - 5s 71ms/step

- loss:

1.5148

- accura

cy: 0.6939 - val_loss: 1.5048 - val_accuracy: 0.6935

Epoch 35/100

75/75 [==============================] - 5s 61ms/step

cy: 0.6951 - val_loss: 1.4950 - val_accuracy: 0.6947

Epoch 36/100

75/75 [==============================] - 4s 50ms/step

- loss:

- loss:

1.5061

1.4893

- accura

- accura

cy: 0.6954 - val_loss: 1.4699 - val_accuracy: 0.6955

Epoch 37/100

75/75 [==============================] - 4s 48ms/step

cy: 0.6964 - val_loss: 1.4571 - val_accuracy: 0.6956

- loss: 1.4736 - accura

Epoch 38/100

75/75 [==============================] - 4s 52ms/step

- loss:

1.4630

- accura

cy: 0.6966 - val_loss: 1.4530 - val_accuracy: 0.6962

Epoch 39/100

75/75 [==============================] - 4s 50ms/step

cy: 0.6975 - val_loss: 1.4483 - val_accuracy: 0.6976

Epoch 40/100

75/75 [==============================] - 5s 61ms/step

- loss:

- loss:

1.4559

1.4373

- accura

- accura

cy: 0.6986 - val_loss: 1.4111 - val_accuracy: 0.6973

Epoch 41/100

75/75 [==============================] - 7s 93ms/step

- loss:

1.4235

- accura

cy: 0.6979 - val_loss: 1.4070 - val_accuracy: 0.6964

Epoch 42/100

75/75 [==============================] - 7s 92ms/step

- loss:

1.4102

- accura

cy: 0.6988 - val_loss: 1.3964 - val_accuracy: 0.6982

Epoch 43/100

75/75 [==============================] - 7s 88ms/step

cy: 0.6993 - val_loss: 1.3805 - val_accuracy: 0.6980

Epoch 44/100

75/75 [==============================] - 4s 57ms/step

- loss:

- loss:

1.3957

1.3837

- accura

- accura

cy: 0.7000 - val_loss: 1.3692 - val_accuracy: 0.7005

Epoch 45/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.3740

- accura

cy: 0.7003 - val_loss: 1.3754 - val_accuracy: 0.7005

Epoch 46/100

75/75 [==============================] - 4s 51ms/step

- loss:

1.3698

- accura

cy: 0.6998 - val_loss: 1.3461 - val_accuracy: 0.6991

Epoch 47/100

75/75 [==============================] - 4s 59ms/step

cy: 0.7005 - val_loss: 1.3541 - val_accuracy: 0.7011

- loss: 1.3646 - accura

91

Epoch 48/100

75/75 [==============================] - 4s 56ms/step

- loss:

1.3495

- accura

cy: 0.7014 - val_loss: 1.3300 - val_accuracy: 0.7033

Epoch 49/100

75/75 [==============================] - 5s 68ms/step

- loss:

1.3355

- accura

cy: 0.7033 - val_loss: 1.3303 - val_accuracy: 0.7002

Epoch 50/100

75/75 [==============================] - 5s 63ms/step

- loss:

1.3227

- accura

cy: 0.7044 - val_loss: 1.3080 - val_accuracy: 0.7064

Epoch 51/100

75/75 [==============================] - 4s 59ms/step

cy: 0.7050 - val_loss: 1.3239 - val_accuracy: 0.7038

- loss: 1.3133 - accura

Epoch 52/100

75/75 [==============================] - 5s 63ms/step

- loss:

1.3140

- accura

cy: 0.7050 - val_loss: 1.2954 - val_accuracy: 0.7073

Epoch 53/100

75/75 [==============================] - 5s 65ms/step

- loss:

1.2989

- accura

cy: 0.7061 - val_loss: 1.2914 - val_accuracy: 0.7060

Epoch 54/100

75/75 [==============================] - 5s 71ms/step

- loss:

1.2872

- accura

cy: 0.7088 - val_loss: 1.2638 - val_accuracy: 0.7109

Epoch 55/100

75/75 [==============================] - 5s 73ms/step - loss: 1.2753 - accura

cy: 0.7092 - val_loss: 1.2605 - val_accuracy: 0.7125

Epoch 56/100

75/75 [==============================] - 5s 64ms/step

- loss:

1.2705

- accura

cy: 0.7107 - val_loss: 1.2533 - val_accuracy: 0.7122

Epoch 57/100

75/75 [==============================] - 4s 58ms/step

- loss:

1.2584

- accura

cy: 0.7118 - val_loss: 1.2445 - val_accuracy: 0.7142

Epoch 58/100

75/75 [==============================] - 4s 51ms/step

- loss:

1.2549

- accura

cy: 0.7114 - val_loss: 1.2364 - val_accuracy: 0.7155

Epoch 59/100

75/75 [==============================] - 4s 53ms/step - loss: 1.2378 - accura

cy: 0.7163 - val_loss: 1.2355 - val_accuracy: 0.7167

Epoch 60/100

75/75 [==============================] - 4s 52ms/step

- loss:

1.2446

- accura

cy: 0.7146 - val_loss: 1.2469 - val_accuracy: 0.7187

Epoch 61/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.2355

- accura

cy: 0.7178 - val_loss: 1.2330 - val_accuracy: 0.7193

Epoch 62/100

92

75/75 [==============================] - 4s 55ms/step

cy: 0.7174 - val_loss: 1.2163 - val_accuracy: 0.7184

- loss: 1.2258 - accura

Epoch 63/100

75/75 [==============================] - 4s 55ms/step

- loss:

1.2244

- accura

cy: 0.7184 - val_loss: 1.2073 - val_accuracy: 0.7218

Epoch 64/100

75/75 [==============================] - 4s 54ms/step

cy: 0.7198 - val_loss: 1.1829 - val_accuracy: 0.7267

Epoch 65/100

75/75 [==============================] - 4s 54ms/step

- loss:

- loss:

1.2059

1.1933

- accura

- accura

cy: 0.7225 - val_loss: 1.1679 - val_accuracy: 0.7245

Epoch 66/100

75/75 [==============================] - 4s 55ms/step

cy: 0.7249 - val_loss: 1.1534 - val_accuracy: 0.7315

- loss: 1.1744 - accura

Epoch 67/100

75/75 [==============================] - 4s 53ms/step

- loss:

1.1704

- accura

cy: 0.7253 - val_loss: 1.1483 - val_accuracy: 0.7302

Epoch 68/100

75/75 [==============================] - 4s 55ms/step

cy: 0.7262 - val_loss: 1.1331 - val_accuracy: 0.7375

Epoch 69/100

75/75 [==============================] - 4s 56ms/step

- loss:

- loss:

1.1669

1.1526

- accura

- accura

cy: 0.7292 - val_loss: 1.1566 - val_accuracy: 0.7300

Epoch 70/100

75/75 [==============================] - 4s 55ms/step

- loss:

1.1468

- accura

cy: 0.7294 - val_loss: 1.1220 - val_accuracy: 0.7373

Epoch 71/100

75/75 [==============================] - 4s 60ms/step

- loss:

1.1437

- accura

cy: 0.7311 - val_loss: 1.1388 - val_accuracy: 0.7304

Epoch 72/100

75/75 [==============================] - 4s 56ms/step

cy: 0.7290 - val_loss: 1.1105 - val_accuracy: 0.7409

Epoch 73/100

75/75 [==============================] - 4s 55ms/step

- loss:

- loss:

1.1512

1.1320

- accura

- accura

cy: 0.7310 - val_loss: 1.1289 - val_accuracy: 0.7364

Epoch 74/100

75/75 [==============================] - 4s 57ms/step

- loss:

1.1269

- accura

cy: 0.7322 - val_loss: 1.1200 - val_accuracy: 0.7364

Epoch 75/100

75/75 [==============================] - 4s 58ms/step

- loss:

1.1219

- accura

cy: 0.7323 - val_loss: 1.1081 - val_accuracy: 0.7340

Epoch 76/100

75/75 [==============================] - 4s 56ms/step

cy: 0.7331 - val_loss: 1.0946 - val_accuracy: 0.7402

- loss: 1.1152 - accura

93

Epoch 77/100

75/75 [==============================] - 5s 61ms/step - loss: 1.0991 - accura

cy: 0.7370 - val_loss: 1.1040 - val_accuracy: 0.7416

Epoch 78/100

75/75 [==============================] - 8s 110ms/step - loss: 1.1004 - accur

acy: 0.7380 - val_loss: 1.0815 - val_accuracy: 0.7433

Epoch 79/100

75/75 [==============================] - 8s 110ms/step - loss: 1.0890 - accur

acy: 0.7382 - val_loss: 1.0466 - val_accuracy: 0.7476

Epoch 80/100

75/75 [==============================] - 7s 90ms/step

cy: 0.7429 - val_loss: 1.0591 - val_accuracy: 0.7471

- loss: 1.0678 - accura

Epoch 81/100

75/75 [==============================] - 6s 85ms/step

- loss:

1.0735

- accura

cy: 0.7423 - val_loss: 1.0495 - val_accuracy: 0.7480

Epoch 82/100

75/75 [==============================] - 4s 59ms/step

- loss:

1.0686

- accura

cy: 0.7420 - val_loss: 1.0602 - val_accuracy: 0.7433

Epoch 83/100

75/75 [==============================] - 4s 59ms/step

- loss:

1.0574

- accura

cy: 0.7445 - val_loss: 1.0408 - val_accuracy: 0.7491

Epoch 84/100

75/75 [==============================] - 4s 56ms/step - loss: 1.0522 - accura

cy: 0.7448 - val_loss: 1.0159 - val_accuracy: 0.7515

Epoch 85/100

75/75 [==============================] - 4s 59ms/step

- loss:

1.0373

- accura

cy: 0.7480 - val_loss: 1.0202 - val_accuracy: 0.7495

Epoch 86/100

75/75 [==============================] - 4s 56ms/step

- loss:

1.0360

- accura

cy: 0.7477 - val_loss: 1.0245 - val_accuracy: 0.7547

Epoch 87/100

75/75 [==============================] - 5s 62ms/step

- loss:

1.0300

- accura

cy: 0.7498 - val_loss: 1.0239 - val_accuracy: 0.7551

Epoch 88/100

75/75 [==============================] - 4s 56ms/step - loss: 1.0237 - accura

cy: 0.7498 - val_loss: 1.0064 - val_accuracy: 0.7576

Epoch 89/100

75/75 [==============================] - 4s 52ms/step

- loss:

1.0130

- accura

cy: 0.7525 - val_loss: 0.9891 - val_accuracy: 0.7609

Epoch 90/100

75/75 [==============================] - 4s 60ms/step

- loss:

1.0088

- accura

cy: 0.7537 - val_loss: 0.9946 - val_accuracy: 0.7602

Epoch 91/100

94

75/75 [==============================] - 4s 55ms/step

cy: 0.7551 - val_loss: 0.9728 - val_accuracy: 0.7584

- loss: 1.0009 - accura

Epoch 92/100

75/75 [==============================] - 4s 55ms/step

- loss:

0.9883

- accura

cy: 0.7570 - val_loss: 0.9685 - val_accuracy: 0.7649

Epoch 93/100

75/75 [==============================] - 4s 58ms/step

cy: 0.7600 - val_loss: 0.9554 - val_accuracy: 0.7685

Epoch 94/100

75/75 [==============================] - 4s 56ms/step

- loss:

- loss:

0.9802

0.9749

- accura

- accura

cy: 0.7610 - val_loss: 0.9405 - val_accuracy: 0.7649

Epoch 95/100

75/75 [==============================] - 4s 58ms/step

cy: 0.7616 - val_loss: 0.9412 - val_accuracy: 0.7704

- loss: 0.9645 - accura

Epoch 96/100

75/75 [==============================] - 4s 54ms/step

- loss:

0.9651

- accura

cy: 0.7613 - val_loss: 0.9420 - val_accuracy: 0.7665

Epoch 97/100

75/75 [==============================] - 4s 55ms/step

cy: 0.7625 - val_loss: 0.9426 - val_accuracy: 0.7704

Epoch 98/100

75/75 [==============================] - 4s 50ms/step

- loss:

- loss:

0.9569

0.9522

- accura

- accura

cy: 0.7643 - val_loss: 0.9439 - val_accuracy: 0.7680

Epoch 99/100

75/75 [==============================] - 4s 50ms/step

- loss:

0.9471

- accura

cy: 0.7646 - val_loss: 0.9390 - val_accuracy: 0.7675

Epoch 100/100

75/75 [==============================] - 4s 51ms/step

- loss:

0.9494

- accura

cy: 0.7638 - val_loss: 0.9276 - val_accuracy: 0.7713

Training history of the model using Attention mechanism

Epoch 1/60

5/5 [==============================] - ETA: 0s - loss: 6.9325 - accuracy: 0.3

246INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 50s 8s/step - loss: 6.9325 - accuracy:

0.3246 - val_loss: 4.4323 - val_accuracy: 0.4273

Epoch 2/60

5/5 [==============================] - ETA: 0s - loss: 4.3500 - accuracy: 0.4

149INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 35s 8s/step - loss: 4.3500 - accuracy:

0.4149 - val_loss: 4.1993 - val_accuracy: 0.4327

95

Epoch 3/60

5/5 [==============================] - ETA: 0s - loss: 3.9490 - accuracy: 0.4

232INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 36s 9s/step - loss: 3.9490 - accuracy:

0.4232 - val_loss: 4.2830 - val_accuracy: 0.4273

Epoch 4/60

5/5 [==============================] - ETA: 0s - loss: 3.7824 - accuracy: 0.4

192INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 36s 8s/step - loss: 3.7824 - accuracy:

0.4192 - val_loss: 4.2629 - val_accuracy: 0.4655

Epoch 5/60

5/5 [==============================] - ETA: 0s - loss: 3.6830 - accuracy: 0.4

337INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 32s 7s/step - loss: 3.6830 - accuracy:

0.4337 - val_loss: 4.3303 - val_accuracy: 0.4473

Epoch 6/60

5/5 [==============================] - ETA: 0s - loss: 3.6018 - accuracy: 0.4

400INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 38s 9s/step - loss: 3.6018 - accuracy:

0.4400 - val_loss: 4.2815 - val_accuracy: 0.4655

Epoch 7/60

5/5 [==============================] - ETA: 0s - loss: 3.5092 - accuracy: 0.4

552INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 35s 8s/step - loss: 3.5092 - accuracy:

0.4552 - val_loss: 4.3541 - val_accuracy: 0.4691

Epoch 8/60

5/5 [==============================] - ETA: 0s - loss: 3.4295 - accuracy: 0.4

560INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 32s 7s/step - loss: 3.4295 - accuracy:

0.4560 - val_loss: 4.3215 - val_accuracy: 0.4836

Epoch 9/60

5/5 [==============================] - ETA: 0s - loss: 3.3497 - accuracy: 0.4

927INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 34s 8s/step - loss: 3.3497 - accuracy:

0.4927 - val_loss: 4.3330 - val_accuracy: 0.4927

Epoch 10/60

96

5/5 [==============================] - ETA: 0s - loss: 3.2759 - accuracy: 0.5

059INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 33s 8s/step - loss: 3.2759 - accuracy:

0.5059 - val_loss: 4.3046 - val_accuracy: 0.5036

Epoch 11/60

5/5 [==============================] - ETA: 0s - loss: 3.2065 - accuracy: 0.5

103INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 32s 8s/step - loss: 3.2065 - accuracy:

0.5103 - val_loss: 4.3504 - val_accuracy: 0.5073

Epoch 12/60

5/5 [==============================] - ETA: 0s - loss: 3.1352 - accuracy: 0.5

123INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 33s 8s/step - loss: 3.1352 - accuracy:

0.5123 - val_loss: 4.4159 - val_accuracy: 0.5127

Epoch 13/60

5/5 [==============================] - ETA: 0s - loss: 3.0636 - accuracy: 0.5

135INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 36s 8s/step - loss: 3.0636 - accuracy:

0.5135 - val_loss: 4.4945 - val_accuracy: 0.5055

Epoch 14/60

5/5 [==============================] - ETA: 0s - loss: 2.9861 - accuracy: 0.5

154INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 36s 8s/step - loss: 2.9861 - accuracy:

0.5154 - val_loss: 4.5542 - val_accuracy: 0.5164

Epoch 15/60

5/5 [==============================] - ETA: 0s - loss: 2.9089 - accuracy: 0.5

180INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 34s 8s/step - loss: 2.9089 - accuracy:

0.5180 - val_loss: 4.6521 - val_accuracy: 0.5164

Epoch 16/60

5/5 [==============================] - ETA: 0s - loss: 2.8354 - accuracy: 0.5

192INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 41s 10s/step - loss: 2.8354 - accuracy

: 0.5192 - val_loss: 4.7596 - val_accuracy: 0.5182

Epoch 17/60

5/5 [==============================] - ETA: 0s - loss: 2.7777 - accuracy: 0.5

188INFO:tensorflow:Assets written to: model1\assets

97

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 169s 41s/step - loss: 2.7777 - accurac

y: 0.5188 - val_loss: 4.8050 - val_accuracy: 0.5200

Epoch 18/60

5/5 [==============================] - ETA: 0s - loss: 2.7247 - accuracy: 0.5

190INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 168s 41s/step - loss: 2.7247 - accurac

y: 0.5190 - val_loss: 4.8789 - val_accuracy: 0.5055

Epoch 19/60

5/5 [==============================] - ETA: 0s - loss: 2.6635 - accuracy: 0.5

248INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 127s 31s/step - loss: 2.6635 - accurac

y: 0.5248 - val_loss: 4.9839 - val_accuracy: 0.5073

Epoch 20/60

5/5 [==============================] - ETA: 0s - loss: 2.6049 - accuracy: 0.5

240INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 42s 10s/step - loss: 2.6049 - accuracy

: 0.5240 - val_loss: 4.9901 - val_accuracy: 0.5091

Epoch 21/60

5/5 [==============================] - ETA: 0s - loss: 2.5548 - accuracy: 0.5

269INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 39s 9s/step - loss: 2.5548 - accuracy:

0.5269 - val_loss: 5.1239 - val_accuracy: 0.5091

Epoch 22/60

5/5 [==============================] - ETA: 0s - loss: 2.5131 - accuracy: 0.5

323INFO:tensorflow:Assets written to: model1\assets

INFO:tensorflow:Assets written to: model1\assets

5/5 [==============================] - 46s 11s/step - loss: 2.5131 - accuracy

: 0.5323 - val_loss: 5.0906 - val_accuracy: 0.5055

98

Appendix D: Sample Tigrigna stop words

'ምበር ስለዚ ንሕና እሞ

'ሞ ስለዝበላ ንሱ እተን

'ቲ ሽዑ ንሳ እቲ

'ታ ቅድሚ ንሳቶም እታ

'ኳ በለ ንስኺ እቶም

'ውን በቲ ንስኻ እንተ

'ዚ በዚ ንስኻትኩም እንተሎ

'የ ብምባል ንስኻትክን እንተኾነ

'ዩ ብተወሳኺ ንዓይ እንታይ

'ያ ብኸመይ ኢለ እንከሎ

'ዮም ብዘይ ኢሉ እኳ

'ዮን ብዘይካ ኢላ እዋን
ልዕሊ ብዙሕ ኢልካ እውን
ሒዙ ብዛዕባ ኢሎም እዚ
ሒዛ ብፍላይ ኢና እዛ

	Declaration
	Acknowledgment
	Table of Acronyms
	List of Figures
	List of Table
	Abstract
	1.1. Background

	CHAPTER ONE 1 INTRODUCTION
	1.2. Problem statement
	1.3. Motivation
	1.4. Research questions
	1.5. The objective of the study
	1.5.1. General objective
	1.5.2. Specific objectives

	1.6. Scope and limitation of the study
	1.7. Significance
	1.8. Thesis organization

	CHAPTER TWO
	2 Literature Review
	2.1. Introduction to Natural language
	2.2. Natural language processing
	2.3. Background of Tigrigna language
	Nouns (“ሹም”)

	2.4. Background of English language
	2.5. Machine translation
	2.6. Approaches of machine translation
	2.6.1. Rule-based machine translation (RBMT)
	2.6.2. Dataset-based Machine Translation Approach
	2.6.3. Machine translation using Neural Network
	Recurrent neural network (RNN)
	Long short-term memory (LSTM)
	Gated Recurrent Neural Network
	Bidirectional long short-term memory (Bi-LSTM)
	Convolutional Neural Network (CNN)
	Encoder-Decoder Models
	Attention Mechanism

	2.7. Related work

	CHAPTER THREE
	3 RESEARCH METHODOLOGY
	3.1. Introduction
	3.2. Research design
	3.3. System design and architecture
	3.3.1. Dataset collection
	3.3.2. Dataset preprocessing
	Dataset cleaning
	Normalization
	Vectorization
	3.3.3. Model training
	Encoder
	Decoder
	3.3.4. Model evaluation
	3.3.5. Development tools Python
	Jupyter notebook
	Keras
	Anaconda
	Matplotlib

	CHAPTER FOUR
	4. EXPERIMENTATION AND RESULTS
	4.1. Introduction
	4.2. Dataset Collection and Preparation
	4.3. Experimental setups
	4.4. Parameter Selection
	4.5. Performance evaluation
	4.5.1. Training and validation accuracy of English to Tigrigna translation model
	4.5.2. Training and validation accuracy of Tigrigna to English translation model
	4.5.3. Training and validation loss of English to Tigrigna translation model
	4.5.4. Training and validation loss of Tigrigna to English translation model

	4.1. Experimental results and discussion
	4.2. Comparison of the model with previous works

	4.3. Prediction

	CHAPTER FIVE
	5. CONCLUSION AND RECOMMENDATION
	5.1. Introduction
	5.2. Conclusion
	5.3. Contribution
	5.4. Recommendation

	References
	Appendix A. Tigrigna language orthographic Table
	Appendix B: Algorithms
	Appendix C: Training History
	Training History of the model using Encoder Decoder with Bi-LSTM

	Appendix D: Sample Tigrigna stop words

